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Abstract

It was conjectured by Lovász in 1970 that every connected ver-
tex-transitive graph has a Hamiltonian path [5]. So far, only four
connected vertex-transitive graphs with more than two vertices but
without Hamiltonian cycles are known [4]. These four graphs have
Hamiltonian paths. However, since none of these four graphs is a Cay-
ley graph, we can look at the Lovász conjecture as stating that every
connected Cayley graph with more than two vertices has a Hamiltonian
cycle.

In this work, we show some properties of the gadget graph Hl,p

which was used by Holyer to prove the NP−completeness of the prob-
lem of the edge-partition into cliques [3]. We show that the graph
Hl,p is a Cayley graph and present two constructions of a Hamiltonian
cycle, which corroborates the Lovász conjecture.

1 Introduction

This paper considers a family of graphs, denoted by graph Hl,p. The graph

Hl,p was used by Holyer to prove the NP-completeness of the problem of

edge-partition into clique with l vertices Kl [3]. We follow the usual notation

of Kl for the complete graph on l vertices and refer to a complete subgraph

as a clique.
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We show that the graph Hl,p is a Cayley graph of an Abelian group, that

Hl,p has a Hamiltonian cycle and we have an evidence for Lovász conjecture.

In the next section, we define the graph Hl,p. In the third section,

we show that the graph Hl,p is a Cayley graph of an Abelian group. In

the fourth section, we show that the graph Hl,p has Hamiltonian cycle and

present a construction of the cycle. In the fifth section, we present another

construction of the Hamiltonian cycle. Finally, we have the conclusion of

this work.

2 Preliminaries

The graph Hl,p was defined as a gadget graph in the study of the problem

of edge partition. The problem of edge partition in Kl’s, denoted EPl,

considers the partition of the edge-set of the graph into subsets of edges

such that each subset induces a complete graph of l vertices.

For each l ≥ 3 and p ≥ 3, define a graph Hl,p = (Vl,p, El,p) having

Vl,p = {x = (x1, ..., xl) ∈ Z l
p with

l
∑

i=1

xi ≡ 0 mod p}

El,p = {xy : there are distinct i, j such that yk ≡p xk

for k 6= {i, j} and yi ≡p xi + 1, yj ≡p xj − 1}

The graph Hl,p can be edge-partitioned into subgraphs isomorphic to Kl

in two different ways and the graph Hl,p is a gadget of the graph used in the

proof of NP− completeness of the problem EPl.

Theorem 2.1 ([3]). The edge-partition problem EPl is NP−complete for

each l ≥ 3.

Figure 1 presents a representation with repeated vertices of the graph

H3,4. The graph H3,4 is not planar because it is regular graph of degree 6,

but it admits a representation on the torus without crossing edges. We can
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Figure 1: Graph H3,4

observe that for l = 3, we have a torus “grid” of size p× p. Some properties

of graph Hl,p are given by Lemma 2.2.

Lemma 2.2 ([3]). The graph Hl,p has the following properties:

1. the degree of each vertex is 2(l2);

2. the number of vertices is pl−1;

3. the number of edges is (l2)p
l−1.

The graph Hl,p was used by Holyer in the proof of NP-completeness of

the problem of edge partition [3]. Seen as a decision problem, this problem

is to decide whether there is a partitioning set of edges E in Kl’s.

3 Cayley graph

In this section, we demonstrate that the graph Hl,p is a Cayley graph of an

Abelian group.

A group G is finite when it contains a finite number of elements. For

an example we can cite the group (Zn,+). This group is finite because

Zn = {0, 1, ..., n − 1} contains n equivalence class distinct, wherever x is the

number natural that it has remainder x when divided for n.

The vertices of the graphHl,p are the elements of a finite group G(Vl,p,+),

wherever the operation + is (fa,1, ..., fa,l)+(fb,1, ..., fbl) = (fa,1+fb,1, ..., fa,l+

fb,l), wherever fa,i and fbi ∈ (Zp,+).
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Lemma 3.1. G = (Vl,p,+) is a finite group.

A group G = (L,+) is Abelian (or commutative) group if a+b = b+a for

all a, b ∈ L. We consider (Z,+) an Abelian group, so we have the following

result.

Lemma 3.2. The group G = (Vl,p,+) is Abelian.

Let G be a finite group. The subset S of a group G is called generators of

G, and S is said to be a generating set, if every element of G can be expressed

as a finite product of elements in S. We also say that G is generated by S.

A subset S of G is identity free if e /∈ S and it is symmetric if s ∈ S implies

s−1 ∈ S.

We present a generating set of the group G = (Vl,p,+). We define the

set Sl = {(f1, ..., fl) ∈ Vl,p : ∃i, j ∈ {1, ..., l}, i 6= j, such that fi = 1, fj = −1

and, ∀k ∈ {1, ..., l} − {i, j}, we have that fk = 0}.

Lemma 3.3. Sl is generating set of the G = (Vl,p,+).

Let S ⊂ G be an identity free and symmetric generating set of a finite

group G. In the Cayley graph Γ(G, Sl) = (V,E) vertices associated to the

elements of the group, i.e., V (Γ) = G, and the edge <v,w>∈ E(Γ), if there

is s ∈ Sl and v ∈ G such that w = v + s. The identity free condition

means that there are no loops in Γ, and the symmetry condition means that

when there is an edge from v to v + s, there is also an edge from v + s to

(v + s)− s = v.

Now we have all definitions required to demonstrate that the graph Hl,p

is a Cayley graph of the group G = (Vl,p,+) and with the generating set Sl.

Theorem 3.4. The graph Hl,p is Cayley graph of the group G = (Vl,p,+)

with the generating set Sl.

In the next section, we utilize the result that the graph Hl,p is a Cayley

graph of an Abelian group to find a Hamiltonian cycle. So we will corrobo-

rate the conjecture of Lovász.



An evidence for Lovász conjecture about paths and cycles 125

4 Hamiltonian cycle

In this section, we present the result of Marušič about Hamiltonian cycle in

Cayley graph of an Abelian group [6]. Another results about Hamiltonian

cycle in Cayley graph can be found in [7]. We show that the graph Hl,p has

a Hamiltonian cycle. Firstly, we present the definitions uses for Marušič.

Let G a group and e identity element. If g ∈ G, then |g| = j denotes the

order of g, such that, gj = e.

Let M a subset of G, we have following definitions: M−1 = {x−1 : x ∈

M}; M0 = M − e; M∗ = M0 ∪M−1
0 ; 〈M〉 is subset of G generated for M ; If

〈M〉 = G, then M is calling generating set of G.

A sequence on G is a sequence all of whose terms are elements of G. The

sequence without terms is denoted by ∅. Let the sequences S = [s1, s2, ..., sr]

and T = [t1, t2, ..., tq], where si ∈ G for 1 ≤ i ≤ r and tk ∈ G for 1 ≤ k ≤ q,

the product ST is denoted by [s1, s2, ..., sr, t1, t2, ...tq]. The partial product

Πi(S) of S is formed by the group operation s1s2...si.

Let S = [s1, s2, ..., sr] a sequence of G, then we say that S is a Hamilto-

nian sequence if: r = |G|; Πr(S) = e; Πi(S) 6= Πj(S) if i 6= j for 1 ≤ i, j ≤ r.

If si ∈ M for i = 1, 2, ..., r then a sequence S is denoted by M−sequence,

and if S is Hamiltonian, then S is calling for M∗−sequence. The set

H(M,G) is formed for all M∗−sequences of G.

Lemma 4.1. [6] The Cayley graph Γ(G,M) has Hamiltonian cycle if and

only if H(M,G) 6= ∅.

Lemma 4.2. [6] Let M be a generating set of Abelian group G and M
′

be a

non-empty subset of M0. If S, T ∈ H(M
′

,
〈

M
′

〉

) and ls = lr, then there is

a sequence Q on G, such that S̄Q, T̄Q ∈ H(M,G). Where S̄ is the sequence

S without the last element.

Corollary 4.3. [6] Every connected Cayley graph of an Abelian group of

order at least three is Hamiltonian.

By Theorem 3.4, we have that graph Hl,p is a Cayley graph of an Abelian

group. So, we obtain the following result.
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Corollary 4.4. The graph Hl,p is Hamiltonian.

We can use the results of Marušič to construct an algorithm that re-

turns a Hamiltonian cycle in the graph Hl,p. By Lemma 4.2 there are two

sequences S̄Q and T̄Q. The algorithm only needs to construct a sequence

S̄Q. Let S̄R a Hamiltonian sequence of H(M
′

,
〈

M
′

〉

). So, if W = S̄R,

let Q be the sequence R̄(W, [g]j [lw][g
−1]j−1 if j is odd and the sequence

R̄(W, [g]j [g](W̄ )[g−1]j−1 if j is even. We can apply the sequence S̄Q in any

vertex to get an Hamiltonian cycle. This operation can be implemented

with the complexity of O(pl−1), because |S̄Q| = pl−1.

For example, in the graph H3,4 we have a Hamiltonian sequence S̄Q =

{(1, 0, 3), (1, 0, 3), (1, 0, 3), (0, 1, 3), (3, 0, 1), (3, 0, 1), (0, 1, 3), (1, 0, 3), (1, 0, 3),

(0, 1, 3), (3, 0, 1), (3, 0, 1), (3, 0, 1), (0, 3, 1), (0, 3, 1), (0, 3, 1) }. If we apply

this sequence in the vertex (0, 0, 0), we obtain the Hamiltonian cycle of graph

H3,4 {(1, 0, 3), (2, 0, 2), (3, 0, 1), (3, 1, 0), (2, 1, 1), (1, 1, 2), (1, 2, 1), (2, 2, 0),

(3, 2, 3), (3, 3, 2), (2, 3, 3), (1, 3, 0), (0, 3, 1), (0, 2, 2), (0, 1, 3), (0, 0, 0) }.

5 Hamiltonian cycle with Gray code

The reflected binary codes are also known as Gray codes. These codes were

invented by Frank Gray [1]. This term is used to refer any code of distance

only one, i.e., adjacent code words differ only by one digit and one position.

Some Gray codes are cyclic, i.e., the last element is at distance one from the

first element.

In this section, we present another construction of a Hamiltonian cycle

in the graph Hl,p. We use the (p, l)−Gray code. The idea is to create a

graph G of the (p, l − 1)−Gray code with l − 1 elements in the base p and

we show that the graph G is homomorphic to a cycle of the graph Hl,p.



An evidence for Lovász conjecture about paths and cycles 127

Algorithm 1: (p, l)−Gray code

input : valueBase10, l, p
output: valueGray

begin

temp = valueBase10;
for i = l − 1 until 0 do

baseP [i] = temp mod p;
temp = temp/p;

temp = 0;
for i = 0 until l − 1 do

valueGray[i] = (baseP [i] − temp) mod p;
temp = temp+ (valueGray[i] − p);

return valueGray ;

Algorithm 1 transforms any value in a (p, l)−Gray code format with l

digits in the base p. For example the sequence of elements in (4, 2)-Gray

code isG = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 3), (1, 0), (1, 1), (1, 2), (2, 2), (2, 3),

(2, 0), (2, 1), (3, 1), (3, 2), (3, 3), (3, 0) }. The Gray code G is homomorphic to

the cycle C = {(0, 0, 0), (0, 1, 3), (0, 2, 2), (0, 3, 1), (1, 3, 0), (1, 0, 3), (1, 1, 2),

(1, 2, 1), (2, 2, 0), (2, 3, 3), (2, 0, 2), (2, 1, 1), (3, 1, 0), (3, 2, 3), (3, 3, 2), (3, 0, 1)

}. The cycle C is in the graph H3,4.

We show that the last element of (p, l)−Gray code stays distance one

digit to the first element, so we have a Gray code cycle.

Theorem 5.1. The (p, l)−Gray code of Algorithm 1 is a cycle.

We can implement an algorithm in timeO(lpl−1) to construct the vertices

of the Hamiltonian cycle. For this, we utilize values between 0 and pl−1 and

by Algorithm 1 we have values in the Gray code. But Algorithm 1 consumes

time in the order constant of l digits for each code.

6 Conclusion

In this work, we study the properties of the graph Hl,p. This graph is im-

portant because it was used in the proof of NP-completeness of the problem

of the partition of the set of edges into cliques of size l. We show that the
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graph Hl,p is a Cayley graph of an Abelian group. We corroborate with the

conjecture of Lovász because the graph Hl,p has a Hamiltonian cycle.

Finally, we present two different constructions for finding the Hamilto-

nian cycle. The first construction uses the result of Marušič. The second

uses the Gray code. With the second construction, we have a more natural

order of the vertices between 0 to pl−1 (the values in decimal base there

are near in the Hamiltonian cycle), and it is possible to obtain the position

in the cycle for a particular element by a formula, without visiting other

vertices. We suggest as future work the use of Gray code to determine the

position of each vertex in the Hamiltonian cycle in the Cayley graphs of

Abelian groups.
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