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GEOMETRIC ASPECTS OF THE

ALLEN-CAHN EQUATION*

Frank Pacard

1 Introduction

In these lectures, we are interested in entire solutions in RN , of the

semilinear elliptic equation

∆u+ (1− u2)u = 0 , (1.1)

known as the Allen-Cahn equation. This problem has its origin in the

gradient theory of phase transitions [2] where one is interested in critical

points of the energy

Eε(u) :=
ε

2

∫
M
|∇gu|2g dvolg +

1

4ε

∫
M
(1− u2)2 dvolg ,

where (M, g) is a N -dimensional compact Riemannian manifold (with or

without boundary). The critical points of Eε satisfy the Euler-Lagrange

equation

ε2∆gu+ (1− u2)u = 0 , (1.2)

in M . Working in local coordinates and changing x into x/ε, it is easy

to see that (1.1) appears as the limit problem in the blow up analysis of

(1.2) as ε tends to 0.

As we will see in these lectures, the space of entire solutions of (1.1) is

surprisingly rich and also has an interesting structure.

*The author is partially supported by the ANR-08-BLANC-0335-01 grant.
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2 The role of minimal hypersurfaces

The relation between sets of minimal perimeter and critical points of

functional of the form Eε was first established by Modica in [35]. Let us

briefly recall the main results in this direction : If uε is a family of local

minimizers of Eε for which

sup
ε>0

Eε(uε) < +∞, (2.3)

then, up to a subsequence, uε converges as ε tends to 0, in L1 to 1Λ−1Λc ,

where ∂Λ has minimal perimeter. Here 1Λ (resp. 1Λc) is the characteristic

function of the set Λ (resp. Λc =M − Λ). Moreover,

Eε(uε) −→
1√
2
HN−1(∂Λ) .

For critical points of Eε which satisfy (2.3), a related assertion is proven

in [24]. In this case, the convergence of the interface holds with certain in-

teger multiplicity to take into account the possibility of multiple transition

layers converging to the same minimal hypersurface.

These results provide a link between solutions of (1.1) and the theory of

minimal hypersurfaces which has been widely explored in the literature.

For example, solutions concentrating along non-degenerate, minimal hy-

persurfaces of a compact manifold were found in [37] (see also [27]). Let us

describe these results more carefully. We assume that (M, g) is a compact

Riemanian N -dimensional manifold without boundary and that Γ ⊂ M

is an oriented minimal hypersurface such that M \ Γ = M+ ∪M− and n

the unit normal vector field to Γ which is compatible with the orienta-

tion points towards M+ while −n points toward M− (Γ might have many

connected components).

We recall the definition of the Jacobi operator about Γ

JΓ := ∆g̊ +Ricg (n, n) + |AΓ|2g̊ ,

where ∆g̊ is the Laplacian on (Γ, ḡ) for g̊ the induced metric on Γ, Ricg

denotes the Ricci tensor on (M, g) and |AΓ|2g̊ denotes the square of the
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norm of the shape operator defined by

g̊(AΓX,Y ) = g(∇g
XY, n) ,

for all X,Y ∈ T Γ. We will say that Γ is nondegenerate if JΓ has trivial

kernel.

Then we have the :

Theorem 2.1. [37] Assume that (M, g) is an N -dimensional compact

Riemanian manifold without boundary and Γ ⊂ M is a nondegenerate

oriented minimal hypersurface such that M \ Γ =M+ ∪M− and n points

towardM+ while −n points towardsM−. Then, there exists ε0 > 0 and for

all ε ∈ (0, ε0) there exists uε, critical point of Eε, such that uε converges

uniformly to 1 on compacts subsets of M+ (resp. to −1 on compacts

subsets of M−) and Eε(uε) −→ 1√
2
HN−1(Γ) , as ε tends to 0.

As far as multiple transition layers are concerned, given a minimal hy-

persurface Γ (subject to some additional property on the sign of the po-

tential of the Jacobi operator about Γ, which holds on manifolds with

positive Ricci curvature) and given an integer k ≥ 1, solutions of (1.2)

with multiple transitions layers near Γ were built in [15], in such a way

that

Eε(uε) −→
k√
2
HN−1(Γ) .

More precisely, we have the following difficult result :

Theorem 2.2. [15] Assume that (M, g) is a N -dimensional compact Rie-

manian manifold and Γ ⊂M is a nondegenerate, oriented, connected min-

imal hypersurface such that M \ Γ = M+ ∪M− and n points toward M+

and −n points toward M−. Further assume that

Ricg (n, n) + |AΓ|2g̊ > 0

along Γ. Then, there exists a sequence (εj)j of positive numbers tending to

0 and there exists uj, critical point of Eεj , such that uj converges uniformly

to 1 on compacts subsets of M+ (resp. to (−1)k on compacts subsets of



94 F. PACARD

M−) and Eεj (uj) −→ k√
2
HN−1(Γ), as j tends to ∞. In particular, uj

has k transition layers close to Γ.

Observe that the former result produces solutions for any ε small while

the later only produces solutions for some sequence of ε tending to 0. This

is due to some resonance phenomena which arises in the case of multiple

interfaces.

3 The de Giorgi’s conjecture

In dimension 1, solutions of (1.1) which have finite energy are given by

translations of the function H which is the unique solution of the problem

H ′′ + (1−H2)H = 0, with H(±∞) = ±1 and H(0) = 0 . (3.4)

In fact, the function H is explicitly given by

H(y) = tanh

(
y√
2

)
.

Then, for all a ∈ RN with |a| = 1 and for all b ∈ R, the function u(x) =

H(a · x+ b) solves (1.1).

A celebrated conjecture due to de Giorgi asserts that, in dimension

N ≤ 8, these solutions are the only ones which are bounded and monotone

in one direction. In other words, if u is a (smooth) bounded solution of

(1.1) and if ∂xNu > 0 then u−1(λ) is either a hyperplane or the empty set.

In dimensions N = 2, 3, de Giorgi’s conjecture has been proven in [20],

[3] and (under some extra assumption) in the remaining dimensions in

[40] (see also [17], [19]). When N = 2, the monotonicity assumption can

even be replaced by a weaker stability assumption [23]. Finally, coun-

terexamples in dimension N ≥ 9 have recently been built in [14], using

the existence of non trivial minimal graphs in higher dimensions.

Let us briefly explain the proof of the de Giorgi conjecture in the two

dimensional case, as given by A. Farina in [18].
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Theorem 3.1. [20] The de Giorgi’s conjecture is true in dimension N =

2.

Proof. [18] Assume that u satisfies (1.1). Then

∆∇u+ (1− 3u2)∇u = 0 . (3.5)

It is convenient to identify R2 with C and write

∇u = ρ eiθ ,

where ρ and θ are real valued functions. Observe that we implicitly use the

fact that ∂x2u > 0 and hence we can choose the function θ to take values

in (0, π). Elliptic estimates imply that ∇u is bounded and hence so is ρ.

Now, with these notations, (3.5) can be written as

∆ρ− |∇θ|2 ρ+ (1− 3u2) ρ+ i (ρ∆θ + 2∇ρ · ∇θ) = 0 .

In particular, the imaginary part of the left-hand side of the equation is

identically equal to 0 and hence

div
(
ρ2∇θ

)
= 0 .

As already mentioned, θ ∈ (0, π) and the next Lemma (Liouville type

result) implies that θ is in fact a constant function. Therefore, the unit

normal vector to the level lines of u is constant.

2

In order for the proof to be complete, it remains to prove the following :

Lemma 3.1. Assume that ρ is a positive smooth, bounded function. Fur-

ther assume that θ is a bounded solution of

div
(
ρ2∇θ

)
= 0 , (3.6)

in R2. Then θ is the constant function.
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Proof. Let χ be a cutoff function which is identically equal to 1 in the

unit ball and identically equal to 0 outside the ball of radius 2. For all

R > 0 we define

χR = χ(·/R) .

Observe that |∇χR| ≤ C R−1 for some constant C > 0 independent of

R > 0. We multiply (3.6) by χ2
R θ and integrate the result over R2 to find∫

R2

|∇θ|2 ρ2 χ2
R dx = −2

∫
R2

θρ2χR∇θ∇χR dx .

Now, the integral on the right-hand side it taken over the set of x ∈ R2

such that |x|Ê ∈ [R, 2R]. Using Cauchy-Schwarz inequality, we conclude

that ∫
R2

|∇θ|2 ρ2 χ2
R dx ≤ 2

(∫
|x|∈[R,2R]

ρ2θ2 |∇χR|2 dx

)1/2

×

(∫
|x|∈[R,2R]

|∇θ|2 ρ2 χ2
R dx

)1/2

.

Using the bound |∇χR| ≤ C R−1, we conclude that

∫
R2

|∇θ|2 ρ2 χ2
R dx ≤ C

(∫
|x|∈[R,2R]

|∇θ|2 ρ2 χ2
R dx

)1/2

. (3.7)

This in particular implies that∫
R2

|∇θ|2 ρ2 χ2
R dx ≤ C2 ,

and hence

lim
R→∞

∫
x∈[R,2R]

|∇θ|2 ρ2 χ2
R dx = 0 .

Inserting this information back in (3.7), we conclude that∫
R2

|∇θ|2 ρ2 χ2
R dx = 0 ,

which implies that θ is the constant function.
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2

There is also a strong relation between the set of solutions of (1.1)

which are monotone in one direction and the stable solutions. We have

the following result which holds in any dimension :

Proposition 3.1. Assume that u is a solution of (1.1) which satisfies

∂xNu > 0. Then u is stable in the sense that∫
RN

(|∇w|2 + (3u2 − 1)w2) dx > 0

for any function w ∈ C2(RN ), w ̸= 0, with compact support in RN .

Proof. We set

ϕ := ∂xNu .

Certainly ∆ϕ+(1−3u2)ϕ = 0 in RN . Multiplying this identity by w2 ϕ−1

and integrating the result over RN , we conclude that∫
RN

(
2ϕ−1w∇ϕ∇w − w2 ϕ−2 |∇ϕ|2 + (3u2 − 1)w2

)
dx = 0 .

In particular, we can write∫
RN

(
|∇w|2 + (3u2 − 1)w2

)
dx =

∫
RN

|∇w − wϕ−1∇ϕ|2 dx = 0 ,

and the result follows at once.

2

4 Entire solutions to the Allen-Cahn equation

In view of de Giorgi conjecture, it is natural to study the set of entire

solutions of (1.1), namely, solutions which are defined in the entire RN .

The functions u(x) = H(a ·x+b) are obvious solutions. In dimension N =

2, nontrivial examples (whose nodal set is the union of two perpendicular

lines) were built in [8] using the following strategy : For all R > 0 we

define

ΩR := {(x, y) ∈ R2 : x > |y| and x2 + y2 < R2} .
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Then one considers the energy

ER(u) :=
1

2

∫
ΩR

|∇u|2 dx+
1

4

∫
ΩR

(1− u2)2 dx .

Standard arguments of the calculus of variations implies that, for all R >

0, there exists a minimiser uR ∈ H1
0 (ΩR) which can be assumed to be

positive and bounded by 1. This minimiser is a smooth solution of (1.1)

in ΩR which has 0 boundary data and is bounded. It is easy to cook up

a test function to show that

ER(uR) ≤ C R . (4.8)

(Just build a function which interpolate smoothly from 0 to 1 in a layer

of size 1 around the boundary of ΩR and which is identically equal to

0 elsewhere. Obviously the energy of this function is then controlled by

the length of ∂ΩR and hence is less than a constant times R). Since the

energy of the trivial solution (identically equal to 0) is

ER(0) =
1

4

∫
ΩR

dx ≥ C̄ R2 ,

we conclude that uR is certainly not identically equal to 0 for R large

enough since otherwise we would have the inequalities

C̄ R2 ≤ ER(0) ≤ ER(uR) ≤ C R ,

which does not hold for R large enough.

Elliptic estimates together with Ascoli-Arzela’s theorem allow one to

prove that, as R tends to ∞, this sequence of minimisers uR converges

(up to a subsequence and uniformly on compacts) to a solution of (1.1)

which is defined in the quadrant {(x, y) ∈ R2 : x > |y|} and which

vanishes on the boundary of this set. A solution u2 defined in the entire

space is then obtained using odd reflections through the lines x = ±y.
The function u2 is a solution of (1.1), whose 0-level set is the union of the

two axis.
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Observe that we need to rule out the fact that u2 is the trivial solution

(identically equal to 0). The proof is again by contradiction. If u2 ≡ 0,

then for R large enough, the solution uR would be less that 1/2 on ΩR̄

(here R̄ is fixed large enough, independently of R). However, arguing as

above it would be possible to modify the definition of uR on ΩR̄ while

reducing its energy (this would contradict the fact that uR is a minimiser

of the energy).

This construction can easily be generalised to obtain solutions with

dihedral symmetry by considering, for k ≥ 3, the corresponding solution

within the sector {(r cos θ, r sin θ) : r > 0 , |θ| < π
2k} and extending it by

2k − 1 consecutive odd reflections to yield an entire solution uk (we refer

to [22] for the details). The zero level set of uk is constituted outside any

ball by 2k infinite half lines with dihedral symmetry.

Recently, X. Cabre and J. Terra [4] have obtained a higher dimensional

version of this construction (using similar arguments) and they are able to

find solutions in R2m whose zero set is the minimal cone {(x, y) ∈ R2m :

|x| = |y|}.

5 New entire solutions

Recently, there has been some progress on the understanding of the

existence of solutions of 1.1 which are defined in the entire space. All

these new solutions are conterparts, in the complete noncompact setting

of the solutions obtained in [37] and rely on the knowledge of complete

noncompact minimal hypersurfaces which are not invariant by dilations.

Let us mention two important results along these lines.

There is a rich family of minimal surfaces in R3 which are complete,

embedded and have finite total curvature. Among these surfaces there is

the catenoid, Costa’s surface [5] and its higher genus analogues, and all

k-ended embedded minimal surfaces studied by J. Perez and A. Ros [38].

The main result in [16] asserts that there exists solutions of (1.1) whose

nodal set is close to a dilated version of any nondegenerate complete,
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noncompact minimal surface with finite total curvature. In other words,

if one considers the equation with scaling

ε2∆u+ u− u3 = 0 , (5.9)

then the following result holds :

Theorem 5.1. [16] Given Γ, a nondegenerate complete, embedded min-

imal surface with finite total curvature, there exists ε0 > 0 and for all

ε ∈ (0, ε0) there exists uε solution of (5.9), such that u−1
ε (0) converges

uniformly on compacts to Γ.

In this result, nondegeneracy refers to the fact that all bounded Jacobi

fields of Γ come from the action of rigid motions on Γ.

Also, thanks to the result of Bombieri-de Giorgi-Giusti, it is known

that there exists minimal graphs which are not hyperplanes in dimension

N ≥ 9. Following similar ideas, it is proved in [14] that one can construct

entire solutions of (1.1) whose level sets are not hyperplanes, provided the

dimension of the ambient space is N ≥ 9.

6 Entire solutions in the 2-dimensional case

We assume from now on that the dimension is equal to N = 2.

Definition 1. We say that u, solution of (1.1), has 2k-ends if, away from

a compact set, its nodal set is given by 2k connected curves which are

asymptotic to 2k oriented, disjoint, half lines aj ·x+ bj = 0, j = 1, . . . , 2k

(for some choice of aj ∈ R2, |aj | = 1 and bj ∈ R) and if, along these

curves, the solution is asymptotic to either H(aj ·x+bj) or −H(aj ·x+bj).

Given any k ≥ 1, one can prove the existence of a wealth of 2k-ended

solutions of (1.1). Moreover, one can show that these solutions belong to

a smooth 2k-parameter family of 2k-ended solutions of (1.1). To state this
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result in precise way, we assume that we are given a solution q1, . . . , qk of

the Toda system

c0 q
′′
j = e

√
2(qj−1−qj) − e

√
2(qj−qj+1) , (6.10)

for j = 1, . . . , k, where c0 =
√
2

24 and we agree that

q0 ≡ −∞ and qk+1 ≡ +∞ .

The Toda system (6.10) is a classical example of integrable system which

has been extensively studied. It models the dynamics of finitely many

mass points on the line under the influence of an exponential potential.

We refer to [26] and [36] for the complete description of the theory. Of

importance is the fact that solutions of (6.10) can be described (almost

explicitly) in terms of 2k parameters. Moreover, if q is a solution of (6.10),

then the long term behavior (i.e. long term scattering) of the qj at ±∞
is well understood and it is known that, for all j = 1, . . . , k, there exist

a+j , b
+
j ∈ R and a−j , b

−
j ∈ R, all depending on q1, . . . , qk, such that

qj(t) = a±j |t|+ b±j +OC∞(R)(e
−τ0 |t|) , (6.11)

as t tends to ±∞, for some τ0 > 0. Moreover, a±j+1 > a±j for all j =

1, . . . , k − 1.

Given ε > 0, we define the vector valued function q1,ε, . . . , qk,ε, whose

components are given by

qj,ε(x) := qj(ε x)−
√
2
(
j − k + 1

2

)
log ε . (6.12)

It is easy to check that the qj,ε are again solutions of (6.10).

Observe that, according to the description of the asymptotics of the

functions qj , the graphs of the functions qj,ε are asymptotic to oriented

half lines at infinity. In addition, for ε > 0 small enough, these graphs are

disjoint and in fact their mutual distance is given by −
√
2 log ε+O(1) as

ε tends to 0.

It will be convenient to agree that χ+ (resp. χ−) is a smooth cutoff

function defined on R which is identically equal to 1 for x > 1 (resp. for
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x < −1) and identically equal to 0 for x < −1 (resp. for x > 1) and

additionally χ− + χ+ ≡ 1. With these cutoff functions at hand, we define

the 4 dimensional space

D := Span {x 7−→ χ±(x), x 7−→ xχ±(x)} , (6.13)

and, for all µ ∈ (0, 1) and all τ ∈ R, we define the space C2,µτ (R) of C2,µ

functions h which satisfy

∥h∥C2,µ
τ (R) := ∥Ê(coshx)τ , h∥C2,µ(R) <∞ .

Keeping in mind the above notations, we have the :

Theorem 6.1. [10] For all ε > 0 sufficiently small, there exists an entire

solution uε of the Allen-Cahn equation (1.1) whose nodal set is the union

of k disjoint curves Γ1,ε, . . . ,Γk,ε which are the graphs of the functions

x 7−→ qj,ε(x) + hj,ε(ε x) ,

where the functions hj,ε ∈ C2,µτ (R)⊕D satisfy

∥hj,ε∥C2,µ
τ (R)⊕D

≤ C εα .

for some constants C,α, τ, µ > 0 independent of ε > 0.

In other words, given a solution of the Toda system, we can find a one

parameter family of 2k-ended solutions of (1.1) which depend on a small

parameter ε > 0. As ε tends to 0, the nodal sets of the solutions we

construct become close to the graphs of the functions qj,ε.

Going through the proof, one can be more precise about the description

of the solution uε. If Γ ⊂ R2 is a curve in R2 which is the graph over the

x-axis of some function, we denote by dist (·,Γ) the signed distance to Γ

which is positive in the upper half of R2 \ Γ and is negative in the lower

half of R2 \ Γ. Then, we have the :

Proposition 6.1. The solution of (1.1) provided by Theorem 8.2 satisfies

∥eε α̂ |x| (uε − u∗ε)∥L∞(R2) ≤ C, εᾱÊ,
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for some constants C, ᾱ, α̂ > 0 independent of ε, where

u∗ε :=
k∑

j=1

(−1)j+1H
(
dist(·,Γj,ε)

)
− 1

2
((−1)k + 1) . (6.14)

It is interesting to observe that, when k ≥ 3, there are solutions of

(6.10) whose graphs have no symmetry and our result yields the existence

of entire solutions of (1.1) without any symmetry provided the number of

ends is larger than or equal to 6.

7 Sketch of the proof of Theorem 8.2

Let us briefly give the main ideas in the proof of Theorem 8.2. We start

by considering the linearized operator about H, namely

L0 := ∂2y + 1− 3H2 .

First, observe that L0 has a one dimensional kernel spanned by H ′ since

L0H
′ = 0 as can be checked by taking the derivative of H ′′+(1−H2)H =

0. Since H ′ > 0 this implies that 0 is the bottom of the spectrum of −L0.

In fact more is known and we recall the following result from [1] :

Lemma 7.1. [1] The spectrum of the operator −L0 is the union of the

point spectrum, given by 0 (associated to the eigenfunction H ′) and 3
2 (as-

sociated to the eigenfunction H
√
H ′) and the continuous spectrum given

by [2,+∞).

In particular, for all ξ ̸= 0, given f ∈ L2(R), the problem

(L0 − ξ2)ϕ = f, (7.15)

is uniquely solvable in H1(R).
Let us now consider operator

L := ∂2x + L0 ,
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acting on functions defined in the plane. Obviously, we still have LH ′ = 0.

The following key result asserts that any bounded solution of Lϕ = 0 is

colinear to H ′. The proof of this fact follows the method first introduced

in [37].

Lemma 7.2. Let ϕ be a bounded solution of

Lϕ = 0 , (7.16)

in R2. Then ϕ is colinear to H ′.

Making use of the previous Lemma, we now obtain the existence of a

solution of

Lϕ = f , (7.17)

in R2. The classification of the bounded solutions of Lϕ = 0 suggests to

impose the following orthogonality condition on the function ϕ∫
R
ϕ(x, ·), H ′Ê dy = 0, (7.18)

As far as the existence of solutions of (7.17)-(7.18) is concerned, pro-

vided we assume that ∫
R
f(x, ·)H ′ dy = 0 , (7.19)

for all x ∈ R, we have the following result whose proof relies on the

previous analysis :

Proposition 7.1. Assume that σ ∈ (0,
√
2) is fixed. For all a ∈ [0, 1√

2
)

such that

σ2 + a2 < 2 ,

there exists a constant Ca > 0, which depends on a but remains bounded

as a tends to 0, such that, for all f satisfying the orthogonality condition

(7.19) and

∥(coshx)a (cosh y)σ f∥C0,µ(R2) < +∞ ,

there exists a unique function ϕ, solution of (7.17)-(7.18), which satisfies

∥(coshx)a, (cosh y)σ, Êϕ∥C2,µ(R2) ≤ Ca, ∥(coshx)a, (cosh y)σ, Êf∥C0,µ(R2), .
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Let us briefly comment on the orthogonality condition we impose on

the function f . Given any function f , with the appropriate decay as in

the statement of Proposition 7.1, we want to solve the equation Lϕ = f .

We can certainly find a function x 7−→ c(x) such that f − cH ′ satisfies

(7.19). And then, we can apply the result of Proposition 7.1 to solve

Lϕ = f − cH ′. Therefore, it just remains to solve the equation Lψ =

cH ′, but this is rather easy since it is enough to look for ψ of the form

ψ(x, y) = d(x)H ′(y) in which case the equation reduces to the solvability

of the equation d′′ = c. Observe that, it is not possible to find a solution

of this ordinary differential equation which decays exponentially at ±∞
unless the function c satisfies∫

R
c(x), dx =

∫
R
x, c(x),dx = 0Ê, .

In fact this solution is explicitly given by

d(x) = x

∫ x

−∞
c(z) dz −

∫ x

−∞
z c(z) dz .

Now, if c is bounded by a constant times (coshx)−a, and satisfies the

two conditions above, it is easy to check that d is also bounded by a

constant (independent of a ∈ (0, 1)) times a−2 (coshx)−a. In particular,

this solution blows up as a tends to 0. In the proof of the result, we need

to invert L on functions spaces corresponding to a tending to 0 and, in

order to get a right inverse whose norm does not blow up, is is necessary

to impose the restriction (7.19) on the functions f .

Let us assume that we are given a solution q1, . . . , qk of the Toda system

(6.10), we define

qj,ε(x) := qj(ε x)−
√
2

(
j − k + 1

2

)
log ε .

With these data at hand, we define the planar curve Γ̄j to be the image

of

γj(x) := (x, qj,ε(x)) .
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and, for each j = 1, . . . , k, we introduce the Fermi coordinates (xj , yj)

which are associated to the curve Γ̄j . More precisely, we consider the

parameterization of a tubular neighborhood of Γ̄j by Xj

Xj(xj , yj) := γj(xj) + yj nj(xj) , (7.20)

where nj is the normal vector about Γ̄j (the curves are assumed to be

positively oriented). Observe that the coordinate yj is nothing but the

signed distance to Γ̄j .

The basic idea is to consider the approximate solution which is close to

the function ±H(dist(·, Γ̄j)) (with alternative signs according to whether

j is odd or even). A natural choice would be the function

k∑
j=1

(−1)j+1H(dist(·, Γ̄j))−
1

2
((−1)k+1 + 1) . (7.21)

The fact that we have to impose the orthogonality condition (7.19) to

produce a right inverse of L whose norm does not blow up as the weight

parameter a tends to 0 translates into the fact that, even though the nodal

sets of the solutions we will construct are close to the curves Γ̄j (say in

Hausdorff topology), this topology is not refined enough to perform the

construction. Hence, in some sense, we need to improve the definition of

the nodal sets of the approximate solutions by allowing more flexibility in

the definition of the curves Γ̄j . This is the reason why we need to introduce

h1, . . . , hk ∈ C2,µτ (R)⊕D (here τ > 0) and we define the functions Hj by

the identity

X∗
j Hj(xj , yj) := H(yj − hj(ε xj)) . (7.22)

With these data and notations, we are now in a position to define a

multiple-ended approximate solution of (1.1) by the formula

ū :=

k∑
j=1

(−1)j+1Hj −
1

2
((−1)k+1 + 1) .



GEOMETRIC ASPECTS OF THE ALLEN-CAHN EQUATION 107

Granted the above notations and definitions, the equation we want to

solve reads

∆(ū+ ϕ) + ū+ ϕ− (ū+ ϕ)3 = 0 , (7.23)

for some ϕ ∈ C2,µ(R) and h1, . . . , hk ∈ C2,µτ (R)⊕D. We can then formally

rewrite the equation (7.23) as

Lϕ = Q(ϕ),

where the linear operator L is defined by

L := ∆ + 1− 3 ū2 ,

and where the nonlinear operator Q is defined by

Q(ϕ) := −(∆ū+ (1− ū2) ū) + ϕ3 + 3 ū ϕ2 . (7.24)

We need to study the mapping properties of the linear operator L and the

nonlinear operator Q when defined between appropriate weighted function

spaces. This part is very technical but there is no real difficulty.

We can measure how far the function ū is from a genuine solution.

The key point is the following estimate (ρj is a cutoff function which is

identically equal to 1 in some tubular neighborhood of width
√
2
4 log 1/ε

about Γ̄j and identically equal to 0 away from a tubular neighborhood of

width
√
2
2 log 1/ε about Γ̄j)

∫
R
(∆ū+ ū− ū3) ρj H ′

j dyj = −ε2
(
c∗ q

′′
j + c∗

(
e
√
2 (qj−qj+1) − e

√
2(qj−1−qj)

)
(ε ·)

+ O(ε2+β) ,

(7.25)

on any compact of R. Here the constants c∗ and c∗ are given by

c∗ := 6
√
2

∫
R
e
√
2t(H ′)2 dt = 12

∫
R
e2t (cosh t)−4 dt = 32 ,
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and

c∗ :=

∫
R
(H ′)2 dt =

√
2

∫
R
(cosh t)−4 dt =

4

3

√
2 .

This estimate explains why the functions qj are required to be solutions

of the Toda system (6.10), since, with such a choice, the leading term in

(7.25) vanishes.

8 The moduli space of 2k-ended solutions in di-

mension N = 2

We first give a precise description of the solutions we are interested in.

This requires some preliminary definitions.

We will denote by ⊥ the rotation of angle π/2 in R2. At the heart of

the description of the nodal set of the solutions is the set Λ of oriented

affine lines in R2. Any element λ ∈ Λ can be uniquely written as

λ := r e⊥ + R e ,

for some r ∈ R and some unit vector e ∈ S1. Observe that Λ is diffeo-

morphic to R × S1 and writing e = (cos θ, sin θ) we get local coordinates

(r, θ) in Λ. There is also a natural symplectic structure on Λ, which in

these local coordinates, is given by

ω = dr ∧ dθ .

For all k, we denote by Λk the set of k oriented affine lines in R2. This

set is diffeomorphic to Rk × (S1)k and there exists a natural symplectic

structure on Λk which, in local coordinates (r1, . . . , rk, θ1, . . . , θk), can be

written as

ωk = dr1 ∧ dθ1 + . . .+ drk ∧ dθk . (8.26)

We have the definition :

Definition 2. A set of k oriented affine lines λ1, . . . , λk ∈ Λ is said to be

ordered if each λj can be written as

λj := rj e
⊥
j + R ej ,
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for some rj ∈ R and some unit vector ej ∈ S1 which can be written as

ej = (cos θj , sin θj) with

θ1 < θ2 < . . . < θk < 2π + θ1 .

We will denote by Λk
ord the set of k ordered, oriented affine lines.

Assume that we are given k ordered oriented affine lines λj := rj e
⊥
j +

R ej , for j = 1, . . . , k. It is easy to check that for all R > 0 large enough,

there exists sj ∈ R such that : The points xj := rj e
⊥
j + sj ej belong to a

circle ∂BR, with R > 0, the half lines

λ+j := xj + R+ ej , (8.27)

are disjoint and included in R2 \ BR and the infimum of the distance

between two distinct half lines λ+i and λ+j is larger than 4.

Given k ≥ 1 and

(λ1, . . . , λ2k) ∈ Λ2k
ord ,

we write λ+j = xj + R+ ej and we define

uλ1,...,λ2k
(x) :=

2k∑
j=1

(−1)j Ij(x)u0((x− xj) · e⊥j ) .

Here Ij is a partition of unity subordinate to the choice of the half lines

λ+1 , . . . , λ
+
2k and is designed in such a way that Ij is identicaly equal to 1

close to λ+j and away from a compact.

Observe that, by construction the function uλ1,...,λ2k
is, away from a

compact, asymptotic to one of the model solutions ±u0 , whose nodal set

are the half lines λ+1 , . . . , λ
+
2k. A simple computation shows that uλ1,...,λ2k

is not far from being a solution of (1.1) in the sense that ∆uλ1,...,λ2k
+

(1 − u2λ1,...,λ2k
)uλ1,...,λ2k

is a function which decays exponentially to 0 at

infinity.

We are interested in solutions which are asymptotic to uλ1,...,λ2k
for some

choice of (λ1, . . . , λ2k) ∈ Λ2k
ord. More precisely, we have the :
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Definition 3. We will denote by M2k the set of solutions u of (1.1) which

can be written as

u− uλ1,...,λ2k
∈ eδ|x|W 2,2 (R2) , (8.28)

for some choice of (λ1, . . . , λ2k) ∈ Λ2k
ord and some δ < 0 (close enough to

0).

The existence of the heteroclinic solution u0 shows that M2 is non

empty. Indeed, it is enough to consider

u(x) = u0(xÊ · e⊥ − r),

for any unit vector field e and any r ∈ R. As we already discussed in

the introduction, the result of Theorem 8.2 provides solutions of (1.1)

whose nodal set decomposes into k nearly parallel lines, very far from

each other, this result (and the existence result in [8]) show that M2k ̸= ∅
for any k ≥ 1 .

Before, we can state the main result, we have to introduce the notion

of non-degenerate solution in this context.

Definition 4. A function u ∈ M2k is said to be non-degenerate if the

linearized operator

−∆− 1 + 3u2,

is injective in the space eδ|x| L2(R2), for some δ < 0.

With these definitions, one has the following :

Theorem 8.1. Assume that u ∈ M2k is non-degenerate. Then, close to

u, M2k is a smooth manifold of dimension 2k.

We define the mapping P : M2k −→ Λ2k by

P(u) = (λ1, . . . , λ2k) ,

if u − uλ1,...,λ2k
∈ eδ|x|W 2,2 (R2), for some δ < 0. Geometrically the

meaning of the mapping P should be clear : for any solution u ∈ M2k,
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P(u) ∈ Λ2k correspond to the choice of 2k oriented affine lines that deter-

mine the asymptotics of the nodal set of u at infinity.

Near any nondegenerate elements ofM2k, we also have some information

about the mapping P.

Theorem 8.2. Assume that u ∈ M2k is non-degenerate. Then, there

exists an open neighborhood of u in M2k whose image by P is a Lagrangian

submanifold of Λ2k for the symplectic structure defined in (8.26).

One can show that there is in reality less freedom than what might be

initially expected in selecting the asymptotes for the nodal sets of the

solutions of (1.1). Indeed, at regular points of M2k, the image of P is a

2k dimensional submanifold of Λ which is 4k dimensional.

Observe that the image of P is further naturally constrained. In fact,

if u ∈M2k and

P(u) = (λ1, . . . , λ2k) ,

with

λj = rj e
⊥
j + R ej .

it follows from [22] that
2k∑
j=1

ej = 0 . (8.29)

Moreover, pushing further the analysis in [22], we can also prove that

2k∑
j=1

rj = 0 . (8.30)

9 Standing waves for the nonlinear Schröedinger

equation

We are now interested in the the classical semilinear elliptic problem

∆u− u+ up = 0, u > 0, in RN (9.31)
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where p > 1. Equation (9.31) arises for instance as the standing-wave

problem for the standard nonlinear Schrödinger equation

iψt = ∆yψ + |ψ|p−1ψ,

corresponding to that of solutions of the form ψ(·, t) = u(·) e−it. It also

arises in nonlinear models in Turing’s biological theory of pattern forma-

tion such as the Gray-Scott or Gierer-Meinhardt systems. The solutions of

(9.31) which decay to zero at infinity are well understood. Problem (9.31)

has a radially symmetric solution wN (y) which approaches 0 at infinity

provided that 1 < p < N+2
N−2 . This solution is unique [28], and actually

any positive solution to (9.31) which vanishes at infinity must be radially

symmetric around some point [21]. Not much is known about solutions of

this equation in the entire space which do not tend to 0 at infinity (while

they are all known to be bounded, see [39]). For example, the solution

wN of (9.31) in RN induces a solution in RN+1 which only depends on N

variables. This solution vanishes asymptotically in all but one variable.

For simplicity, we now restrict ourselves to the case N = 2. We denote

by K0 the unique positive solution of

K ′′
0 −K0 +Kp

0 = 0,

with K ′
0(0) = 0 and lim∞K0(y) = 0. This solution corresponds, in the

phase plane, to a homoclinic orbit for the equilibrium 0.

Using a classical bifurcation argument [7], we can define a family of

solutions Kδ of equation (9.31) which are symmetric with respect to both

the x and y axis and which are 1-periodic in the x direction. Namely,

Kδ(x, y) := Kδ(x + t, y), for some t ∈ R depending on δ. To do so, we

consider problem (9.31) with t-periodic conditions in x and we regard

t > 0 as a bifurcation parameter. The linearized operator about K0 is

given by is

L = ∂2x + ∂2y − 1 + pKp−1
0 .

We consider the operator

L0 = ∂2y − 1 + pKp−1
0 .
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Recall that L0 has a one dimensional kernel spanned byK ′
0 since L0K

′
0 = 0

as can be checked by taking the derivative of K ′′
0 −K0 +Kp

0 = 0. Since

K ′
0 changes sign it can be associated to the least eigenvalue of −L0 and

in fact we have the following result which describes the spectrum of −L0

[1] :

Lemma 9.1. [1] The spectrum of the operator −L0 is the union of the

point spectrum, given by λ1 := −1
4(p−1)(p+3) with associated eigenfunc-

tion

Z := K
(p+1)/2
0 ,

λ2 := 0 which is associated to the eigenfunction K ′
0, and the continuous

spectrum given by [1,+∞).

This result implies that the operator L (acting on functions which are

t periodic in the x variable) has an eigenfunction

Z(y) cos

(
2π

t
x

)
,

which corresponds to the eigenvalue

−λ1 +
(
2π

t

)2

This eigenvalue crosses 0 precisely when t = 2π√
λ1
. Crandall-Rabinowitz’s

bifurcation Theorem can then be applied to yield the existence of a con-

tinuum of solutions bifurcating from K0 at this value of t. The bifurcating

branch of solutions is denoted by Kδ where δ = 0 corresponds to K0. The

functions Kδ is periodic in x with period tδ =
2π√
λ1

+O(δ). We also have

the asymptotic expansion

Kδ(x, y) = K0(y) + δZ(y) cos(
√
λ1x) +O(δ2 e−|y|).

We refer to the functions Kδ in what follows as Dancer solutions.

Paralleling what is done for the Allen-Cahn equation it is possible to

construct a new type of solutions of (9.31) in R2 which have multiple ends

along which they are asymptotic to copies of Kδj , for some appropriate

choice of the parameters δj( depending on j). We refer to [13] for precise

statements.
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10 Correspondence with geometric problems

One of the striking features of the above existence results which are

purely PDE results, is that its counterparts can be found in geometric

frameworks. Indeed, there are many examples where correspondence be-

tween solutions of (9.31) and those of some geometric problem can be

drawn. To illustrate this, we will concentrate on what is perhaps the most

spectacular one: the analogy between the theory of complete constant

mean curvature surfaces in Euclidean 3-space and the study of entire so-

lutions of (9.31). For simplicity we will restrict our attention to constant

mean curvature surfaces in R3 which have embedded coplanar ends. In

the following we will draw parallels between these geometric objects and

families of solutions of (9.31).

Embedded constant mean curvature surfaces of revolution were found

by Delaunay in the mid 19th century [9]. They constitute a smooth 1-

parameter family of singly periodic surfaces Dτ , for τ ∈ (0, 1], which

interpolate between the cylinder D1 = S1(1)×R and the singular surface

D0 := limτ→0Dτ , which is the union of an infinitely many spheres of

radius 1/2 centered at each of the points (0, 0, n) as n ∈ Z. The Delaunay

surface Dτ can be parametrized by

Xτ (x, y) = (φ(x) cos y, φ(x) sin y, ψ(x)) ∈ Dτ ⊂ R3,

for (x, y) ∈ R× R/2πZ. Here the function φ is smooth solution of

(φ′)2 +

(
φ2 + τ

2

)2

= φ2,

and the function ψ is defined by

ψ′ =
φ2 + τ

2
.

As already mentioned, when τ = 1, the Delaunay surface is nothing

but a right circular cylinder D1 = S1(1) × R, with the unit circle as the

cross section. This cylinder is clearly invariant under the continuous group
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of vertical translations, in the same way the single bump-line solution of

(9.31) is invariant under a one parameter group of translations. It is then

natural to agree on the correspondence between

The cylinder

D1 = S1 × R
←→

The single bump-line

(x, y) 7−→ K0(y)
.

Let us denote by w0 the unique entire, radially symmetric, decaying solu-

tion of (9.31). Inspection of the other end of the Delaunay family, namely

when the parameter τ tends to 0, suggests the correspondence between

The sphere

S1(1/2)
←→

The radially symmetric solution

(x, y) 7−→ w0(
√
x2 + y2)

.

To justify this correspondence, let us observe that on the one hand, as the

parameter τ tends to 0, the surfaces Dτ resemble a sequence of spheres

of radius 1/2 arranged along the x3-axis which are connected together by

small catenoidal necks. On the other hand an analogous solution of (9.31)

can be built as follows. Let SR = R × (0, R) and consider a least energy

(mountain pass) solution in H1(SR) for the the energy

1

2

∫
SR

|∇u|2 + 1

2

∫
SR

u2 − 1

p+ 1

∫
SR

up+1,

for large R > 0, which we may assume to be even in y and with maxi-

mum located at the origin. For R very large, this solution, which satisfies

zero Neumann boundary conditions, resembles half of the unique radial,

decaying solution w0 of (9.31). Extension by successive even reflections in

x variable yields a solution to (9.31) which resembles a periodic array of

radially symmetric solutions of (9.31), with a very large period, along the

x-axis. While this is not known, these solutions may be understood as a

limit of the branch solutions constructed by Dancer.

More generally, there is a natural correspondence between

Delaunay surfaces

Dτ

←→
Dancer solutions

(x, y) 7−→ Kδ(x, y)
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To give further credit to this correspondence, let us recall that the Jacobi

operator about the cylinder D1 corresponds to the linearized mean curva-

ture operator when nearby surfaces are considered as normal graphs over

D1. In the above parameterization, the Jacobi operator reads

J1 =
1

φ2

(
∂2x + ∂2y + 1

)
.

In this geometric context, it plays the role of the linear operator defined

in section 2 which is the linearization of (9.31) about the single bump-line

solution w. Hence we have the correspondence

The Jacobi operator

J1 =
1
φ2

(
∂2x + ∂2y + 1

) ←→
The linearized operator

L = ∂2x + ∂2y − 1 + pKp−1
0

In our construction, the polynomially bounded kernel of the linearized

operator L plays a crucial role. Similarly, the polynomially bounded kernel

of the Jacobi operator J1 has some geometric interpretation. Let us recall

that we only consider surfaces whose ends are coplanar, the Jacobi fields

associated to the action of rigid motions are then given by

(x, y) 7−→ cosx and (x, y) 7−→ y cosx,

which correspond respectively to the action of translation and the action

of the rotation of the axis of the Delaunay surface D1. Clearly, these

Jacobi fields are the counterpart of the elements of the kernel of L which

are given by

(x, y) 7−→ ∂yw(y) and (x, y) 7−→ x ∂yK0(y),

since the latter are also generated using the invariance of the problem with

respect to the same kind of rigid motions.

Two additional Jacobi fields associated to J1 are given by

(x, y) 7−→ cos y and (x, y) 7−→ sin y,
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which are associated to the existence of the family Dτ as τ is close to 1,

as can be easily seen using a bifurcation analysis, in a similar way that

the functions

(x, y) 7−→ Z(y) cos(
√
λ1x) and (x, y) 7−→ Z(y) sin(

√
λ1x),

are associated to the existence of Dancer solutions when the parameter δ

is close to 0. These two bifurcation results have their origin in the fact

that we have the correspondence between

The ground state 1 of

∂2y + 1
←→

The first eigenfunction Z of

∂2y − 1 + pKp−1
0

both of them associated to negative eigenvalues. The fact that the least

eigenvalue of these operators is negative is precisely the reason why a

bifurcation analysis can be performed and gives rise to the existence of

Delaunay surfaces close to D1 or Dancer’s solutions close to the bump-line

w.

With these analogies in mind, we can now translate our main result

into the constant mean curvature surface framework. The result of The-

orem 8.2 corresponds to the connected sum of finitely many copies of the

cylinder S1(1) × R which have a common plane of symmetry. The con-

nected sum construction is performed by inserting small catenoidal necks

between two consecutive cylinders and this can be done in such a way

that the ends of the resulting surface are coplanar. Such a result, in the

context of constant mean curvature surfaces, follows at once from [32].

It is observed that, once the connected sum is performed the ends of the

cylinder have to be slightly bent and moreover, the ends cannot be kept

asymptotic to the ends of right cylinders but have to be asymptotic to

Delaunay ends with parameters close to 1, in agreement with the result

of Theorem 8.2.

However there is a major difference. The Toda system which governs the

level sets has found no analogy in the constant mean curvature surfaces.

This is mainly due to the strong interactions in the elliptic equations.
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Another (older) construction of complete noncompact constant mean

curvature surfaces was performed by N. Kapouleas [25] (see also [31])

starting with finitely many halves of Delaunay surfaces with parameter

τ close to 0 which are connected to a central sphere. The corresponding

solutions of (9.31) have recently been constructed by A. Malchiodi in [29].

It is well known that the story of complete constant mean curvature

surfaces in R3 parallels that of complete locally conformally flat metrics

with constant, positive scalar curvature. Therefore, it is not surprising

that there should be a correspondence between these objects in conformal

geometry and solutions of (9.31). For example, Delaunay surfaces and

Dancer solutions should now be replaced by Fowler solutions which cor-

respond to constant scalar curvature metrics on the cylinder R × SN−1

which are conformal to the product metric dt2 + gSN−1 , when N ≥ 3.

These are given by

v
4

N−2 (dt2 + gSN−1),

where t 7−→ v(t) is a smooth positive solution of

(v′)2 − v2 + N−2
N v

2N
N−2 = − 2

N τ2 .

When τ = 1 and v ≡ 1 the solution is a straight cylinder while as τ tends

to 0 the metrics converge on compacts to the round metric on the unit

sphere. The connected sum construction for such Fowler type metrics was

performed by R. Mazzeo, D. Pollack and K. Uhlenbeck [34] (where it is

called the dipole construction). N. Kapouleas’ construction mentioned

above was initially performed by R. Schoen [41] (see also R. Mazzeo and

F. Pacard [31]).
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