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Abstract

We first survey some recent results on optimal embeddings for

the space of functions with ∆u ∈ L1(Ω), where Ω ⊂ R2 is a bounded

domain. The target space in the embeddings turns out to be a Zyg-

mund space and the best constants are explicitly known. Remark-

ably, the best constant in the case of zero boundary data is twice the

best constant in the case of compactly supported functions. Then,

following the same strategy, we establish a new version of the cele-

brated Trudinger–Moser inequality, as embedding into the Zygmund

space Z
1/2
0 (Ω), and we prove that, in contrast to the Moser case, here

the best embedding constant is not attained.

1 Introduction

Brezis and Merle in the seminal paper [5] considered the following prob-

lem −∆u = f(x) ∈ L1(Ω)

u = 0, on ∂Ω
(1)
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for a bounded domain Ω ⊂ R2. In the non-borderline case in which f ∈
Lp(Ω), p > 1, elliptic regularity theory yields u ∈ W 2,p(Ω); in analogy, one

may conjecture that in the borderline case p = 1, one has u ∈ W 2,1(Ω):

this is false!

Indeed, the Sobolev embedding for the space W k,p(Ω) when p = 1 and

N = k = 2 gives W 2,1(Ω) ↪→ L∞(Ω), whereas the maximal summability

for solutions to (1) is of exponential type and namely∫
Ω
eλ|u| dx < ∞, ∀λ > 0 (2)

as established in [5], where actually the following stronger uniform bound

has been proved

sup
∥∆u∥1=∥f∥1=1

∫
Ω
eλ|u|dx


≤ C(λ) , if λ < 4π

= +∞ , if λ ≥ 4π

(3)

Inequality (3) is in the spirit of the Moser improvement [14] of the

Pohožaev [16] and Trudinger [19] embedding in the so-called Sobolev lim-

iting case N = kp, p > 1, which for k = 1 and N = p = 2 reads

sup
u∈W

1,2
0 (Ω)

∥∇u∥2≤1

∫
Ω
eαu

2
dx


≤ C(α) , if α ≤ 4π

= +∞ , if α > 4π

(4)

Actually, from the point of view of Sobolev regularity, one has that solu-

tions to (1) belong to W 1,q
0 (Ω) for all q < 2 (sometimes called the grand

Sobolev space W
1,2)
0 (Ω)), see [8, 11], but not to W 1,2

0 (Ω), see [2, 15]; this

explains the gap in the degree of integrability between (3) and (4).

Besides the above considerations, in the case of compactly supported func-

tions, a celebrated result by D.R. Adams [1], which extends Moser’s result
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to the higher order space W
k,N

k
0 (Ω), k > 1, entails in particular the fol-

lowing

sup

u∈W
2,N2
0 (Ω)

∥∆u∥N
2

≤1

∫
Ω
eβ|u|

N
N−2


≤ C(β) , if β ≤ βN

N ≥ 3

= +∞ , if β > βN

(5)

where βN is explicit. Such results seem uninteresting when N = 2 since,

as we have already recalled, W 2,1
0 (Ω) ↪→ L∞(Ω).

However, the discussion carried out so far motivates the introduction of

the following function spaces

W 2,p
∆ (Ω) := c l

{
u ∈ C∞(Ω) ∩ C0(Ω), u|∂Ω = 0 : ∥∆u∥p < ∞

}
W 2,p

∆,0(Ω) := c l
{
u ∈ C∞

c (Ω) : ∥∆u∥p < ∞
}

which do coincide (with equivalence of norms, see [12]) respectively with

W 2,p ∩W 1,p
0 (Ω) and W 2,p

0 (Ω) if and only if p > 1.

In [7] we addressed the problem of establishing optimal embeddings for

the spaces W 2,1
∆ (Ω) and W 2,1

∆,0(Ω) into the class of exponentially integrable

functions (2): those results, which we summarize in Section 2, improve

the Brezis–Merle result (3) and give a natural extension of the Adams

inequality (5) to the case N = 2.

Notice that the integrability condition (2) is exactly the one which fulfills

the definition of Zygmund space Z0(Ω). More in general, for α > 0 the

Zygmund space Zα
0 (Ω) consists of all measurable functions u(x) on Ω ⊂

RN , such that ∫
Ω
eλ|u|

1
α dx < ∞, ∀λ > 0 (6)

It is easy to verify (see [3]) that

Zα
0 (Ω) =

u : lim
t→0

u∗(t)[
1 + log

(
|Ω|
t

)]α = 0


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where u∗ : [0,∞) −→ [0,∞] denotes the Hardy–Littlewood positive de-

creasing rearrangement of u : Ω ⊂ RN −→ R, namely

u∗(t) := sup
{
s > 0 :

∣∣{x ∈ RN : |u(x)| > s
}∣∣ > t

}
, t ≥ 0

The quantity

∥u∥Zα := sup
t∈(0,|Ω|)

u∗(t)[
1 + log

(
|Ω|
t

)]α
defines a quasinorm on Zα

0 (Ω) which turns out to be equivalent to a real

norm (by replacing u∗(t) with the Hardy–Littlewood maximal function
1
t

∫ t
0 u

∗(s) ds). The space Zα
0 can be viewed as the limiting case of Lorentz–

Zygmund spaces Lp,q(logL)−α, as p, q → ∞, see [3] and also [4], as well

as the Orlicž space Le|u| , see [17], equipped with a different quasinorm.

Our main purpose here is to revisit the Pohožaev and Trudinger em-

bedding in the limiting Sobolev case H1
0 (Ω), where Ω ⊂ R2 is a bounded

domain. Indeed, the strategy used in [7] suggests to investigate the em-

bedding

H1
0 (Ω) ↪→ L

eu2
(Ω) (7)

from a different point of view than that of Moser, who focuses the attention

more on the optimal uniform bound (4) than on the sharp version of the

embedding inequality in (7). At our knowledge, the best constant for the

embedding (7) has not been investigated before; recently, closely related

results appeared in [9]. Moreover, it is well known that Moser’s inequality

is attained [6, 10]; in contrast, we show that the best constant in the

embedding inequality for (7) is not attained. We borrow some ideas of [7]

in order to prove the following main results:

Theorem 1. Let Ω be a bounded domain in R2. Then, the following

inequality holds

∥u∥Z1/2 ≤ 1√
4π

∥∇u∥2 (8)

for any u ∈ H1
0 (Ω). Moreover, the constant appearing in (8) is sharp.
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Theorem 2. Let Ω = BR, the ball in R2 centered at the origin and radius

R. Then, the best constant in (8), namely

1√
4π

= sup
u∈H1

0(BR)

∥∇u∥2=1

∥u∥Z1/2

is not achieved.

2 On borderline cases in second order Moser in-

equalities

Next we summarize the results obtained in [7] in the case N = 2, and for

the sake of simplicity we set Z1
0 (Ω) = Z(Ω). It is worth to point out that

the notation Lexp(Ω) sometimes refers in literature to the Zygmund space

of functions which enjoy the integrability condition (2) just for some λ > 0;

this is a strictly larger space than Z(Ω) in which L∞(Ω) is not dense, while

the closure of L∞(Ω) in Lexp(Ω) is precisely Z(Ω); see [3, Theorem D].

Theorem 3. Let N=2 and Ω ⊂ R2 be a bounded domain. Then, the

following inequalities hold:

∥u∥Z ≤ 1

4π
∥∆u∥1, ∀u ∈ W 2,1

∆ (Ω) (9)

∥u∥Z ≤ 1

8π
∥∆u∥1, ∀u ∈ W 2,1

∆,0(Ω), u ≥ 0 (10)

Moreover, the constants in (9)-(10) are the best possible for any domain.

The next result deals with maximal summability properties for solutions

to (1). From one side, it is an improvement of the Brezis–Merle result (3),

on the other side, in the case of compactly supported functions, it yields

a natural extension of Adams’ result (5), to the case p = 1.
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Corollary 1. Let Ω be a bounded domain in R2. Let Φ : R+ → R+ be a

continuous function such that eαtΦ(t), α > 0, is increasing as t → +∞.

Then there exists a constant C = C(α,Φ) > 0 such that

sup
∥∆u∥1=1

∫
Ω
eα|u|Φ(|u|) dx ≤ C|Ω|


if α ≤ 4π, ∀u ∈ W 2,1

∆ (Ω)

if α ≤ 8π, ∀u ∈ W 2,1
∆,0(Ω), u ≥ 0

(11)

if and only if Φ(t) is integrable near infinity.

Actually the validity of (10) and (11) in the case of compactly supported

functions, extends, in the sharp form, also to the whole subspace of

W 2,1
∆,0(Ω) consisting of radially symmetric functions. Let us sketch the

proof of (9)–(10) in the case of radially symmetric functions:

� Assume first v ∈ C2(BR) ∩ C0(BR) and vanishing at the boundary

∂BR. Let us define

w(t) := 4π v(Re−t/2) , r = Re−t/2 ∈ (0, R]

Then w ∈ C2(0,∞), w(0) = 0 and we have

w′(t) = −2πvr(Re−t/2)Re−t/2,

w′(∞) = 0,

w′′(t) = πvrr(Re−t/2)R2e−t + πvr(Re−t/2)Re−t/2

= πR2e−t

[
vrr(Re−t/2) +

vr(Re−t/2)

Re−t/2

]
= πR2e−t∆v ||x|=Re−t/2

so that

∥∆v∥1 ≤ 2π

∫ R

0

∣∣∣(vrr + vr
r

)∣∣∣ rdr
= π

∫ ∞

0

∣∣∣R2e−tvrr(Re−t/2) +Re−t/2vr(Re−t/2)
∣∣∣ dt

=

∫ ∞

0
|w′′(t)| dt
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Next notice that

w(t) =

∫ t

0
w′(s)ds =

∫ t

0

(
−

∫ ∞

s
w′′(z)dz

)
ds ≤ t∥∆v∥1

Therefore

v(r) =
1

4π
w
(
2 log

(
R
r

))
≤ ∥∆v∥1

2π
log

(
R
r

)
(12)

Since the decreasing rearrangement is monotone and positively ho-

mogeneous (see [4]), we obtain from (12)

v∗(t) ≤ ∥∆v∥1
2π

[
log

(
R
r

)]∗
(t) =

∥∆v∥1
4π

log
(
πR2

t

)
which implies (9).

� In the case of compactly supported functions w ∈ W 2,1
∆,0(Ω), notice

that thanks to the homogeneous boundary conditions we have

w′(t) = −
∫ +∞

t
w′′(z)dz =

∫ t

0
w′′(z)dz

since w′(0) = w′(∞) = 0. Therefore,

2|w′(t)| =

∣∣∣∣−∫ +∞

t
w′′(z)dz +

∫ t

0
w′′(z)dz

∣∣∣∣
≤

∫ +∞

t
|w′′(z)|dz +

∫ t

0
|w′′(z)|dz = ∥∆v∥1

and we proceed like in the previous case and obtain half the constant.

We mention that to cover the general case we use the Talenti Comparison

Principle [18] and then we exhibit explicit sequences to test the sharpness.

For the proof of Corollary 1 we refer to [7].

3 A new version of the Trudinger–Moser inequal-

ity

Inspired by the results of the previous section, we now go back to

prove our main results concerning the sharp version of the Pohožaev and

Trudinger embedding.
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3.1 Proof of Theorem 1

Let u ∈ H1
0 (Ω), and let u♯(x) denote the spherically symmetric rear-

rangement of u. As in [14], set

w(t) =
√
4π u♯(Re−t/2) (13)

where πR2 = |Ω|. Then w is monotone increasing on (0,∞) and, by the

Polya–Szego inequality, we get∫ ∞

0
(w′)2dt =

∫
Ω♯

|∇u♯|2dx ≤
∫
Ω
|∇u|2dx

By a density argument, we may suppose that w(t) is C1, so that

w(t) =

∫ t

0
w′(s)ds ≤ ∥∇u∥2

√
t

and hence

u♯(x) ≤ ∥∇u∥2√
2π

√
log

(
R

|x|

)
Then

u∗
(
π|x|2

)
= u♯(x) ≤ ∥∇u∥2√

4π

√
log

(
πR2

t

)
=

∥∇u∥2√
4π

√
log

(
|Ω|
t

)
so that

∥u∥Z1/2 = sup
t∈(0,|Ω|)

u∗(t)√
1 + log

(
|Ω|
t

) ≤ ∥∇u∥2√
4π

The inequality (8) is sharp, and this can be achieved by using the Moser

truncated functions [14]:

wn(t) =

{
t√
n
, t ≤ n

√
n, t ≥ n

by which one has ∥∇un∥2 = 1 and

√
4π∥un∥Z1/2 =

√
4π sup

t∈(0,|Ω|)

u∗n(t)√
1 + log

(
|Ω|
t

)
= sup

t∈(0,∞)

wn(t)√
1 + t

=

√
n√

n+ 1
→ 1, as n → ∞ (14)
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3.2 Proof of Theorem 2

Let {un} be a normalized maximizing sequence namely,

∥∇un∥2 = 1 and ∥un∥Z1/2 → 1√
4π

, as n → ∞

We may assume that un ⇀ u weakly in H1
0 (Ω) and |∇un|2 → µ weakly

in the sense of measures. By the concentration-compactness result of

P.L. Lions [13], the sequence {un} enjoys one of the following alternatives:

� there exists q > 4π such that the family vn = eu
2
n is uniformly

bounded in Lq(Ω), and thus
∫
Ω e4πu

2
n →

∫
Ω e4πu

2
as n → +∞. In

particular, this is the case when u is different from zero.

or

� µ = δx0 , for some x0 ∈ Ω, and u ≡ 0.

We will show that we are in the latter situation i.e. the non compact case.

Thanks to the Polya–Szego inequality, we may restrict our attention to

radial and nondecreasing normalized maximizing sequences: indeed,

∥un∥Z1/2 = ∥u♯n∥Z1/2 and ∥∇un∥2 ≥ ∥∇u♯n∥2

so that, if {un} is a maximizing sequence, then ∥∇un∥2 = ∥∇u♯n∥2=1 and

{u♯n} is a normalized maximizing sequence. Note that {u♯n} is concen-

trating at the origin if and only if {un} is concentrating at some point

x0 ∈ Ω.

Let {wn} be the sequence associated to {un} via the change of variable

(13). Then

wn(0) = 0, w′
n(t) ≥ 0 and

∫ +∞

0
(w′

n(t))
2 dt = 1
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By (14) we have

√
4π ∥un∥Z1/2 = sup

t∈(0,∞)

wn(t)√
1 + t

so that

sup
t∈(0,∞)

wn(t)√
1 + t

→ 1−, as n → ∞

In particular, for any ε > 0 there exist nε ∈ N and tε ∈ (0,+∞) such that

wnε(tε) > (1− ε)
√
1 + tε

On the other hand, for any A ∈ (0, t) and for any t > 0

w(t)− w(A) =

∫ t

A
w′(s)ds ≤

√∫ t

A
(w′)2 ds

√
t−A

so that, for any ε > 0 and for any A ∈ (0, tε)

(1− ε)
√
1 + tε <

√∫ tε

A

(w′
nε
)2
√
tε −A+ wnε(A) ≤

√∫ tε

A

(w′
nε
)2
√

tε −A+
√
A

(15)

Choosing A = 0 in (15), we have

tε −→ ∞ as ε → 0

Furthermore, for any A > 0 we also have∫ A

0
(w′

nε
)2 ds −→ 0

indeed, if not
∫ tε
A (w′

nε
)2 < 1− δ for some δ > 0, contradicting (15).

Therefore, up to extracting a subsequence, {wn} is concentrating at +∞
and in turn, {un} is a normalized maximizing sequence concentrating at

0: this completes the proof of Theorem 2.
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[8] Carozza, M.; Sbordone, C., The distance to L∞ in some function spaces and ap-

plications, Differential Integral Equations 10 (1997), 599–607.

[9] Cianchi, A.; Ferone, A., Hardy inequalities with non-standard remainder terms,
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