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Abstract

We describe a Moser-type iteration procedure to derive decay es-

timates for solutions u(·, t) of very general advection-diffusion equa-

tions in n-dimensional space, assuming u(·, 0) = u0 ∈ Lp(Rn), 1 ≤
p < ∞. A number of related results are also discussed.

1 Introduction

In this work, we consider solutions u(·, t) of the scalar advection-diffusion
equation

ut + div ( b(x, t, u)u ) = div (A(x, t, u)∇u ), x ∈ Rn, t > 0, (1.1)

with general Cauchy data

u(·, 0) = u0 ∈ Lp(Rn) (1.2)
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for some 1 ≤ p < ∞, where b (the advection velocity field) and A (the

viscosity tensor) are given C1 functions. (Throughout the text, boldface

letters are used for vector quantities, and div denotes the divergence with

respect to the space variable x.) Condition (1.2) is meant in Lp, i.e.,

∥u(·, t) → u0 ∥Lp → 0 as t → 0. It is assumed that A satisfies the positive

definiteness condition

⟨A(x, t, v)ξ, ξ ⟩ ≥ µ(t) | ξ |2, ∀ ξ ∈ Rn, (1.3)

for all x, t, v and some positive µ ∈ C0([0,∞[) verifying

lim
t→∞

tµ(t) = ∞. (1.4)

Moreover, b = ( b1, ..., bn) must verify

n∑
j=1

∂bj
∂xj

(x, t, v) ≥ 0, ∀ x ∈ Rn, t > 0, v ∈ R, (1.5a)

or, alternatively, the Carlen-Loss condition [5]∫
Rn

|Φ(x) |q div b(x, t,Φ(x)) dx ≥ 0, ∀ t > 0, (1.5b)

for all Φ ∈ C∞
0 (Rn) and q ≥ p. It is also assumed that b(x, t, v), A(x, t, v)

are bounded for x ∈ Rn and bounded t, v ∈ R, with b, A locally Lip-

schitz continuous with respect to v. It then follows from classical exis-

tence theory and Theorem 2.3 below that there exists a unique solution

u(·, t) ∈ C0([0,∞[, Lp(Rn))∩L∞
loc(]0,∞[, L∞(Rn)) to problem (1.1), (1.2),

which is the subject of this paper.

An important example is given by the equation

ut + div (b(u)u) = ∆u, x ∈ Rn, t > 0, (1.6)

which has been studied by several authors (see e.g. [5, 7, 8, 16, 17] and

references therein), under further assumptions on the advection term or

the initial data, using logarithmic Sobolev inequalities, Fourier splitting,

or other techniques. Our approach is more elementary and is based on
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the fundamental fact that ∥u(·, t) ∥L2q(Rn) can be bounded in terms of

∥u(·, t) ∥Lq(Rn), which suggests a simple iterative procedure to estimate

the supnorm ∥u(·, t) ∥L∞(Rn) analogous to the familiar Moser iteration for

elliptic equations [12, 13]. This method is easy to extend to more general

equations such as (1.1), and can be adapted (with corresponding change

in results) to other problems as well, including equations with bounded

velocities b not verifying (1.5), equations with source terms, degenerate

problems with µ(t) vanishing at isolated zeros, and other examples [3, 18].

In particular, it follows from Theorem 2.3 below that one gets

∥u(·, t) ∥
Lq(Rn)

≤ K(n, p, q) ∥u0 ∥Lp(Rn)

(
µ0t

)−n
2

(
1
p − 1

q

)
, ∀ t > 0, p ≤ q ≤ ∞,

(1.7)

when µ(t) ≥ µ0 > 0, as in equation (1.6), for some constant K depending

on n, p, q but not on b, A, u0. Similar estimates are obtained for general

µ(t) satisfying (1.4) above, yielding ∥u(·, t) ∥Lq → 0 as t → ∞ for all q > p,

and also

lim
t→∞

∥u(·, t) ∥
Lp(Rn)

= 0 (1.8)

when p > 1. On the other hand, if p = 1, the time asymptotic value of

∥u(·, t) ∥L1(Rn) for t ≫ 1 is not known in general. For special equations

such as (1.6), it has been shown that ∥u(·, t) ∥L1(Rn) → |m | for any

solution, where m denotes its (time-invariant) mass, see e.g. [2, 15, 22].

However, this simple result does not hold for arbitrary solutions of (1.1) in

general, and characterizing which equations (1.1) do satisfy this property

remains open. Some related problems and results are briefly discussed in

Section 3.

2 Some a priori estimates.

In this section we derive the main estimates, including some of their

consequences. To make the argument more transparent, we will assume
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in addition that µ(t) is monotonically non-increasing as a function of t.

(This can always be achieved by redefining µ(t) for each t as the minimum

value up to time t; note that (1.4) remains valid if µ(t) is redefined this

way.) The case of general µ(t) is more technical and will be discussed in

a forthcoming paper. Also, it will be convenient to use regularized sign

functions L′
δ (see e.g. [10], p. 533): picking (any) S ∈ C1(R) monotonically

nondecreasing with S(0) = 0, S(v) = 1 for all v ≥ 1 and S(v) = −1 for

all v ≤ −1, we set, for arbitrary δ > 0,

Lδ(v) := δ

∫ v/δ

0
S(w) dw, v ∈ R, (2.1)

so that Lδ(v) → | v |, L′
δ(v) → sgn v as δ → 0.

Lemma 2.1. For any q ≥ p, ∥u(·, t) ∥
Lq(Rn)

≤ ∥u(·, t0) ∥Lq(Rn)
∀ t > t0 ≥ 0.

Proof: Let Φδ(v) := Lδ(v)
q
. Assuming ∥u(·, t0) ∥Lq(Rn)

finite, we obtain,

multiplying (1.1) by Φ′
δ(u(x, t)) and integrating on Rn× [t0, t],∫

Rn

Lδ

(
u(x, t)

)q
dx +

∫ t

t0

∫
Rn

Φ′′
δ

(
u(x, τ)

)
⟨A(x, τ, u)∇u,∇u ⟩ dx dτ =

=

∫
Rn

Lδ

(
u(x, t0)

)q
dx +

∫ t

t0

∫
Rn

Φ′′
δ

(
u(x, τ)

)
u(x, τ) ⟨ b(x, τ, u), ∇u ⟩ dxdτ.

By (1.3), we then have∫
Rn

Lδ(u(x, t))
q
dx ≤

∫
RnLδ(u(x, t0))

q
dx

+

∫ t

t0

∫
Rn

Φ′′
δ (u(x, τ))u(x, τ) ⟨ b(x, τ, u), ∇u ⟩dxdτ,

since Φ′′
δ (v) = q (q − 1)Lδ(v)

q−2
L′
δ(v)

2
+ qLδ(v)

q−1
L′′
δ (v) ≥ 0 . Letting

δ → 0, we have vL′′
δ (v) → 0, Lδ(v)

q−2
L′
δ(v)

2
v → | v |q−1

sgn(v), Lδ(v)
q → | v |q

for each v ∈ R, so that, by Lebesgue’s dominated convergence theorem,

we get from the estimate above, as δ → 0,

∥u(·, t) ∥q

Lq(Rn)
≤ ∥u(·, t0) ∥

q

Lq(Rn)
+ Eq(t),
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where

Eq(t) = q (q − 1)

∫ t

t0

∫
Rn

|u(x, τ) |q−1
sgn

(
u(x, τ)

)
⟨ b(x, τ, u),∇u ⟩ dx dτ.

The result now follows, since Eq(t) = 0 for q = 1 and, for q > 1,

Eq(t)

q − 1
= −

∫ t

t0

∫
Rn

|u(x, τ) |q div b(x, τ, u) dx dτ

= − q

∫ t

t0

∫
Rn

∫ u(x, τ)

0
sgn(v) | v |q−1

n∑
j=1

∂bj
∂xj

(x, τ, v) dv dx dτ,

so that Eq(t) ≤ 0 in view of (1.5a) or (1.5b). 2

In particular, the maximum principle ∥u(·, t) ∥
L∞(Rn)

≤ ∥u0 ∥L∞(Rn)
is

valid for all t > 0.

Theorem 2.2. For any q ≥ p,

∥u(·, t) ∥
L2q(Rn)

≤ K
1
(q, n) ∥u(·, t0) ∥Lq(Rn)

(
(t− t0)µ(t)

)− n
4q

for all t > t0 ≥ 0, where

K
1
(q, n) =

{
2
−n

C
n+2

n

(
1 +

n

2

)1+n
2(

1− 1

2q

)−n
2
}1
2q

. (2.2)

In (2.2), Cn denotes the constant in the Nirenberg-Gagliardo inequality

(see e.g. [9], p. 24)

∥w ∥
L2(Rn)

≤ Cn ∥w ∥
2

n+2

L1(Rn)
∥∇w ∥

n
n+2

L2(Rn)
, w ∈ H1(Rn) ∩ L1(Rn).

(2.3)

This particular inequality was originally obtained by Nash [14], with op-

timal values for Cn determined later in [4]. The following proof of Theo-

rem 2.2 extends an argument introduced in [20] and further developed in

[19, 21, 2].

Proof: Multiplying (1.1) by (t− t0)
γ
Φ′
δ(u(x, t)), γ = 1 +

n

2
, Φδ(v) := Lδ(v)

2q
,
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with Lδ(·) given in (2.1), and integrating on Rn× [ t0, , t ], we obtain, in-

tegrating by parts,

(t− t0)
γ
∫
Rn

Lδ

(
u(x, t)

)2q
dx

+ 2q (2q − 1)

∫ t

t0
(τ − t0)

γ
µ(τ)

∫
Rn

Lδ

(
u(x, τ)

)2q−2
L′
δ

(
u
)2 | ∇u |2dx dτ

≤ γ

∫ t

t0
(τ − t0)

γ−1
∫
Rn

Lδ

(
u(x, τ)

)2q
dx dτ

+

∫ t

t0
(τ − t0)

γ
∫
Rn

Φ′′
δ (u)u(x, τ) ⟨ b(x, τ, u),∇u⟩ dx dτ

using (1.3) and the fact that L′′
δ (v) ≥ 0. By (1.5), we then get, as in the

previous proof, letting δ → 0,

Eq(t) ≤
(
1 +

n

2

)∫ t

t0
(τ − t0)

γ−1∥u(·, τ) ∥2q
L2q(Rn)

dτ,

where

Eq(t) := (t− t0)
γ∥u(·, t) ∥2q

L2q(Rn)

+2q (2q − 1)µ(t)
∫ t
t0
(τ − t0)

γ∫
Rn|u(x, τ) |

2q−2 | ∇u |2 dxdτ.

Applying (2.3) to w = |u |q, we get

∥u(·, τ) ∥2q
L2q(Rn)

≤ q
2n
n+2

C
2

n ∥u(·, τ) ∥
4q
n+2

Lq(Rn)

(∫
Rn

|u(x, τ) |2q−2 | ∇u(x, τ) |2 dx
) n
n+2

,

so that we obtain, using Hölder’s inequality,

Eq(t) ≤ 4
− n
n+2

(
1+

n

2

)(
1− 1

2q

)− n
n+2

C
2

n (τ−t0)
2

n+2
µ(t)

− n
n+2 ∥u(·, t0 ∥

4q
n+2

Lq(Rn)
Eq(t)

n
n+2

,

that is,

(t− t0)
n
2 ∥u(·, t) ∥2q

L2q(Rn)
+

+2q (2q − 1)
µ(t)

t− t0

∫ t

t0
(τ − t0)

1+n
2
∫
Rn

|u(x, τ) |2q−2 | ∇u |2 dxdτ ≤



Some results and problems on advection-diffusion 73

≤ 2
−n

(
1 +

n

2

)1+n
2(

1− 1

2q

)−n
2

C
n+2

n µ(t)
−n

2 ∥u(·, t0) ∥
2q

Lq(Rn)
.

2

We are now in good standing to establish our main result, given in

Theorem 2.3 below.

Theorem 2.3. ∥u(·, t) ∥
L∞(Rn)

≤ K(n, p) ∥ u0 ∥Lp(Rn)

(
µ(t) t

)− n
2p

for all

t > 0, where

K(n, p) =
( n

2
+ 1

)1p(n2 +1
)
C

n+2
p

n

[ ∞∏
i=1

(
1 − 1

2ip

) 1
2ip

]−n
2

. (2.4)

Remark: In (2.4), Cn is the constant given in Nash’s inequality (2.3).

The value (2.4) is not optimal; minimal values for K(n, p) are not actually

known, except in special cases.

Proof: By Moser iteration [12, 13], as follows: for k ∈ N, we set t
0
:= 2

−k
t,

t
i
:= t

i−1
+ 2

−i
t, 1 ≤ i ≤ k, so that t

k
= t and, from Theorem 2.2 above,

∥u(·, t
i
) ∥

L2ip(Rn)
≤

≤ K̂(n)

1
2ip

Γ(n, 2ip)

1
2ip

µ(t
i
)
− n
2i+1p

(2
−i
t)
− n
2i+1p ∥u(·, t

i−1
) ∥

L2i−1p(Rn)

for every 1 ≤ i ≤ k, where K̂(n) = 2
−n
(n/2 + 1)

n/2+1
C

n+2

n and Γ(n, q) =

(1− 1/q)
−n/2

. This gives, for non-increasing µ(t),

∥u(·, t) ∥
L2kp(Rn)

≤

≤ K̂(n)
1
pλk(

µ(t) t
)− n

2pλk
[ k∏
i=1

(
1 − 1

2ip

)1
2ip

2
− i
2ip

]−n
2

∥u(·, t
0
) ∥

Lp(Rn)
,

where λ
k
= 1− 2

−k
. Letting k → ∞, the result is obtained.

2
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From Lemma 2.1 and Theorem 2.3, we then obtain the following result by

interpolation.

Corollary 2.4. For any q ≥ p ,

∥u(·, t) ∥
Lq(Rn)

≤ K(n, p)
1−p

q ∥ u0 ∥Lp(Rn)

(
µ(t) t

)−n
2

(
1
p−

1
q

)
for all t > 0, where K(n, p) is given in (2.4).

Using standard estimates for fundamental solutions of linear parabolic

problems [1, 11], decay estimates for derivatives of u(·, t) can now be ob-

tained. For example, given t0 > 0, one gets, for p ≤ q ≤ ∞,

∥∇u(·, t) ∥
Lq(Rn)

≤ K(n, p, q, t0)∥u0 ∥Lp(Rn)

(
µ(t) t

)−n
2

(
1
p − 1

q

)
−1
2
, ∀ t> t0,

(2.5)

where constantK(n, p, q, t0) depends on n, p, q, t0, the magnitude of ∥u0 ∥Lp(Rn)

and the functions b, A. We thus see that, assuming (1.4), u(·, t) and its

derivatives decay time asymptotically in Lq for any q ≥ p, except (possi-

bly) for the norms ∥u(·, t) ∥Lp(Rn), whose behavior (other than remaining

bounded) is not immediately clear from Theorem 2.3. This question will

be briefly examined below.

3 Behavior of ∥u(·, t) ∥
Lp(Rn)

.

When p > 1, the answer turns out to be very simple.

Theorem 3.1. If p > 1, then lim
t→∞

∥u(·, t) ∥
Lp(Rn)

= 0.

Proof: Given ε > 0, let R ≫ 1 be such that ∥ v(R)
0 ∥Lp(Rn) ≤ ε, where

v
(R)
0 (x) := u

0
(x) if |x | > R and zero otherwise. Setting v(R)(·, t) to be the



Some results and problems on advection-diffusion 75

solution of equation (1.1) with initial data v(R)(·, 0) = v
(R)
0 , then

∥ u(·, t) ∥
Lp(Rn)

≤ ∥ u(·, t) − v(R)(·, t) ∥
Lp(Rn)

+ ε

≤ ∥ u0 − v
(R)
0 ∥1/p

L1(Rn)
∥ u(·, t) − v(R)(·, t) ∥1−1/p

L∞(Rn)
+ ε,

because (1.1) is L1-contracting, see e.g. [10]. Therefore,

∥ u(·, t) ∥
Lp(Rn)

≤ C(p, n,R) ∥ u0 ∥Lp(Rn)

(
µ(t) t

)− n
2p(1−

1
p)
+ ε

for some quantity C(p, n,R) independent of t, by Theorem 2.3, and so

∥u(·, t) ∥
Lp(Rn)

≤ 2ε for t ≫ 1.

2

Corollary 3.2. If 1 < p ≤ q ≤ ∞, then we have

lim
t→∞

(
µ(t) t

)n2 (1p−1
q

)
∥u(·, t) ∥

Lq(Rn)
= 0, uniformly in q.

Thus, if p > 1, solutions decay actually faster than the rates obtained

above. As with the familiar case of heat equation, however, this extra

speed depends on particular features of the initial state u0 ∈ Lp(Rn) and

can be arbitrarily slow, so that no higher rates are valid in general. In

this sense, therefore, our results are optimal.

Proof: Because(
µ(t) t

)n2p
∥u(·, t) ∥

L∞(Rn)
≤

≤ Cn,p

((
µ(t) t

)n2p+1
2
∥∇u(·, t) ∥

L∞(Rn)

) n
n+p(

∥u(·, t) ∥
Lp(Rn)

) p
n+p

for some appropriate Sobolev constant Cn,p > 0 (see e.g. [9], Theorem

9.3), the result holds for q = ∞ by (2.5) and Theorem 3.1 above. Ex-

tension to arbitrary q > p then follows directly from Theorem 3.1 and

interpolation.

2
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On the other hand, in case p = 1, the limiting value of∥u(·, t) ∥L1(Rn)

as t → ∞ is not known in general. Important special features in this case

include the conservation of solution mass, that is,

m =

∫
Rn

u0(x) dx =

∫
Rn

u(x, t) dx, ∀ t > t0 , (3.1)

and the monotonicity property that u(·, t) ≥ ũ(·, t) for all t > t0 for any so-

lution pair u(·, t), ũ(·, t) with u(·, t0) ≥ ũ(·, t0) for some t0 ≥ 0 [6]. In par-

ticular, ∥u(·, t) ∥L1(Rn)= |m | for all t > t0 whenever u0 does not change

sign; otherwise, ∥u(·, t) ∥L1(Rn) decreases monotonically in t (Lemma 2.1),

with ∥u(·, t) ∥L1(Rn)> |m | for all t, therefore approaching a well defined

asymptotic limit ℓ(u0) ≥ | m | for large t, whose value may be un-

known [15].

A fundamental related question is whether equation (1.1) is asymptotic

mixing, that is, the ergodic property

lim
t→∞

∥u(·, t) − ũ(·, t) ∥
L1(Rn)

= 0 (3.2)

holds for any solutions u(·, t), ũ(·, t) with the same mass: should (3.2) hold,

it would immediately follow that ℓ(u0) = |m | for any u0 ∈ L1(Rn). One

example is given by (1.6), for which property (3.2) is known to hold [22].

The problem of identifying which equations (1.1) happen to be asymptotic

mixing remains largely open.
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