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Non-homogeneous Boundary Value

Problems for Ordinary and Partial

Differential Equations Involving Singular

ϕ-Laplacians

C. Bereanu P. Jebelean J. Mawhin
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1 Introduction

In the flat Minkowski space LN+1 = {(x, t) : x ∈ RN , t ∈ R} with

metric
∑N

j=1(dxj)
2 − (dt)2, let us consider hypersurfaces, i.e. space-like

submanifolds of codimension one. Their mean extrinsic curvature is the

trace of the second fundamental form. Maximal hypersurfaces have mean

extrinsic curvature zero, and hypersurfaces with constant mean extrinsic

curvature are also of interest.

More specifically, let Ω be a bounded domain in {(x, t) ∈ LN+1 : t =

0} ≃ RN , and let us restrict our attention to hypersurfaces which are the

graph of functions v : Ω → R. An extension of the problem of maximal

hypersurfaces consists, given f : Ω× R → R continuous and bounded, to

maximize the functional I defined by

I(v) :=

∫
Ω

[√
1− ∥∇v(x)∥2 −

∫ v(x)

0
f(x, t) dt

]
dx (1)
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over

C(φ,Ω) := {v ∈ C0,1(Ω) : v = φ on ∂Ω, ∥∇v∥ ≤ 1 a.e. in Ω}. (2)

It has been proved by Bartnik and Simon [2] that the maximum exists if

and only if C(φ,Ω) ̸= ∅, and is unique if, furthermore, f(x, ·) is nonde-

creasing for any x ∈ Ω. The existence of a maximum for I follows from

the fact that I is bounded on C(φ,Ω), that C(φ,Ω) is equicontinuous,√
1− ∥p∥2 concave, and, using Serrin’s semicontinuity theorem [9], I is

upper semi-continuous. If one introduces the differential operator

M(v) := ∇ ·

(
∇v√

1− ∥∇v∥2

)
(3)

the problem is then to show that the Euler-Lagrange equation for a max-

imum of I over C(φ,Ω) is given by

M(v) = f(x, v) in Ω, u = φ on ∂Ω (4)

A long argument in [2], which essentially consists in showing that a max-

imizing function u for I is such that ∥∇u∥ ≤ η < 1, gives conditions

which imply the existence of a solution u ∈ C1(Ω) ∩W 2,2(Ω) such that

∥∇u∥ < 1 for f and φ bounded, when φ has an extension ψ to Ω such

that ∥∇ψ∥ ≤ 1.

More generally, given f : Ω × R × RN → R continuous, one can raise

the question of the solvability of the equation

M(v) = f(x, v,∇v) in Ω (5)

submitted to Dirichlet or Neumann boundary conditions. When N = 1,

more general results that the one mentioned above have been obtained in

[6, 7], and we describe them in Section 2. A natural question is then to

see if corresponding results hold for the radial solutions of (4) when Ω is

a ball or an annulus in RN . This problem has been considered, for homo-

geneous boundary conditions, in [3] and [4] (also see [5]). Here we extend

it to non-homogeneous boundary conditions. In Section 3 we deal with
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Dirichlet problems, while Section 4 is devoted to Neumann problems. The

method of lower and upper solutions for Neumann boundary conditions is

developed in Section 5.

2 The case where N = 1

For N = 1 and, say Ω = (0, 1), it is shown in [7] that the non-

homogeneous Dirichlet boundary value problem(
v′√

1− |v′|2

)′

= f(x, v, v′), v(0) = A, v(1) = B (6)

is solvable for all f ∈ C([0, 1] × R2,R) and |B − A| < 1. The proof is

based upon the application of Schauder fixed point theorem to an equiva-

lent fixed point problem that we describe now. The following elementary

lemma, proved in [7], is required to obtain the fixed point operator in the

case of Dirichlet conditions.

Lemma 1. Let ϕ : (−a, a) → R be an increasing homeomorphism such

that ϕ(0) = 0. For any (h, d) ∈ C[0, 1]×(−a, a), there exists a unique α :=

Qϕ(h, d) such that
∫ 1
0 ϕ

−1(h(s) − α) ds = d. Furthermore Qϕ : C[0, 1] ×
(−a, a) → R is completely continuous.

Set ϕ(s) :=
s√

1− s2
, and define Nf : C1[0, 1] → C[0, 1] by

Nf (v)(t) = f(t, v(t), v′(t)),

and H : C[0, 1] → C1[0, 1], by

Hw(t) =

∫ t

0
w(s) ds.

It is proved in [7] that v is a solution to (6) if and only if

v = A+H ◦ ϕ−1 ◦ (HNf (v)−Qϕ[HNf (v), B −A]),

and the operator defined by the right-hand side is well defined and com-

pletely continuous on C1[0, 1] when |A − B| < 1, and maps C1[0, 1] into
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B0(|A|+ 2) ⊂ C1[0, 1]. With respect to the general case treated by Bart-

nik and Simon [2], the boundedness condition upon f has been removed.

Condition |B − A| < 1 corresponds to the possibility of extending the

boundary values to a function ψ : [0, 1] → R such that |ψ′(x)| < 1.

In the same way, the non-homogeneous Neuman boundary value prob-

lem(
v′√

1− |v′|2

)′

= f(x, v, v′), v′(0) =
C√

1 + C2
, v′(1) =

D√
1 +D2

(7)

is shown in [7] to be solvable for all C,D ∈ R and all f ∈ C([0, 1]×R2,R)
for which there exists R > 0 and ε ∈ {−1, 1} such that

ε (sgn v)

[∫ 1

0
f(x, v(x), v′(x)) dx− (D − C))

]
≥ 0

when min[0,1] |v| ≥ R, and ∥v′∥∞ < 1. The proof of this result is again

based upon a reduction to a fixed point problem. Define P,Q : C[0, 1] → R
by

Pv = v(0), Qv =

∫ 1

0
v(x) dx,

and g ∈ C[0, 1] by g(t) = (1 − t)C + tD. Then, v is a solution to (7) if

and only if

v = Pv +QNf (v)− (D − C) +H ◦ ϕ−1 ◦ [H(I −Q)Nf (v) + g].

3 Radial solutions of Dirichlet extrinsic mean cur-

vature problem in a ball

We consider now the problem of the existence of radial solutions to the

Dirichlet problem in B0(1)

∇ ·

(
∇v(x)√

1− ∥∇v(x)∥2

)
= f(∥x∥, v(x), ∂v

∂ν
(x)) in B0(1),

v = A on ∂B0(1), (8)
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where f ∈ C([0, 1] × R2,R) and A ∈ R. Here and below,
∂v

∂ν
(x) stands

for the directional derivative of v at x ̸= 0 in the direction
x

∥x∥
. A radial

solution of (8) is a solution of the form v(x) = u(∥x∥), where, if r := ∥x∥,
u is solution of the one-dimensional boundary value problem(

rN−1 u′√
1− u′2

)′

= rN−1f(r, u, u′), u′(0) = 0, u(1) = A. (9)

More generally, if ϕ : (−a, a) → R is an increasing homeomorphism such

that ϕ(0) = 0, let us consider the problem

(rN−1ϕ(u′))′ = rN−1f(r, u, u′), u′(0) = 0, u(1) = A. (10)

By a (classical) solution of (10), we mean a function u ∈ C1 := C1[0, 1]

such that r 7→ (rN−1ϕ(u′(r)) ∈ C1 and which satisfies (10). The Banach

space C1 is considered with the norm ∥u∥C1 = ∥u∥∞ + ∥u′∥∞. If C1
D =

{u ∈ C1 : u′(0) = 0, u(1) = A}, C0 = {u ∈ C[0, 1] : u(0) = 0}, let

us introduce the operators S : C[0, 1] → C0, K : C[0, 1] → C1 and

M : C1
D → C1

D respectively defined by

Su(r) =
1

rN−1

∫ r

0
tN−1u(t)dt (r ∈ (0, 1])

Ku(r) =

∫ r

1
u(t)dt (r ∈ [0, 1])

Mu = A+K ◦ ϕ−1 ◦ S ◦Nf (u).

The following result is proved in [3] for A = 0 but the proof is essentially

the same for arbitrary A.

Lemma 2. M is completely continuous and u is a solution of (10) if and

only if u is a fixed point of M .

An easy consequence is the following existence result, proved (for A = 0)

in [3].
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Theorem 1. If ϕ : (−a, a) → R is an increasing homeomorphism such

that ϕ(0) = 0, then problem (10) has at least one solution for all f ∈
C([0, 1]× R2,R) and all A ∈ R.

Proof. By Lemma 2, it suffices to find u such that u = M(u) and the

existence of such an u follows from Schauder’s fixed point theorem because

M(C1
D) ⊂ {u ∈ C1

D : ∥u∥C1 < 2a+ |A|}.
2

Corollary 1. The problem

M(v) = f(∥x∥, v, ∂v/∂ν) in B0(1), v = A on ∂B0(1)

has at least one radial solution for any f ∈ C([0, 1] × R2,R) and any

A ∈ R.

Corollary 2. If furthermore f = f(r, u) and f(r, ·) is nondecreasing, the

radial solution is unique.

4 Radial solutions of Neumann extrinsic mean

curvature problem

Let ρ ∈ [0, 1), Aρ = B0(1) \ B0(ρ) when ρ > 0, A0 = B0(1). We now

consider the Neumann extrinsic mean curvature problem

M(v) = f(∥x∥, v, ∂v
∂ν

) in Aρ (11)

∂v

∂ν
=

C√
1 + C2

on ∂B0(ρ),
∂v

∂ν
=

D√
1 +D2

on ∂B0(1),

where f ∈ C([ρ, 1] × R2,R) and C,D ∈ R. We assume that C = 0 when

ρ = 0. Letting v(x) = u(∥x∥), this is equivalent to solving the boundary

value problem(
rN−1 u′√

1− u′2

)′

= rN−1f(r, u, u′), u′(ρ) =
C√

1 + C2
, u′(1) =

D√
1 +D2

.
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More generally, if ϕ : (−a, a) → R is an increasing homeomorphism such

that ϕ(0) = 0, we consider the boundary value problem

(rN−1ϕ(u′))′ = rN−1f(r, u, u′), u′(ρ) = ϕ−1(C), u′(1) = ϕ−1(D). (12)

Let C1 := C1[ρ, 1] with the norm ∥u∥C1 = ∥u∥∞ + ∥u′∥∞, and let us

write u ∈ C1 as u = u + ũ, with u = u(ρ), and ũ ∈ C̃1 := {u ∈ C1 :

u(ρ) = 0}. Let us define the linear operators P,Q,L : C[ρ, 1] → C[ρ, 1]

and H : C[ρ, 1] → C1 by

Pu = u(ρ),

Qu =
N

1− ρN

∫ 1

ρ
rN−1u(r)dr,

Lu(r) =
1

rN−1

∫ r

ρ
tN−1u(t)dt, (13)

Hu(r) =

∫ r

ρ
u(t)dt (r ∈ [ρ, 1]),

and let pN : [ρ, 1] → R, r 7→ r1−N .

Lemma 3. u is a solution of (12) if and only if u is a fixed point of the

operator R : C1 → C1 defined by

R(u) = Pu+ [QNf (u)−
N

1− ρN
(D − ρN−1C)] (14)

+ H ◦ ϕ−1 ◦
{
ρN−1CpN + L[(I −Q)Nf (u) +

N

1− ρN
(D − ρN−1C)]

}
.

Proof. If u is a solution of (12), then

D − ρN−1C =

∫ 1

ρ
rN−1f(r, u(r), u′(r)) dr, (15)

i.e.

N

1− ρN
[D − ρN−1C] = QNf (u). (16)

Hence

(rN−1ϕ(u′))′ = rN−1[f(r, u, u′)−QNf (u) +
N

1− ρN
[D − ρN−1C]]
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Consequently

rN−1ϕ(u′(r)) = ρN−1C (17)

+

∫ r

ρ

sN−1

[
f(s, u(s), u′(s))−QNf (u) +

N

1− ρN
[D − ρN−1C]

]
ds,

so that

u′(r) = ϕ−1
{
ρN−1CpN (r) (18)

+
1

rN−1

∫ r

ρ

sN−1

[
f(s, u(s), u′(s))−QNf (u) +

N

1− ρN
[D − ρN−1C]

]
ds

}
= ϕ−1 ◦

{
ρN−1CpN (r) + L

[
(I −Q)Nf (u)(r) +

N

1− ρN
[D − ρN−1C]

]}
.

Consequently,

u(r)− u(ρ) (19)

= H ◦ ϕ−1 ◦
{
ρN−1CpN (r) + L

[
(I −Q)Nf (u)(r) +

N

1− ρN
[D − ρN−1C]

]}
.

As equations (16) and (19) take value in the supplementary spaces R
(constant functions) and C̃1, they can be written as the unique equation

u(r) = u(ρ) +QNf (u)−
N

1− ρN
[D − ρN−1C] +H ◦ ϕ−1 (20)

◦
{
ρN−1CpN (r) + L

[
(I −Q)Nf (u)(r) +

N

1− ρN
[D − ρN−1C]

]}
.

i.e. as u = R(u). Conversely, if u = R(u), then, taking r = ρ we get

(15) and what remains is (19). By differentiating we get (18) and then

(17) and the differential equation in (12). The boundary conditions easily

follow from (15) and (17).

2

A slight modification of the argument in [4] shows that R is a completely

continuous operator on C1.

Let us now introduce the modified operator R̃ : R × C̃1 → C̃1 defined

by

R̃(u, ũ)

= H ◦ ϕ−1 ◦
{
ρN−1CpN + L

[
(I −Q)Nf (u+ ũ) +

N

1− ρN
[D − ρN−1C]

]}
.
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The fixed points of R̃ are the solutions of the modified Neumann problem

(rN−1ϕ(ũ′))′ = rN−1{Nf (u+ ũ)− [QNf (u+ ũ)− N

1− ρN
(D − ρN−1C)]},

u′(ρ) = ϕ−1(C), u′(1) = ϕ−1(D) (21)

as it is easily verified.

Lemma 4. The set of solutions (u, ũ) ∈ R × C̃1 of (21) contains a con-

tinuum C with projRC = R and proj
C̃1C ⊂ B0((2− ρ)a).

Proof. Given u ∈ R, ũ ∈ C̃1 is a solution if and only if

ũ = R̃(u, ũ).

The nonlinear operator R̃ is completely continuous, and such that R̃(R×
C̃1) ⊂ B0((2− ρ)a). The result follows from a version of Leray-Schauder

theorem with unbounded parameter set.

2

An easy consequence of Lemma 4 is the following theorem.

Theorem 2. If ρ ∈ [0, 1), ϕ : (−a, a) → R is an increasing homeomor-

phism such that ϕ(0) = 0, and if there exists ε ∈ {−1, 1} and R > 0 such

that

ε(sgn u)

[∫ 1

ρ
rN−1f(r, u(r), u′(r)) dr −

(
D − ρN−1C

)]
≥ 0 (22)

for any u ∈ C1 such that min[ρ,1] |u| ≥ R and ||u′||∞ < a, then problem

(12) has at least one solution.

Proof. Apply Lemma 4 to get C and observe thatQNf− N
1−ρN

(
D − ρN−1C

)
takes opposite signs on C. By connectednessQNf (u+ũ)− N

1−ρN

(
D − ρN−1C

)
vanishes for some (u, ũ) ∈ C, and u = u+ ũ is a solution of (12).

2
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Corollary 3. Under the same conditions upon f, problem (11) in Aρ has

at least one radial solution.

Corollary 4. If furthermore f = f(r, u) and f(r, ·) is nondecreasing, the

radial solution is unique.

We can deduce from Theorem 2 some surjectivity results.

Corollary 5. For any g ∈ C([ρ, 1]× R,R) such that

lim
s→±∞

g(r, s) = ±∞ or ∓∞ (23)

uniformly in [ρ, 1], and for all bounded h ∈ C([ρ, 1]× R2,R), problem

M(v) = g(∥x∥, v) + h(∥x∥, v, ∂v/∂ν) in Aρ, (24)

∂v

∂ν
=

C√
1 + C2

on ∂B0(ρ),
∂v

∂ν
=

D√
1 +D2

on ∂B0(1)

has at least one radial solution.

Corollary 6. For all g ∈ C([ρ, 1]× R,R) such that g(r, ·) : R → R is an

increasing homeomorphism for all r ∈ [ρ, 1], problem

M(v) = g(∥x∥, v) in Aρ, (25)

∂v

∂ν
=

C√
1 + C2

on ∂B0(ρ),
∂v

∂ν
=

D√
1 +D2

on ∂B0(1)

has an unique radial solution.

This is in particular the case for g(∥x∥, v) = |v|p−1v + e(∥x∥) (p > 1),

with e ∈ C[ρ, 1].

We can also deduce from Theorem 2 some Landesman-Lazer type re-

sults.
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Corollary 7. Let g ∈ C(R,R). Then problem

M(v) + g(v) = e(∥x∥) in Aρ,
∂v

∂ν
= 0 on ∂Aρ (26)

has a radial solution if either

lims→−∞g(s) <
N

1− ρN

∫ 1

ρ
rN−1e(r)dr < lims→+∞g(s) (27)

or

lims→+∞g(s) <
N

1− ρN

∫ 1

ρ
rN−1e(r)dr < lims→−∞g(s) (28)

For example, of g(v) = arctan v + sin v, the conditions become

1− π

2
<

N

1− ρN

∫ 1

ρ
rN−1e(r)dr <

π

2
− 1

Remark 1. Conditions (27) or (28) are sharp if either

lims→−∞g(s) < g(v) < lims→+∞g(s)

or

lims→+∞g(s) < g(v) < lims→−∞g(s) for all v ∈ R.

For example, if g(v) = ±ev, (26) has a radial solution if and only if∫ 1

ρ
rN−1e(r)dr ≷ 0.

5 Lower and upper solutions method for Neu-

mann boundary conditions

Let again ϕ : (−a, a) → R be an increasing homeomorphism such that

ϕ(0) = 0, ρ ∈ (0, 1), f ∈ C([ρ, 1]×R2,R) and let us consider the Neumann

problem

(rN−1ϕ(u′))′ = rN−1f(r, u, u′), u′(ρ) = ϕ−1(C), u′(1) = ϕ−1(D) (29)

where C,D ∈ R and ρ > 0.
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Definition 1. A lower solution for (29) is a function α ∈ C1 such that

∥α′∥∞ < a, rN−1ϕ(α′) ∈ C1,

α′(ρ) ≥ ϕ−1(C), α′(1) ≤ ϕ−1(D) (30)

and

(rN−1ϕ(α′(r)))′ ≥ rN−1f(r, α(r), α′(r)) for all r ∈ [ρ, 1]. (31)

An upper solution for (29) is a function β ∈ C1 such that

∥β′∥∞ < a, rN−1ϕ(β′) ∈ C1,

β′(ρ) ≤ ϕ−1(C), β′(1) ≥ ϕ−1(D) (32)

and

(rN−1ϕ(β′(r)))′ ≤ rN−1f(r, β(r), β′(r))) for all r ∈ [ρ, 1]. (33)

Theorem 3. The existence of a lower solution α and an upper solution

β for (29) implies the existence of a solution to (29).

Proof. We follow the ideas of [4]. One first proves the result when

α(r) ≤ β(r) for all r ∈ [ρ, 1] by the standard approach : introduction

of a modified problem outside [α, β], existence of the modified problem

using Corollary 5, and finally proof that any such solution lies in [α, β],

and solves the original problem. If α and β are unordered, we adapt

an argument introduced by Amann-Ambrosetti-Mancini [1] in semilinear

Dirichlet problems. If QNf (u)− N
1−ρN

(
D − ρN−1C

)
= 0 for some u ∈ C,

we are done. If QNf (u) − N
1−ρN

(
D − ρN−1C

)
< 0 (resp. > 0) on C,

one gets the existence of an upper (resp. lower) solution greater (resp.

smaller) than α (resp. β), and then apply the first part of the proof.

2
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Remark 2. No Nagumo-type growth condition with respect to u′ is re-

quired in Theorem 3.

Corollary 8. Problem

(rN−1ϕ(u′))′ = rN−1f(r, u, u′), u′(ρ) = 0 = u′(1)

has at least one solution if there exists A,B ∈ R such that

f(r,A, 0) · f(r,B, 0) ≤ 0 for all r ∈ [ρ, 1].

Proof. Take constant lower and upper solutions α = A and β = B.

2

We can apply the method of lower and upper solutions to get an exis-

tence result of the type introduced by Kazdan-Warner [8] for the Dirichlet

problem of an equation involving a second order elliptic operator.

Corollary 9. If f ∈ C([ρ, 1] × R,R) is such that f(r, ·) is either nonde-

creasing or nonincreasing for all r ∈ [ρ, 1], then problem

(rN−1ϕ(u′))′ = rN−1f(r, u), u′(ρ) = ϕ−1(C), u′(1) = ϕ−1(D) (34)

is solvable if and only if there exists c ∈ R such that∫ 1

ρ
rN−1f(r, c) dr = D − CρN−1 (35)

Corollary 10. If f ∈ C([ρ, 1]×R,R) is such that f(r, ·) is either nonde-

creasing or nonincreasing for all r ∈ [ρ, 1], then problem

M(v) = f(||x||, v) in Aρ, (36)

∂v

∂ν
=

C√
1 + C2

on ∂B0(ρ),
∂v

∂ν
=

D√
1 +D2

on ∂B0(1)

has a radial solution if and only if there exists c ∈ R such that (35) holds.
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Uniqueness holds if f(r, ·) is strictly monotone.

Example 1. For all p > 1,

M(v)± |v|p−1v+ = e(∥x∥) in Aρ,
∂v

∂ν
= 0 on ∂Aρ

has a radial solution if and only if
∫ 1
ρ r

N−1e(r) dr ≥ 0 (resp. ≤ 0).

References

[1] Amann, H.; Ambrosetti, A.; Mancini, G., Elliptic equations with noninvert-

ible Fredholm linear part and bounded nonlinearities, Math. Z. 158 (1978)

179-194.

[2] Bartnik, R.; Simon, L., Spacelike hypersurfaces with prescribed boundary

values and mean curvature, Comm. Math. Phys. 87 (1982-83), 131-152.

[3] Bereanu, C.; Jebelean, P.; Mawhin, J., Radial solutions for some nonlinear

problems involving mean curvature operators in Euclidian and Minkowski

spaces, Proc. Amer. Math. Soc. 137 (2009), 161-169.

[4] Bereanu, C.; Jebelean, P.; Mawhin, J., Radial solutions for Neumann prob-

lems involving mean curvature operators in Euclidian and Minkowski spaces,

Math. Nachr., to appear.

[5] Bereanu, C.; Jebelean, P.; Mawhin, J., Radial solutions for systems involving

mean curvature operators in Euclidian and Minkovski spaces, AIP Conf.

Proc., to appear.

[6] Bereanu, C.; Mawhin, J., Existence and multiplicity results for some nonlin-

ear problems with singular ϕ-laplacian, J. Differential Equations 243 (2007),

536-557.

[7] Bereanu, C.; Mawhin, J., Non-homogeneous boundary value problems for

some nonlinear equations with singular ϕ-laplacian, J. Math. Anal. Appl.

352 (2009), 218-233.

[8] Kazdan, J. L.; Warner, F. W., Remarks on some quasilinear elliptic equa-

tions, Comm. Pure Appl. Math. 28 (1975) 567-597.



Non-homogeneous boundary value problems for 65

[9] Serrin, J., On the definition and properties of certain variational integrals,

Trans. Amer. Math. Soc. 101 (1961), 139-167.

C. Bereanu P. Jebelean

Institute of Mathematics “Simion Stoilow” Department of Mathematics

Romanian Academy West University of Timişoara
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