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Multiplicity of Nontrivial Solutions to a

Problem Involving the Weighted

p-Biharmonic Operator

M. J. Alves * R. B. Assunção � P. C. Carrião

O. H. Miyagaki �
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Abstract

In this paper we prove the existence of three solutions to a prob-

lem involving the weighted p-biharmonic operator. The first and

second solutions are obtained as local minima using the Ekeland’s

Variational Principle and the third one is obtained by a variant of

the Mountain Pass Theorem.

1 Introduction

In this paper we study the following class of quasilinear elliptic problems

involving the p-biharmonic operator
∆(ρ(x)|∆u|p−2∆u) + g(x, u) = λ1h(x)|u|p−2u in Ω,

u = 0 = ∆u on ∂Ω,

(1.1)
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where 1 < p < ∞, Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth

boundary, ρ ∈ C(Ω̄,R) with infΩ̄ ρ(x) > 0. We also use the assumptions

(G1)

g : Ω× R → R is bounded continuous function satisfying g(x, 0) = 0,

and its primitive denoted by

(G2) G(x, s) =

∫ s

0
g(x, t)dt is assumed to be bounded.

Let X ≡ W 2,p(Ω)∩W 1,p
0 (Ω) be a Sobolev space endowed with the norm

given by

∥u∥ ≡
{∫

Ω
ρ|∆u|pdx

} 1
p

.

We define

λ1 = inf
N

{∫
Ω
ρ|∆u|pdx

}
,

where

N =

{
u ∈ X :

∫
Ω
h|u|pdx = 1

}
,

the first eigenvalue of the following weighted eigenvalue problem{
∆(ρ(x)|∆u|p−2∆u) = λ1h(x)|u|p−2u in Ω,

u = 0 = ∆u on ∂Ω,
(1.2)

where

(h)

h ∈ C(Ω̄,R), h ≥ 0 and h > 0 on a subset of Ω with positive measure.

We recall that by using a result by Talbi and Tsouli [18] (see also Drábek

and Ôtani [8]), we know that the first eigenvalue λ1 is simple, isolated

and positive. Moreover every eigenfunction ϕ1 associated with λ1 can be

chosen positive.

Here ∆(ρ(x)|∆u|p−2∆) denotes the operator of fourth order called the

p-biharmonic operator with weight. For p = 2 and ρ = 1, the operator

becomes the iterated Laplacian which have been studied by many authors.
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For example, Lazer and McKenna [13] have pointed out that this type of

nonlinearity furnishes a model for studying travelling waves in suspension

bridges. Since then, more nonlinear biharmonic equations, including the

p-biharmonic equations, have been studied. (See [14, 19].)

More exactly, this type of problem appears, for instance, in the study

of Hooke’s law of nonlinear elasticity. (See [4, 6] and references therein.)

While the p-biharmonic operator can be used to study a semilinear hamil-

tonian system of the form{
−∆u = vp in Ω, −∆v = uq in Ω,

u, v > 0 in Ω, u, v = 0 on ∂Ω,

where Ω is smooth bounded domain and p, q ≥ 1.

Formally, from the first equation we have

v = (−∆u)1/p

and substituting on the second equation, we get

−∆(| −∆u|1/p−1(−∆u)) = −∆(−∆u)1/p = uq, x ∈ Ω

u = ∆u = 0, x ∈ ∂Ω.

In this case, we are looking for solution in the Sobolev space W 2,(p+1)(Ω).

(See [7, 11]).

We define the energy functional I : X −→ R associated to problem

(1.1) by

I(u) ≡ 1

p

∫
Ω
ρ|∆u|pdx+

∫
Ω
G(x, u)dx− λ1

p

∫
Ω
h|u|pdx. (1.3)

Under assumptions G1 and G2, the functional I ∈ C1(Ω,R) and its Fréchet

derivative is given by

I ′(u) · v =

∫
Ω
ρ|∆u|p−2∆u∆vdx+

∫
Ω
g(x, u)vdx− λ1

∫
Ω
h|u|p−2uvdx. (1.4)

The main goal of this paper is to show the existence of multiple solutions

for problem (1.1). We were inspired by Gonçalves and Miyagaki [10] and
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also by Alves, Carrião and Miyagaki [3], in which problems involving the

laplacian and p-laplacian operators are studied, respectively. See also Ma

and Sanches [15].

We define

V = ⟨ϕ1⟩ and Z =

{
u ∈ X :

∫
R
hu|ϕ1|p−2ϕ1 = 0

}
.

Note that Z is a closed complementary subspace of V and therefore we

have the direct sum

X = V ⊕ Z.

We define

λ2 = inf
Z

{∫
Ω
ρ|∆u|pdx :

∫
Ω
h|u|pdx = 1

}
, (1.5)

which satisfies 0 < λ1 < λ2, and it follows that∫
Ω
h|w|pdx ≤ 1

λ2

∫
Ω
ρ|∆w|pdx, for all w ∈ Z. (1.6)

We impose the following

(G3) g(x, t) → 0 as |t| → ∞, for all x ∈ Ω.

(G4) G(x, t) ≥ λ1 − λ2

p
h(x)|t|p, for all x ∈ Ω and for all t ∈ R.

(G5) There exist δ > 0 and 0 < m < λ1 such that

G(x, t) ≥ m

p
h(x)|t|p, for all x ∈ Ω and for all |t| < δ.

We define

T (x) = lim inf
|t|→∞

G(x, t) and S(x) = lim sup
|t|→∞

G(x, t) for all x ∈ Ω.

(G6) There exist t−, t+ ∈ R with t− < 0 < t+ such that∫
Ω
G(x, t±)ϕ1dx ≤

∫
Ω
T (x)dx < 0
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and

(G7)

∫
Ω
S(x)dx ≤ 0.

Define the following subsets

C+ = {tϕ1 + z : t ≥ 0 and z ∈ Z} and C− = {tϕ1 + z : t ≤ 0 and z ∈ Z} .

We remark that ∂C+ = ∂C− = Z.

Now we state our main result.

Theorem 1.

(i) Under assumptions (h), (G1), (G2), (G4) and (G6), there exist u ∈ C+

and v ∈ C− solutions of problem (1.1) such that I(u) < 0 and I(v) < 0.

(ii) Under assumptions (h), (G1)–(G3), (G5)–(G7), problem (1.1) has a

solution w such that I(w) > 0.

The first and second solutions are obtained as local mimima of the

energy functional I. To do this, we use the Ekeland’s variational principle

in each of the subsets C+ and C−. The third solution is obtained by using

a variant of the Mountain Pass Theorem. In the last section we give an

example for Theorem 1.

2 Preliminary results

We begin by recalling that I : X → R is said to satisfy the Palais-Smale

condition at the level c ∈ R ((PS)c in short), if any sequence {un} ⊂ X

such that

I(un) → c and I ′(un) → 0 as n → ∞,

has a convergent subsequence in X.

Our first lemma is proved by adapting some arguments used by Anane

and Gossez [1] and by Alves, Carrião and Miyagaki [3].

Lemma 2. Assume the conditions (h), (G1) and (G2). Then the func-

tional I satisfies the (PS)c condition for all c <
∫
Ω T (x)dx.
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Proof. We will prove that the sequence {un} ⊂ X is bounded. Suppose,

on the contrary, that it is unbounded. Then, up to subsequence, we have

∥un∥ → ∞ as n → ∞.

Define

vn =
un
∥un∥

. (2.1)

Clearly ∥vn∥ = 1 and the sequence {vn} ⊂ X is bounded. Taking a

subsequence if necessary (still denoted in the same way) we obtain

vn ⇀ v weakly in X as n → ∞

and

vn → v in Ls(R), as n → ∞, for 1 ≤ s < p⋆ =
np

n− 2p
, (2.2)

and p⋆ = +∞, if n ≤ 2p.

We will show that v ̸= 0 and that there exists µ ∈ R such that

v(x) = µϕ1(x) for all x ∈ Ω.

We are going to consider only the case n > 2p, the other case is easier.

By definition of I and by the fact that ∆un = ∆vn∥un∥ we have

I ′(un) · un =

∫
Ω
ρ|∆un|pdx+

∫
Ω
g(x, un)undx− λ1

∫
Ω
h|un|pdx

= ∥un∥p
∫
Ω
ρ|∆vn|pdx+

∫
Ω
g(x, un)undx− λ1∥un∥p

∫
Ω
h|vn|pdx.

Choosing tn = ∥un∥, it follows that

I ′(un) · un
tpn

=

∫
Ω
ρ|∆vn|pdx+

1

tpn

∫
Ω
g(x, un)undx− λ1

∫
Ω
h|vn|pdx.(2.3)

We will denote the terms of the equality (2.3) by Ij (j = 1, 2, 3, 4), respec-

tively.

Claim 3.
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(a) limn→∞ I1 = 0,

(b) limn→∞ I3 = 0,

(c) limn→∞ I4 = λ1

∫
Ω h|v|pdx.

Proof. (a) From the fact that limn→∞ I ′(un) = 0 and since {un} ⊂ X is

unbounded we have the inequality∣∣∣∣I ′(un) · untpn

∣∣∣∣ ≤ ϵ
∥un∥
∥un∥p

= ϵ∥un∥1−p.

This implies that limn→∞ I1 = 0.

(b) By the condition (G1), the Hölder’s inequality, and (2.2) we get∣∣∣∣ 1tpn
∫
Ω
g(x, un)undx

∣∣∣∣ ≤ C

tpn

∫
Ω
|un|dx ≤ C

tpn

[∫
Ω
|un|pdx

] 1
p
[∫

Ω
1

p
p−1dx

] p−1
p

≤ M

tpn

[∫
Ω
|vn|p|tn|pdx

] 1
p

= Mt1−p
n

[∫
Ω
|vn|pdx

] 1
p

,

where C and M are positive constants. This implies that limn→∞ I3 = 0.

(c) Follows immediately from (2.2).

2

Using Claim 3 and (2.1) we obtain that v ̸= 0 because

lim
n→∞

[∫
Ω
ρ|∆vn|pdx− λ1

∫
Ω
h|vn|pdx

]
= 1− λ1

∫
Ω
h|v|pdx = 0.

Since vn ⇀ v weakly in X, as n → ∞, we have ∥v∥ ≤ lim infn→∞ ∥vn∥ =

1. Therefore

∥v∥ ≤ 1 (2.4)

and we conclude that v is an eigenfunction associated to the simple eigen-

value λ1. Hence, there exists µ ∈ R, µ ̸= 0, such that

v(x) = µϕ1(x) for all x ∈ Ω. (2.5)

In particular, by (2.1) we conclude that

lim
n→∞

vn(x) = lim
n→∞

un
∥un∥

= v(x) = µϕ1(x), for all x ∈ Ω.
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But µϕ1(x) ̸= 0, then vn(x) ̸= 0 and this implies that

lim
n→∞

|un(x)| = lim
n→∞

∥un(x)∥vn(x) = ∞, for all x ∈ Ω. (2.6)

Using Fatou’s Lemma, we have that

lim inf
n→∞

∫
Ω
G(x, un(x))dx ≥

∫
Ω
lim inf
n→∞

G(x, un(x))dx ≥
∫
Ω
T (x)dx. (2.7)

By definition of λ1 we conclude that∫
Ω
ρ|∆un|pdx− λ1

∫
Ω
h|un|pdx ≥ 0 (2.8)

and hence

c+ on(1) = I(un) ≥
∫
Ω
G(x, un(x))dx. (2.9)

Since limn→∞ |un(x)| = ∞, by (G2) it follows that

c ≥
∫
Ω
T (x)dx,

which contradicts the hypothesis of the Lemma. Hence the sequence

{un} ⊂ X is bounded.

We claim that limn→∞ un = u ∈ X. In fact, consider

I ′(un) · (un − u) =

∫
Ω
ρ|∆un|p−2∆un∆(un − u)dx+

∫
Ω
g(x, un)(un − u)dx

−λ1

∫
Ω
h|un|p−2un(un − u)dx.

Since the sequence {un − u} ⊂ X is bounded and limn→∞ I ′(un) = 0, we

have

lim
n→∞

I ′(un) · (un − u) = 0. (2.10)

Using (G2), the facts that un → u in Ls(R) (for 1 ≤ s < p⋆) and that

un → u a. e. on Ω as n → ∞, as well as the Dominated Convergence

Theorem we obtain

lim
n→∞

∫
Ω
g(x, un)(un − u)dx = 0. (2.11)
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and

lim
n→∞

λ1

∫
Ω
h|un|p−2un(un − u)dx = 0. (2.12)

It follows from (2.10), (2.11) and (2.12) that

0 = lim
n→∞

[∫
Ω
ρ|∆un|p−2∆un∆(un − u)dx

]
. (2.13)

Since |∆u|p−2∆u ∈ L
p

p−1 (R), ρ∆(un − u) ∈ Lp(R), by a result in [12,

Theorem 13.44] we conclude that

lim
n→∞

∫
Ω
ρ|∆u|p−2∆u∆(un − u)dx = 0, (2.14)

where we are assuming that

∆un −→ ∆u, a.e., as n → ∞.

The above affirmative can be proved arguing as in [5] (see also Alves,

Carrião and Miyagaki in[2] for the case in dimension 1), together with the

inequalities

[
|x|p−2x− |y|p−2y

]
(x− y) ≥


Cp

|x− y|2

(|x|+ |y|)2−p
if 1 < p < 2

Cp|x− y|p if p ≥ 2, ∀x, y ∈ RN ,

(for the proof, see [16, 17]).

Now, by using again the above inequality, we obtain by (2.13) and (2.14)

0 = lim
n→∞

∫
Ω

[
|∆un|p−2∆un − |∆u|p−2∆u

]
ρ∆(un − u)dx

≥


Cp lim

n→∞

∫
Ω
ρ

|∆un −∆u|2

(|∆un|+ |∆u|)2−p
dx if 1 < p < 2

Cp lim
n→∞

∫
Ω
ρ|∆un −∆u|pdx if p ≥ 2.

(2.15)

If p ≥ 2, we have that

lim
n→∞

∫
Ω
ρ|∆un −∆u|pdx ≤ 0.
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If 1 < p < 2, by Hölder’s inequality it follows that∫
Ω
ρ|∆un −∆u|pdx

≤
[∫

Ω
ρ

|∆un −∆u|2

(|∆un|+ |∆u|)2−p
dx

] p
2
[∫

Ω
ρ(|∆un|+ |∆u|)pdx

] 2−p
2

≤ C

[∫
Ω
ρ

|∆un −∆u|2

(|∆un|+ |∆u|)2−p
dx

] p
2

.

By (2.15) and the previous inequality it follows that

0 ≥ Cp lim
n→∞

∫
Ω
ρ

|∆un −∆u|2

(|∆un|+ |∆u|)2−p
dx ≥ CpC

−1

[
lim
n→∞

∫
Ω
ρ|∆un −∆u|pdx

] 2
p

.

Therefore, in both cases we have

lim
n→∞

∥un − u∥ = 0 in X

and this concludes the proof of the Lemma.

2
Lemma 4. Assume the conditions (h), (G2) and (G6). Then the func-

tional I is bounded from below on X and infC± I is negative on C+ and

on C−.

Proof. Let u ∈ X; by condition G2, we have
∣∣∫

ΩG(x, u)dx
∣∣ ≤ C. Hence,

by the definition of λ1 we get

|I(u)| ≥
∫
Ω
G(x, u)dx ≥ −C

and I is bounded from below on X.

Using condition (G6) and the eigenfunction ϕ1 associated to the eigen-

value λ1 we obtain

I(t±ϕ1) =

∫
Ω
G(x, t±ϕ1)dx ≤

∫
Ω
T (x) < 0. (2.16)

If u ∈ C+, we have that I(u) = I(tϕ1 + z). In particular, consider t = t+

and z = 0; by inequality (2.16), we obtain that I(t+ϕ1) < 0. Similarly, we
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have I(t−ϕ1) < 0. Hence infC± I(t±ϕ1) < 0. This concludes the proof of

the lemma.

2

Now we show that the energy functional I verifies the geometry of the

Mountain Pass Theorem.

Lemma 5. The energy functional I verifies the following properties.

(a) I(0) = 0.

(b) There exist positive constants ρ and R such that I(u) ≥ ρ > 0 if ∥u∥ =

R.

(c) There exists z ∈ X such that I(z) < 0 = I(0) if ∥z∥ > R.

Proof. The proof of the item (a) is immediate.

Since G is bounded and continuous, there exist θ ∈ R (with p < θ < p∗)

and a constant C such that

G(x, t) ≥ m

p
h(x)|t|p − C|t|θ, for all |t| > δ,

where δ is given by (G5). Therefore, by (G5) we conclude that

G(x, t) ≥ m

p
h(x)|t|p − C|t|θ, for all |t| ∈ R, p < θ < p⋆ and for all x ∈ Ω.

(2.17)

By the previous inequality we have

I(u) ≥ 1

p

∫
Ω
ρ|∆u|pdx+

∫
Ω

[
m

p
h(x)|u|p − C|u|θ

]
dx− λ1

p

∫
Ω
h|u|pdx.

We recall that the embedding W 1,p(R) ↪→ Ls(R) is continuous for 1 <

p < s ≤ p⋆ and compact for s < p⋆ and

λ1 ≤

∫
Ω
ρ|∆u|pdx∫

Ω
h|u|pdx

.

Then, for p < θ < p∗ we have

I(u) ≥ 1

p

∫
Ω
ρ|∆u|pdx−

[
λ1 −m

p

]
1

λ1

∫
Ω
ρ|∆u|pdx− C

∫
Ω
|u|θdx

≥ m

pλ1
∥u∥ − µ∥u∥θ.
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Since

I(u) ≥ m

pλ1
∥u∥+ o(∥u∥), as ∥u∥ → ∞,

we can find R > 0 small enough and ρ > 0 such that if ∥u∥ ≤ R, then

I(u) ≥ 0 and if ∥u∥ = R, then I(u) ≥ ρ > 0. As a result, item (b) is

proved.

To prove item (c), it is sufficient to remark that by (G6) we con-

clude that I(t±ϕ1) < 0. Then we define z ≡ t+ϕ1 and we get ∥z∥ =∫
Ω ρ|∆(t+ϕ1)|pdx = t+∥ϕ1∥ ≡ R1. Note that R1 > R and it follows that

∥z∥ > R and I(z) < 0. This concludes the proof of item (c).

2
3 Proof of Theorem 1

To prove item (i) we use inequality (2.16) to obtain

inf
C±

I(u) ≤ I(t±ϕ1) =

∫
Ω
G(x, t±ϕ1)dx ≤

∫
Ω
T (x) < 0.

If infC± I(u) = I(t±ϕ1), then it is enough to take u = t+ϕ1 and v = t−ϕ1

to get two solutions such that I(u) < 0 and I(v) < 0.

Otherwise, if infC± I(u) < I(t±ϕ1) then we have

inf
C±

I(u) <

∫
Ω
T (x). (3.1)

By Lemma 4, the functional I is bounded from below on X and it is

easy to prove that I is lower semicontinuous in X. Hence, the Ekeland’s

Variational Principle guarantees the existence of two sequences un ⊂ C+

and vn ⊂ C− satisfying

I(un) → inf
C+

I(u) and I ′(un) → 0,

and

I(vn) → inf
C+

I(v) and I ′(vn) → 0.

as n → ∞. By (3.1) and by Lemma 2, there exist u and v such that

un → u and vn → v in X
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as n → ∞. Therefore, u and v are solutions of problem 1.1 verifying

I(u) = inf
C+

I(z) < 0 and I(v) = inf
C−

I(z) < 0.

Moreover, it follows from assumption (G4) and from inequality (1.6)

that

I(z) ≥ 1

p

∫
Ω
ρ|∆u|pdx− λ2

p

∫
Ω
h|z|pdx ≥ 0, for all z ∈ Z.

Then I(z) ≥ 0 for all z ∈ Z and Lemma 2 implies that the infimum of I

on C± is achieved in C±\Z. Therefore u ∈ C+ and v ∈ C−.

To prove item (ii) we use Lemma 5 and a variant of the Mountain Pass

Theorem without the Palais-Smale condition. (See [9, Theorem 6].) Then

there exists a sequence {wn} ⊂ X such that

I(wn) → c1 > ρ > 0 and ∥I ′(wn)∥X∗(1 + ∥wn∥) → 0 in X∗ as n → ∞. (3.2)

Arguing as in the prove of Lemma 2, we choose tn = ∥wn∥ to obtain∣∣∣∣I ′(un) · wn

tpn

∣∣∣∣ ≤ ∥I ′(wn)∥X∗(1 + ∥wn∥)
tpn

→ 0, as n → ∞.

If the sequence {wn} ⊂ X is unbounded, then

|wn(x)| → 0, as n → ∞, for all x ∈ Ω.

Since ∣∣I ′(wn) · wn

∣∣ ≤ ∥I ′(wn)∥X∗(1 + ∥wn∥),

by (3.2) we obtain that∣∣I ′(wn) · wn

∣∣ → 0 as n → ∞

and hence

o(1) = I ′(wn) · wn = ∥wn∥p +
∫
Ω
g(x,wn)wndx− λ1

∫
Ω
h|wn|pdx.

By (2.8) we conclude that

0 ≤ ∥wn∥p−λ1

∫
Ω
h|wn|pdx = −

∫
Ω
g(x,wn)wndx+o(1) ≤

∣∣∣∣∫
Ω
g(x,wn)wndx

∣∣∣∣+o(1)
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By (G1) and (G3), the function g(x,wn(x))wn(x) is bounded for all

x ∈ Ω and for all n. By (2.6), g(x,wn(x))wn(x) → 0 as n → ∞ a. e. on Ω.

Using the Dominated Convergence Theorem we obtain
∫
Ω g(x,wn)wndx →

0, as n → ∞.

Then

∥wn∥p − λ1

∫
Ω
h|wn|pdx → 0, as n → ∞.

Since

c1 + o(1) = I(wn) =
1

p

[
∥wn∥p −

λ1

p

∫
Ω
h|wn|pdx

]
+

∫
Ω
G(x,wn)dx,

using Fatou’s Lemma, together with (2.6) and (G7), we obtain

c1 ≤ lim sup
n→∞

∫
Ω
G(x,wn)dx ≤

∫
Ω
S(x)dx ≤ 0,

which contradicts (3.2). Hence the sequence {wn} ⊂ X is bounded and,

passing to a subsequence if necessary (still denoted in the same way), there

exists w ∈ X such that

wn ⇀ w in X, as n → ∞.

We also have ∥I ′(wn)∥X∗(1 + ∥wn∥) → 0 as n → ∞, it follows that

∥I ′(wn)∥X∗ → 0, in X∗ as n → ∞ and by a similar argument as

that of Lemma 2 we conclude that

wn → w, in X as n → ∞

and the Theorem is proved.

2
4 Example

In this section, inspired by [3], we will define a function g that satisfies

the assumptions (G1)− (G7).

Consider Ω = (0, 1), p = 2 and h = 1. In this case, the function ϕ1(x) =

sin(πx) is an eigenfunction associated to the first eigenvalue λ1 = π4 of
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problem (1.1). We remark that ϕ1 is symmetric with respect to x = 1
2 .

Let g : Ω× R → R be defined by

g(x, s) = R(x)g1(x)

where R(x) = 1 and g1 : R → R is given by

g1(s) =



s, for 0 ≤ s ≤ 1,

2− s, for 1 < s ≤ 5,

s− 8, for 5 < s ≤ 8 +
√
30
2 ,

8 +
√
30− s, for 8 +

√
30
2 < s ≤ 8 +

√
30,

0, for s ≥ 8 +
√
30,

−g(−s), for s ≤ 0,

Defining G1(s) =

∫ s

0
g1(t)dt) we have

G(x, s) =

∫ s

0
g(x, t)dt = R(x)G1(s) and S(x) = T (x) = −R(x)

2
.

Choosing δ < 1 it is easy to see that g verifies the assumptions (G1)−(G5)

and (G7).

Now we have to prove that g also verifies (G6), for t
+ = 8 and t− = −8.

Since ϕ1 is symmetric with respect to x = 1
2 , the same is true for G. Then

we have G(x, 8ϕ1(x)) = G(1− x, 8ϕ1(1− x)) and∫ 1

0
G(x, 8ϕ1(x))dx = 2

∫ 1
2

0
G(x, 8ϕ1(x))dx =

∫ 1
2

0
G1(8ϕ1(x))dx

= 2

[∫ 1
6

0
G1(8ϕ1(x))dx+

∫ 1
3

1
6

G1(8ϕ1(x))dx+

∫ 1
2

1
3

G1(8ϕ1(x))dx

]
.
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Note that for 0 ≤ x ≤ 1
6 we have that 0 ≤ 8 sin(πx) ≤ 4. Then we have

max
x∈[0, 1

6
]
G1(8ϕ1(x)) = max

y∈[0,4]
G1(y) = G1(2).

Similarly,

max
x∈[ 1

6
, 1
3
]
G1(8ϕ1(x)) = max

y∈[4,4
√
3]
G1(y) = G1(4)

and

max
x∈[ 1

3
, 1
2
]
G1(8ϕ1(x)) = max

y∈[4
√
3,8]

G1(y) = G1(4
√
3) < G1(6).

Therefore,∫ 1

0
G(x, 8ϕ1(x))dx = 2

∫ 1
2

0
G(x, 8ϕ1(x))dx =

∫ 1
2

0
G1(8ϕ1(x))dx

≤ 2

[∫ 1
6

0
G1(2)dx+

∫ 1
3

1
6

G1(4)dx+

∫ 1
2

1
3

G1(6)dx

]
<

∫ 1

0
T (x)dx < 0.

Similarly, we can prove that G satisfies (G6) for t
− = −8.
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