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Abstract

In this paper we prove the existence of three solutions to a prob-
lem involving the weighted p-biharmonic operator. The first and
second solutions are obtained as local minima using the Ekeland’s
Variational Principle and the third one is obtained by a variant of

the Mountain Pass Theorem.

1 Introduction

In this paper we study the following class of quasilinear elliptic problems

involving the p-biharmonic operator
A(p(z)|AulP~2Au) + g(z,u) = A h(z)|[ulP~2u in Q,

(1.1)
u=0=Au on 052,
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where 1 < p < 0o, @ C R" (n > 1) is a bounded domain with smooth
boundary, p € C(Q, R) with infg p(x) > 0. We also use the assumptions

(G1)
g: Q2 xR — Ris bounded continuous function satisfying g(z,0) = 0,

and its primitive denoted by

(G2) G(z,s) = / g(x,t)dt is assumed to be bounded.
0

Let X = W2P(Q)N VVO1 P(Q) be a Sobolev space endowed with the norm

given by
1
full={ [ siaupa}”.
Q
We define
A1 = inf {/ p|Au|pdaz} )
N Q
where

N:{ueX: /h]u\pd:czl},
Q

the first eigenvalue of the following weighted eigenvalue problem

{ Ap(z)|AuP~2Au) = Mh(z)|uP~2u  in Q, 12)

u=0=Au on 0f2,

where

(h)

h € C(,R), h>0and h > 0 on a subset of  with positive measure.

We recall that by using a result by Talbi and Tsouli [18] (see also Dréabek
and Otani [8]), we know that the first eigenvalue \; is simple, isolated
and positive. Moreover every eigenfunction ¢; associated with A; can be
chosen positive.

Here A(p(z)|AulP~2A) denotes the operator of fourth order called the
p-biharmonic operator with weight. For p = 2 and p = 1, the operator

becomes the iterated Laplacian which have been studied by many authors.



Weighted p-biharmonic operator 13

For example, Lazer and McKenna [13] have pointed out that this type of
nonlinearity furnishes a model for studying travelling waves in suspension
bridges. Since then, more nonlinear biharmonic equations, including the
p-biharmonic equations, have been studied. (See [14, 19].)

More exactly, this type of problem appears, for instance, in the study
of Hooke’s law of nonlinear elasticity. (See [4, 6] and references therein.)
While the p-biharmonic operator can be used to study a semilinear hamil-

tonian system of the form
—Au=vP in €, —Av=u? in £,
u,v >0 in €, u,v =0 on 099,
where 2 is smooth bounded domain and p,q > 1.
Formally, from the first equation we have
v = (—Au)l/P
and substituting on the second equation, we get

—A(] = Au|'PH=Aw)) = —A(=Au)P = u, z €N
u=Au=0, x € 0N.

In this case, we are looking for solution in the Sobolev space W2 P+ (Q).
(See [7, 11]).
We define the energy functional I : X — R associated to problem
(1.1) by
1 Al
I(u) = - | p|lAu|Pdz+ | G(z,u)de — — [ hlu|Pdz. (1.3)
P Ja Q p Ja

Under assumptions G and G, the functional I € C!'(Q, R) and its Fréchet

derivative is given by
I'(u) - v= / p|Au]p2AuAvda:+/ g(w,u)vdw—)\l/ h|ulP~2uvdz. (1.4)
Q Q Q

The main goal of this paper is to show the existence of multiple solutions

for problem (1.1). We were inspired by Gongalves and Miyagaki [10] and
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also by Alves, Carridao and Miyagaki [3], in which problems involving the
laplacian and p-laplacian operators are studied, respectively. See also Ma
and Sanches [15].

We define

V = (¢1) and Z = {UEX: /Rhu|¢1\p_2¢1 :0}.

Note that Z is a closed complementary subspace of V' and therefore we
have the direct sum
X=Va.Z

A2 = inf {/ plAulPdz: / hlulPdz = 1} , (1.5)
Z UJa Q

which satisfies 0 < A1 < A2, and it follows that

We define

1
/ hlw|Pdx < / plAw|Pdz, for allw € Z. (1.6)
Q A2 Ja
We impose the following

(G3) g(x,t) — 0 as |t| — oo, for all z € Q.

A1 — A2

(Ga) G(z,t) > h(x)|t|P, for all z € 2 and for all t € R.

(G5) There exist 6 > 0 and 0 < m < A; such that

G(z,t) > Zh(z)[t]P, for all z € Q and for all |¢| < 6.
p

We define
T(z) = liminf G(z,t) and S(x) = limsup G(z, t) for all z € Q.
[t[—o00 [t|—o00
(Gs) There exist t~,tT € R with t~ < 0 < ¢t such that

/QG(x,ti)gbldx < /QT(:c)d:L‘ <0
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and
(G7) /QS(x)dx <0.

Define the following subsets
Ct={tp1+2: t>0and z€ Z} and C~ = {t¢1 +2: t<0and z € Z}.

We remark that 0Ct =90C— = Z.
Now we state our main result.

Theorem 1.

(i) Under assumptions (h), (G1), (G2), (G4) and (Gg), there exist u € CF
and v € C~ solutions of problem (1.1) such that I(u) < 0 and I(v) < 0.

(1) Under assumptions (h), (G1)—(Gs3), (G5)—(G7), problem (1.1) has a
solution w such that I(w) > 0.

The first and second solutions are obtained as local mimima of the
energy functional I. To do this, we use the Ekeland’s variational principle
in each of the subsets C* and C'~. The third solution is obtained by using
a variant of the Mountain Pass Theorem. In the last section we give an

example for Theorem 1.

2 Preliminary results

We begin by recalling that I : X — R is said to satisfy the Palais-Smale
condition at the level ¢ € R ((PS). in short), if any sequence {u,} C X
such that

I(uy) — ¢ and I'(uy) — 0asn — oo,

has a convergent subsequence in X.

Our first lemma is proved by adapting some arguments used by Anane
and Gossez [1] and by Alves, Carriao and Miyagaki [3].
Lemma 2. Assume the conditions (h), (G1) and (G2). Then the func-
tional I satisfies the (PS). condition for all ¢ < [, T(x)dz.
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Proof. We will prove that the sequence {u,} C X is bounded. Suppose,

on the contrary, that it is unbounded. Then, up to subsequence, we have
||tn|| — 00 as n — oo.

Define
Un

el

Clearly ||v,|| = 1 and the sequence {v,} C X is bounded. Taking a

(2.1)

Un

subsequence if necessary (still denoted in the same way) we obtain
v, — v weakly in X asn — oo

and

v, — v in L*(R), asn — oo, for 1 < s < p* = np2 , (2.2)
n—ap

and p* = 400, if n < 2p.
We will show that v # 0 and that there exists u € R such that
v(z) = pgy(x) for all x € Q.

We are going to consider only the case n > 2p, the other case is easier.
By definition of I and by the fact that Au, = Av,||u,| we have

I'(up) -up = /p\Aun\pdm—i-/g(m,un)undac—)q/h]un]pdx
) Q Q

_ ||un||p/pAvn]pd:L‘+/g(x,un)und:n—)\lHuan/h|vn|pdzc.
Q Q Q

Choosing t, = ||uy||, it follows that

I'(uy,) - up

1
7 = /p|Avn\pdx+p/g(x,un)undw—/\l/h|vn\pdw.(2.3)
tn Q tn Jo Q

We will denote the terms of the equality (2.3) by I; (j = 1,2, 3,4), respec-
tively.

Claim 3.
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(a) im0 I1 =0,
(b) limy, 00 I3 = 0,
(c) limy oo Is = N1 fQ hlv|Pdz.

Proof. (a) From the fact that lim,,o I'(uy,) = 0 and since {u,} C X is

unbounded we have the inequality

I'(up) - up
th

[[wanl
<e€
[[wn|?

= el

This implies that lim,, .~ I1 = 0.
(b) By the condition (G1), the Holder’s inequality, and (2.2) we get

p—1

1
< Cp’/ ‘un‘dl' < gp |:/ |un|pdx:|p |:/ 11’pld33:| ’

1 1
M P P
< 5 [/ vn|p|tn|pdx] - MtLl=p [/ |vn|pd1} ’ ,
tn Q Q

where C' and M are positive constants. This implies that lim,,_,o I3 = 0.

1
th

/ g(z, up)upde
Q

(¢) Follows immediately from (2.2).
O

Using Claim 3 and (2.1) we obtain that v # 0 because

lim [/ p|Av, |Pdx — /\1/ h|vn|pd4 =1- )\1/ hlv|Pdx = 0.

Since v, — v weakly in X, as n — oo, we have ||v|| < liminf,, ||vn| =
1. Therefore
ol <1 (2.4)

and we conclude that v is an eigenfunction associated to the simple eigen-

value A1. Hence, there exists u € R, p # 0, such that
v(z) = pg1(zx) for all x € . (2.5)

In particular, by (2.1) we conclude that

Un

lim v, (x) = lim =v(z) = ppi(x), for all x € Q.

n—»0o n—»0o0 ||un||
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But pegi(x) # 0, then v,(z) # 0 and this implies that

li_>m lun ()| = 1i_>m lun () ||on(z) = 0o, for all z € Q. (2.6)

Using Fatou’s Lemma, we have that

liminf/QG(x,un(x))de/QliminfG(x,un(a:))dazz/QT(:E)dx. (2.7)

n—o0 n—o0

By definition of A\; we conclude that

/ plAuy, |Pdx — )\1/ hluy|[Pdz > 0 (2.8)
Q Q

and hence
¢+ on(1) = I(un) > /Q G, un () da. (2.9)

Since limy, o0 |un ()| = 00, by (G2) it follows that

c> /Q T(z)dz,

which contradicts the hypothesis of the Lemma. Hence the sequence
{un} C X is bounded.

We claim that lim,, o u, = u € X. In fact, consider

I'(up) - (up —u) = /Qp|Aun|p_2AunA(un —u)dz + /Qg(:c,un)(un —u)dx

—)\1/ Rt |P ™2t (U, — w)dez.
Q

Since the sequence {u, —u} C X is bounded and lim, o I'(u,) = 0, we

have
lim I'(up) - (uy, —u) = 0. (2.10)

n—oo
Using (G2), the facts that u, — u in L5(R) (for 1 < s < p*) and that
Uy — w a. e. on £) as n — oo, as well as the Dominated Convergence
Theorem we obtain

lim [ g(x,un)(u, —u)dx =0. (2.11)

n—oo Q
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and
lim Ay / R tn P2t (U, — w)dz = 0. (2.12)
Q

n—o0

It follows from (2.10), (2.11) and (2.12) that

0 = lim [/ Pl AU P2 Ay AUy, — u)da| . (2.13)
Q

n—oo

Since |AulP~2Au € Lﬁ(R), pA(u, —u) € LP(R), by a result in [12,
Theorem 13.44] we conclude that

lim [ p|AulP?2Aul(u, — u)dz = 0, (2.14)
Q

n—o0

where we are assuming that
Au, — Au, a.e., as n — oo.

The above affirmative can be proved arguing as in [5] (see also Alves,
Carriao and Miyagaki in[2] for the case in dimension 1), together with the
inequalities

|z —yf?

I i 1<p<?2
P (| + [y[)>P

[|z[P~2z — [y 2y] (z —y) >
Cp‘x_y‘p if p227 vx7y€]R]V7

(for the proof, see [16, 17]).
Now, by using again the above inequality, we obtain by (2.13) and (2.14)

0 = le [|Aun|p72Aun - ]Au|p72Au] pA(u, —u)dx
n—oo [¢)
. | Auy, — Aul? _
C, lim [ p dr if 1<p<?2
> Pnsoo Jo o (|Auy| + [ Aul)>7P (2.15)
Cp lim / plAu, — AulPdx if p>2.
n—oo [¢)

If p > 2, we have that

lim [ p|Au, — AulPdz < 0.
Q

n—oo
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If 1 < p < 2, by Hélder’s inequality it follows that

/ p|Auy, — AulPdz
Q

2—p

p
‘Aun—AuP 2 / =
= d Au, AulPd
B Vap(lAun|+|Au|)2p v Qp(l Un| + |Au|)Pdz
p
’Aun_AUF :|2
<C d
- [/Qp(‘AUn‘ + |Au|)?=P r

By (2.15) and the previous inequality it follows that

) |Aw, — Aul?
0>, 1
= P 5% S P ([ Aun| + |Aul)2—P

n—oo

2
dx > C,C™* [lim / plAuy, — Au|pdaz] .
Q

Therefore, in both cases we have
lim |u, —ul| =0in X
n—oo

and this concludes the proof of the Lemma.

O
Lemma 4. Assume the conditions (h), (G2) and (Gg). Then the func-

tional I is bounded from below on X and info+ I is negative on CT and
on C~.

Proof. Let u € X; by condition G2, we have ‘fQ G(z, u)dx‘ < C. Hence,
by the definition of \; we get

|I(u)| > /QG(:z:,u)dx >-C

and I is bounded from below on X.
Using condition (Gg) and the eigenfunction ¢ associated to the eigen-

value A1 we obtain

I(tEey) = /Q Gla, £y )dar < /Q T(z) < 0. (2.16)

If u € C*, we have that I(u) = I(t¢1 + 2). In particular, consider ¢ = ¢+
and z = 0; by inequality (2.16), we obtain that I(t"¢1) < 0. Similarly, we
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have I(t~¢1) < 0. Hence info+ I(tF¢1) < 0. This concludes the proof of
the lemma.
O

Now we show that the energy functional I verifies the geometry of the

Mountain Pass Theorem.
Lemma 5. The energy functional I verifies the following properties.

(a) I(0) =0.
(b) There exist positive constants p and R such that I(u) > p > 0 if ||u]| =
R.

(¢) There exists z € X such that I(z) < 0= 1(0) if ||z|| > R.

Proof. The proof of the item (a) is immediate.
Since G is bounded and continuous, there exist § € R (with p < 6 < p*)

and a constant C' such that
Gz, t) > Zh(@)[t]P — Ct)?, for all |¢| > 6,
p
where ¢ is given by (Gs). Therefore, by (G5) we conclude that

G(a,t) > %h(x)|t|p —Ot)?, for all [t| € R, p < 6 < p* and for all z € Q.
(2.17)

By the previous inequality we have
1 A

I(u) > / p|Au|Pdz —|—/ [mh(xﬂu]p - C|u|9} dx — 1/ hluPdx.
P Ja QlLp P Ja

We recall that the embedding WHP(R) < L*(R) is continuous for 1 <
p < s < p* and compact for s < p* and

/ p|lAulPdx
Q

/ hluPdx
Q
Then, for p < 8 < p* we have

I(u) > 1/p|Au]pdx [Al_m} 1/ |Au]pdxC/ ul®dz
PJa p A Ja Q

m P
—||u|| — pf|ul]”.
A [ull = pl[u]

A1 <

v
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Since

m
I(u) 2 —=|lull + o([[ull), as [lull = oo,
PAL

we can find R > 0 small enough and p > 0 such that if ||u| < R, then
I(u) > 0 and if ||u|| = R, then I(u) > p > 0. As a result, item (b) is
proved.

To prove item (c), it is sufficient to remark that by (Gg) we con-
clude that I(t*¢1) < 0. Then we define z = tT¢; and we get ||z|| =
Jo PIA(tT¢1)[Pdz = t1||¢1|| = Ri. Note that Ry > R and it follows that
|z|| > R and I(z) < 0. This concludes the proof of item (c).

O

3 Proof of Theorem 1

To prove item (i) we use inequality (2.16) to obtain

inf I (u) g[(tiqﬁl)_/Q(;(x,tiqﬁl)dxg/QT(x) < 0.

o+
If inf e I(u) = I(tT¢1), then it is enough to take u = tT¢; and v =t~ ¢
to get two solutions such that I(u) < 0 and I(v) < 0.
Otherwise, if info+ I(u) < I(t*¢;) then we have

inf 7(u) < /Q T(z). (3.1)

By Lemma 4, the functional I is bounded from below on X and it is
easy to prove that I is lower semicontinuous in X. Hence, the Ekeland’s
Variational Principle guarantees the existence of two sequences u, C C*

and v, C C~ satistying

I(uy) — inf I'(u) and I'(uy) — 0,

Cc+

and
I(v,) — glf[(v) and  I'(v,) — 0.

as n — oo. By (3.1) and by Lemma 2, there exist u and v such that

Up — U and vy, — v in X
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as n — 0o. Therefore, u and v are solutions of problem 1.1 verifying
I(u) =infI(z) < 0 and I(v) =infI(z) < 0.
(w) = inf I() < 0 and T(v) = inf 1(2)

Moreover, it follows from assumption (G4) and from inequality (1.6)
that

1 A
I(z) > / plAulPdr — 2/ hlz[Pdx > 0, for all z € Z.
P Ja D Ja

Then I(z) > 0 for all z € Z and Lemma 2 implies that the infimum of
on C* is achieved in C*\Z. Therefore u € C+ and v € C~.

To prove item (i7) we use Lemma 5 and a variant of the Mountain Pass
Theorem without the Palais-Smale condition. (See [9, Theorem 6].) Then

there exists a sequence {w,} C X such that
I(wp) = 1 >p>0 and ||[I'(wy)||x+(1+ [[wy]) = 0 in X* as n — oco. (3.2)

Arguing as in the prove of Lemma 2, we choose t,, = ||w,|| to obtain

'I/(un) * W < HI/(wn)HX*(l + HwnH)

B < P — 0, as n — oo.
tn tn

If the sequence {w,} C X is unbounded, then
|wp(z)] — 0, as n — oo, for all x € Q.

Since
[ (wn) - wn| < ' (wn) [lx (1 + [lwnl]),

by (3.2) we obtain that
[T (wn) - wn| — 0 as n — oo
and hence
o(1) = I'(wp) - wn = ||wn||p+/ﬂg(ﬂfvwn)wnd$ - )‘l/Qh‘wn|pdx'
By (2.8) we conclude that

0< |wn||p—)\1/ h|wy, [Pdx = —/ g(z, wp)wypdr+o(l) < +o(1)
Q Q

/ g(z, wp)wpdz
Q
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By (G1) and (G3), the function g(x,w,(z))wy(z) is bounded for all
x € Qand for all n. By (2.6), g(x, w,(x))wy,(x) — 0asn — oo a. e. on .
Using the Dominated Convergence Theorem we obtain [, g(z, w,)wpdz —
0, as n — oo.

Then
|wn|/P — A1 /Q hlw,[Pdx — 0, as n — oc.

Since
c1+o(l) =I(wy) = 1 [|wn||p - / h|wn|pdaz} +/ G(x,wy)dz,
p b Ja Q

using Fatou’s Lemma, together with (2.6) and (G7), we obtain

c < limsup/ G(x,wy)dx < / S(z)dx <0,
Q Q

n—oo

which contradicts (3.2). Hence the sequence {wy,} C X is bounded and,
passing to a subsequence if necessary (still denoted in the same way), there

exists w € X such that
wy, = w in X, asn — oo.

We also have ||I'(wy)|x+(1 + |[wn]]) — 0 as n — oo, it follows that
II'(wy)||x+ — 0, in X* as n — oo and by a similar argument as

that of Lemma 2 we conclude that

wy, > w, in X asn— oo
and the Theorem is proved.
4 Example

In this section, inspired by [3], we will define a function ¢ that satisfies
the assumptions (G1) — (G7).
Consider Q = (0,1), p =2 and h = 1. In this case, the function ¢;(x) =

sin(mz) is an eigenfunction associated to the first eigenvalue \; = 74 of
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problem (1.1). We remark that ¢; is symmetric with respect to x = %
Let g : 2 x R — R be defined by

9(z,s) = R(x)g1(x)
where R(z) =1 and g1 : R — R is given by

s, for 0 <s<1,

2—s, for 1 <s<5,

s — 8, for 5<s§8+@,
8+\/%—8, for 8+@<s§8+\/ﬁ,
0, for s> 8+ /30,

—g(—s), for s <0,

Defining G1(s) = / g1(t)dt) we have
0

Gz, s) = /0 oo t)dt = R@)Ga(s)  and  S(z) = T(x) = —

Choosing 0 < 1 it is easy to see that g verifies the assumptions (G1) —(G5)
and (G7).

Now we have to prove that g also verifies (Gg), for t* =8 and ¢t~ = —8.
Since ¢4 is symmetric with respect to x = %, the same is true for G. Then
we have G(z,8¢1(z)) = G(1 — z,841(1 — x)) and

1 L 1
/0 G(x,SgZ)l(:c))d:c:Z/O G(m,ng)l(az))da::/O G1(8¢1(x))dx

_9 /O ® Gy (861 (x))dz + / ® G (861 (x))dz + / ’ G1(8¢1(x))dx] .
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Note that for 0 < z < % we have that 0 < 8sin(7x) < 4. Then we have

max G1(8¢1(z)) = max Gi(y) = G1(2).

e0,1] ye[0,4]
Similarly,
max G1(8¢1(x)) = max Gi(y) = Gi(4)
zeld, 3 y€[4,4V/3)
and
max G1(861(z)) = max Gi(y) = G1(4V3) < G1(6).
2€[3,3] UISCIVER
Therefore,

[N

1 ;
/0 G, 861 (2))dz = 2 /0 Gz, 861 (2))dz = /0 Gr (861 (2))da
: % ! 1
<9 /O c:l(z)dgc+/é G1(4)dx+/§ G (6)dz </0 T()dz < 0.

Similarly, we can prove that G satisfies (Gg) for t— = —8.
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