

Multiplicity of Nontrivial Solutions to a Problem Involving the Weighted *p*-Biharmonic Operator

M. J. Alves^b * R. B. Assunção^b † P. C. Carrião^b O. H. Miyagaki^{b‡}

Dedicated to Professor J. V. Gonçalves on the occasion of his 60th birthday

Abstract

In this paper we prove the existence of three solutions to a problem involving the weighted *p*-biharmonic operator. The first and second solutions are obtained as local minima using the Ekeland's Variational Principle and the third one is obtained by a variant of the Mountain Pass Theorem.

1 Introduction

In this paper we study the following class of quasilinear elliptic problems involving the p-biharmonic operator

$$\begin{cases} \Delta(\rho(x)|\Delta u|^{p-2}\Delta u) + g(x,u) = \lambda_1 h(x)|u|^{p-2}u & \text{in } \Omega, \\ u = 0 = \Delta u & \text{on } \partial\Omega, \end{cases}$$
(1.1)

*Supported in part by PRPq (UFMG) - Brazil .

[†]Supported in part by Fapemig CEX APQ-00748-08.

1991 AMS Subject Classification: 31A35, 35J35, 35J40, 35J60.

Key Words and Phrases: p-Biharmonic, Ekeland Variational Principle, Mountain Pass Theorem.

[‡]Supported in part by CNPq-Brazil, Fapemig CEX APQ 0609-05.01/07, and INCTmat-CNPq-MCT/Brazil.

where $1 , <math>\Omega \subset \mathbb{R}^n$ $(n \ge 1)$ is a bounded domain with smooth boundary, $\rho \in \mathcal{C}(\overline{\Omega}, \mathbb{R})$ with $\inf_{\overline{\Omega}} \rho(x) > 0$. We also use the assumptions (G_1)

 $g: \Omega \times \mathbb{R} \to \mathbb{R}$ is bounded continuous function satisfying g(x, 0) = 0,

and its primitive denoted by

(G₂)
$$G(x,s) = \int_0^s g(x,t)dt$$
 is assumed to be bounded.

Let $X \equiv W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ be a Sobolev space endowed with the norm given by

$$||u|| \equiv \left\{ \int_{\Omega} \rho |\Delta u|^p dx \right\}^{\frac{1}{p}}.$$

We define

$$\lambda_1 = \inf_N \left\{ \int_\Omega \rho |\Delta u|^p dx \right\},\,$$

where

$$N = \left\{ u \in X \colon \int_{\Omega} h |u|^p dx = 1 \right\},\,$$

the first eigenvalue of the following weighted eigenvalue problem

$$\begin{cases} \Delta(\rho(x)|\Delta u|^{p-2}\Delta u) = \lambda_1 h(x)|u|^{p-2}u & \text{ in } \Omega, \\ u = 0 = \Delta u & \text{ on } \partial\Omega, \end{cases}$$
(1.2)

where

(h)

 $h \in \mathcal{C}(\overline{\Omega}, \mathbb{R}), h \ge 0$ and h > 0 on a subset of Ω with positive measure.

We recall that by using a result by Talbi and Tsouli [18] (see also Drábek and Ôtani [8]), we know that the first eigenvalue λ_1 is simple, isolated and positive. Moreover every eigenfunction ϕ_1 associated with λ_1 can be chosen positive.

Here $\Delta(\rho(x)|\Delta u|^{p-2}\Delta)$ denotes the operator of fourth order called the *p*-biharmonic operator with weight. For p = 2 and $\rho = 1$, the operator becomes the iterated Laplacian which have been studied by many authors. For example, Lazer and McKenna [13] have pointed out that this type of nonlinearity furnishes a model for studying travelling waves in suspension bridges. Since then, more nonlinear biharmonic equations, including the p-biharmonic equations, have been studied. (See [14, 19].)

More exactly, this type of problem appears, for instance, in the study of Hooke's law of nonlinear elasticity. (See [4, 6] and references therein.) While the *p*-biharmonic operator can be used to study a semilinear hamiltonian system of the form

$$\begin{cases} -\Delta u = v^p & \text{in } \Omega, & -\Delta v = u^q & \text{in } \Omega, \\ u, v > 0 & \text{in } \Omega, & u, v = 0 & \text{on } \partial \Omega \end{cases}$$

where Ω is smooth bounded domain and $p, q \geq 1$.

Formally, from the first equation we have

$$v = (-\Delta u)^{1/p}$$

and substituting on the second equation, we get

$$-\Delta(|-\Delta u|^{1/p-1}(-\Delta u)) = -\Delta(-\Delta u)^{1/p} = u^q, \qquad x \in \Omega$$
$$u = \Delta u = 0, \qquad x \in \partial\Omega.$$

In this case, we are looking for solution in the Sobolev space $W^{2,(p+1)}(\Omega)$. (See [7, 11]).

We define the energy functional $I : X \longrightarrow \mathbb{R}$ associated to problem (1.1) by

$$I(u) \equiv \frac{1}{p} \int_{\Omega} \rho |\Delta u|^p dx + \int_{\Omega} G(x, u) dx - \frac{\lambda_1}{p} \int_{\Omega} h |u|^p dx.$$
(1.3)

Under assumptions G_1 and G_2 , the functional $I \in \mathcal{C}^1(\Omega, \mathbb{R})$ and its Fréchet derivative is given by

$$I'(u) \cdot v = \int_{\Omega} \rho |\Delta u|^{p-2} \Delta u \Delta v dx + \int_{\Omega} g(x, u) v dx - \lambda_1 \int_{\Omega} h |u|^{p-2} u v dx.$$
(1.4)

The main goal of this paper is to show the existence of multiple solutions for problem (1.1). We were inspired by Gonçalves and Miyagaki [10] and

also by Alves, Carrião and Miyagaki [3], in which problems involving the laplacian and *p*-laplacian operators are studied, respectively. See also Ma and Sanches [15].

We define

$$V = \langle \phi_1 \rangle$$
 and $Z = \left\{ u \in X \colon \int_{\mathbb{R}} hu |\phi_1|^{p-2} \phi_1 = 0 \right\}.$

Note that Z is a closed complementary subspace of V and therefore we have the direct sum

$$X = V \oplus Z.$$

We define

$$\lambda_2 = \inf_Z \left\{ \int_{\Omega} \rho |\Delta u|^p dx \colon \int_{\Omega} h |u|^p dx = 1 \right\},\tag{1.5}$$

which satisfies $0 < \lambda_1 < \lambda_2$, and it follows that

$$\int_{\Omega} h|w|^{p} dx \leq \frac{1}{\lambda_{2}} \int_{\Omega} \rho |\Delta w|^{p} dx, \text{ for all } w \in Z.$$
(1.6)

We impose the following

(G₃)
$$g(x,t) \to 0 \text{ as } |t| \to \infty, \text{ for all } x \in \Omega.$$

(G₄)
$$G(x,t) \ge \frac{\lambda_1 - \lambda_2}{p} h(x) |t|^p$$
, for all $x \in \Omega$ and for all $t \in \mathbb{R}$.

(G₅) There exist
$$\delta > 0$$
 and $0 < m < \lambda_1$ such that

$$G(x,t) \ge \frac{m}{p}h(x)|t|^p$$
, for all $x \in \Omega$ and for all $|t| < \delta$.

We define

$$T(x) = \liminf_{|t| \to \infty} G(x, t) \text{ and } S(x) = \limsup_{|t| \to \infty} G(x, t) \text{ for all } x \in \Omega.$$

(G₆) There exist $t^-, t^+ \in \mathbb{R}$ with $t^- < 0 < t^+$ such that

$$\int_{\Omega} G(x, t^{\pm}) \phi_1 dx \le \int_{\Omega} T(x) dx < 0$$

and

$$(G_7) \qquad \qquad \int_{\Omega} S(x) dx \le 0.$$

Define the following subsets

 $C^+ = \{t\phi_1 + z: t \ge 0 \text{ and } z \in Z\}$ and $C^- = \{t\phi_1 + z: t \le 0 \text{ and } z \in Z\}.$

We remark that $\partial C^+ = \partial C^- = Z$.

Now we state our main result.

Theorem 1.

(i) Under assumptions (h), (G₁), (G₂), (G₄) and (G₆), there exist $u \in C^+$ and $v \in C^-$ solutions of problem (1.1) such that I(u) < 0 and I(v) < 0.

(ii) Under assumptions (h), (G_1) - (G_3) , (G_5) - (G_7) , problem (1.1) has a solution w such that I(w) > 0.

The first and second solutions are obtained as local mimima of the energy functional I. To do this, we use the Ekeland's variational principle in each of the subsets C^+ and C^- . The third solution is obtained by using a variant of the Mountain Pass Theorem. In the last section we give an example for Theorem 1.

2 Preliminary results

We begin by recalling that $I: X \to \mathbb{R}$ is said to satisfy the Palais-Smale condition at the level $c \in \mathbb{R}$ ((*PS*)_c in short), if any sequence $\{u_n\} \subset X$ such that

 $I(u_n) \to c$ and $I'(u_n) \to 0$ as $n \to \infty$,

has a convergent subsequence in X.

Our first lemma is proved by adapting some arguments used by Anane and Gossez [1] and by Alves, Carrião and Miyagaki [3].

Lemma 2. Assume the conditions (h), (G₁) and (G₂). Then the functional I satisfies the $(PS)_c$ condition for all $c < \int_{\Omega} T(x) dx$. **Proof.** We will prove that the sequence $\{u_n\} \subset X$ is bounded. Suppose, on the contrary, that it is unbounded. Then, up to subsequence, we have

$$||u_n|| \to \infty \text{ as } n \to \infty.$$

Define

$$v_n = \frac{u_n}{\|u_n\|}.\tag{2.1}$$

Clearly $||v_n|| = 1$ and the sequence $\{v_n\} \subset X$ is bounded. Taking a subsequence if necessary (still denoted in the same way) we obtain

$$v_n \rightharpoonup v$$
 weakly in X as $n \rightarrow \infty$

and

$$v_n \to v \text{ in } L^s(\mathbb{R}), \text{ as } n \to \infty, \text{ for } 1 \le s < p^* = \frac{np}{n-2p},$$
 (2.2)
and $p^* = +\infty, \text{ if } n \le 2p.$

We will show that $v \neq 0$ and that there exists $\mu \in \mathbb{R}$ such that

$$v(x) = \mu \phi_1(x)$$
 for all $x \in \Omega$.

We are going to consider only the case n > 2p, the other case is easier. By definition of I and by the fact that $\Delta u_n = \Delta v_n ||u_n||$ we have

$$I'(u_n) \cdot u_n = \int_{\Omega} \rho |\Delta u_n|^p dx + \int_{\Omega} g(x, u_n) u_n dx - \lambda_1 \int_{\Omega} h |u_n|^p dx$$
$$= \|u_n\|^p \int_{\Omega} \rho |\Delta v_n|^p dx + \int_{\Omega} g(x, u_n) u_n dx - \lambda_1 \|u_n\|^p \int_{\Omega} h |v_n|^p dx$$

Choosing $t_n = ||u_n||$, it follows that

$$\frac{I'(u_n) \cdot u_n}{t_n^p} = \int_{\Omega} \rho |\Delta v_n|^p dx + \frac{1}{t_n^p} \int_{\Omega} g(x, u_n) u_n dx - \lambda_1 \int_{\Omega} h |v_n|^p dx.$$
(2.3)

We will denote the terms of the equality (2.3) by I_j (j = 1, 2, 3, 4), respectively.

Claim 3.

- (a) $\lim_{n\to\infty} I_1 = 0$,
- (b) $\lim_{n\to\infty} I_3 = 0$,
- (c) $\lim_{n\to\infty} I_4 = \lambda_1 \int_{\Omega} h |v|^p dx$.

Proof. (a) From the fact that $\lim_{n\to\infty} I'(u_n) = 0$ and since $\{u_n\} \subset X$ is unbounded we have the inequality

$$\left|\frac{I'(u_n)\cdot u_n}{t_n^p}\right| \le \epsilon \frac{\|u_n\|}{\|u_n\|^p} = \epsilon \|u_n\|^{1-p}.$$

This implies that $\lim_{n\to\infty} I_1 = 0$.

(b) By the condition (G_1) , the Hölder's inequality, and (2.2) we get

$$\begin{aligned} \left| \frac{1}{t_n^p} \int_{\Omega} g(x, u_n) u_n dx \right| &\leq \left| \frac{C}{t_n^p} \int_{\Omega} |u_n| dx \leq \frac{C}{t_n^p} \left[\int_{\Omega} |u_n|^p dx \right]^{\frac{1}{p}} \left[\int_{\Omega} 1^{\frac{p}{p-1}} dx \right]^{\frac{p-1}{p}} \\ &\leq \left| \frac{M}{t_n^p} \left[\int_{\Omega} |v_n|^p |t_n|^p dx \right]^{\frac{1}{p}} = M t_n^{1-p} \left[\int_{\Omega} |v_n|^p dx \right]^{\frac{1}{p}}, \end{aligned}$$

where C and M are positive constants. This implies that $\lim_{n\to\infty} I_3 = 0$.

(c) Follows immediately from (2.2).

Using Claim 3 and (2.1) we obtain that $v \neq 0$ because

$$\lim_{n \to \infty} \left[\int_{\Omega} \rho |\Delta v_n|^p dx - \lambda_1 \int_{\Omega} h |v_n|^p dx \right] = 1 - \lambda_1 \int_{\Omega} h |v|^p dx = 0.$$

Since $v_n \rightarrow v$ weakly in X, as $n \rightarrow \infty$, we have $||v|| \leq \liminf_{n \rightarrow \infty} ||v_n|| = 1$. Therefore

$$\|v\| \le 1 \tag{2.4}$$

and we conclude that v is an eigenfunction associated to the simple eigenvalue λ_1 . Hence, there exists $\mu \in \mathbb{R}$, $\mu \neq 0$, such that

$$v(x) = \mu \phi_1(x) \text{ for all } x \in \Omega.$$
 (2.5)

In particular, by (2.1) we conclude that

$$\lim_{n \to \infty} v_n(x) = \lim_{n \to \infty} \frac{u_n}{\|u_n\|} = v(x) = \mu \phi_1(x), \text{ for all } x \in \Omega.$$

But $\mu \phi_1(x) \neq 0$, then $v_n(x) \neq 0$ and this implies that

$$\lim_{n \to \infty} |u_n(x)| = \lim_{n \to \infty} ||u_n(x)|| v_n(x) = \infty, \text{ for all } x \in \Omega.$$
 (2.6)

Using Fatou's Lemma, we have that

$$\liminf_{n \to \infty} \int_{\Omega} G(x, u_n(x)) dx \ge \int_{\Omega} \liminf_{n \to \infty} G(x, u_n(x)) dx \ge \int_{\Omega} T(x) dx. \quad (2.7)$$

By definition of λ_1 we conclude that

$$\int_{\Omega} \rho |\Delta u_n|^p dx - \lambda_1 \int_{\Omega} h |u_n|^p dx \ge 0$$
(2.8)

and hence

$$c + o_n(1) = I(u_n) \ge \int_{\Omega} G(x, u_n(x)) dx.$$
(2.9)

Since $\lim_{n\to\infty} |u_n(x)| = \infty$, by (G_2) it follows that

$$c \ge \int_{\Omega} T(x) dx$$

which contradicts the hypothesis of the Lemma. Hence the sequence $\{u_n\} \subset X$ is bounded.

We claim that $\lim_{n\to\infty} u_n = u \in X$. In fact, consider

$$I'(u_n) \cdot (u_n - u) = \int_{\Omega} \rho |\Delta u_n|^{p-2} \Delta u_n \Delta (u_n - u) dx + \int_{\Omega} g(x, u_n) (u_n - u) dx -\lambda_1 \int_{\Omega} h |u_n|^{p-2} u_n (u_n - u) dx.$$

Since the sequence $\{u_n - u\} \subset X$ is bounded and $\lim_{n \to \infty} I'(u_n) = 0$, we have

$$\lim_{n \to \infty} I'(u_n) \cdot (u_n - u) = 0.$$
 (2.10)

Using (G_2) , the facts that $u_n \to u$ in $L^s(\mathbb{R})$ (for $1 \leq s < p^*$) and that $u_n \to u$ a. e. on Ω as $n \to \infty$, as well as the Dominated Convergence Theorem we obtain

$$\lim_{n \to \infty} \int_{\Omega} g(x, u_n)(u_n - u) dx = 0.$$
(2.11)

and

$$\lim_{n \to \infty} \lambda_1 \int_{\Omega} h |u_n|^{p-2} u_n (u_n - u) dx = 0.$$
 (2.12)

It follows from (2.10), (2.11) and (2.12) that

$$0 = \lim_{n \to \infty} \left[\int_{\Omega} \rho |\Delta u_n|^{p-2} \Delta u_n \Delta (u_n - u) dx \right].$$
 (2.13)

Since $|\Delta u|^{p-2}\Delta u \in L^{\frac{p}{p-1}}(\mathbb{R})$, $\rho\Delta(u_n - u) \in L^p(\mathbb{R})$, by a result in [12, Theorem 13.44] we conclude that

$$\lim_{n \to \infty} \int_{\Omega} \rho |\Delta u|^{p-2} \Delta u \Delta (u_n - u) dx = 0, \qquad (2.14)$$

where we are assuming that

$$\Delta u_n \longrightarrow \Delta u$$
, a.e., as $n \to \infty$.

The above affirmative can be proved arguing as in [5] (see also Alves, Carrião and Miyagaki in[2] for the case in dimension 1), together with the inequalities

$$\left[|x|^{p-2}x - |y|^{p-2}y\right](x-y) \geq \begin{cases} C_p \frac{|x-y|^2}{(|x|+|y|)^{2-p}} & \text{if } 1$$

(for the proof, see [16, 17]).

Now, by using again the above inequality, we obtain by (2.13) and (2.14)

$$0 = \lim_{n \to \infty} \int_{\Omega} \left[|\Delta u_n|^{p-2} \Delta u_n - |\Delta u|^{p-2} \Delta u \right] \rho \Delta (u_n - u) dx$$

$$\geq \begin{cases} C_p \lim_{n \to \infty} \int_{\Omega} \rho \frac{|\Delta u_n - \Delta u|^2}{(|\Delta u_n| + |\Delta u|)^{2-p}} dx & \text{if } 1
(2.15)$$

If $p \geq 2$, we have that

$$\lim_{n \to \infty} \int_{\Omega} \rho |\Delta u_n - \Delta u|^p dx \le 0$$

If 1 , by Hölder's inequality it follows that

$$\begin{split} \int_{\Omega} \rho |\Delta u_n - \Delta u|^p dx \\ &\leq \left[\int_{\Omega} \rho \frac{|\Delta u_n - \Delta u|^2}{(|\Delta u_n| + |\Delta u|)^{2-p}} dx \right]^{\frac{p}{2}} \left[\int_{\Omega} \rho (|\Delta u_n| + |\Delta u|)^p dx \right]^{\frac{2-p}{2}} \\ &\leq C \left[\int_{\Omega} \rho \frac{|\Delta u_n - \Delta u|^2}{(|\Delta u_n| + |\Delta u|)^{2-p}} dx \right]^{\frac{p}{2}}. \end{split}$$

By (2.15) and the previous inequality it follows that

$$0 \ge C_p \lim_{n \to \infty} \int_{\Omega} \rho \frac{|\Delta u_n - \Delta u|^2}{(|\Delta u_n| + |\Delta u|)^{2-p}} dx \ge C_p C^{-1} \left[\lim_{n \to \infty} \int_{\Omega} \rho |\Delta u_n - \Delta u|^p dx \right]^{\frac{2}{p}}$$

Therefore, in both cases we have

$$\lim_{n \to \infty} \|u_n - u\| = 0 \text{ in } X$$

and this concludes the proof of the Lemma.

Lemma 4. Assume the conditions (h), (G₂) and (G₆). Then the functional I is bounded from below on X and $\inf_{C^{\pm}} I$ is negative on C⁺ and on C⁻.

Proof. Let $u \in X$; by condition G_2 , we have $\left| \int_{\Omega} G(x, u) dx \right| \leq C$. Hence, by the definition of λ_1 we get

$$|I(u)| \ge \int_{\Omega} G(x, u) dx \ge -C$$

and I is bounded from below on X.

Using condition (G_6) and the eigenfunction ϕ_1 associated to the eigenvalue λ_1 we obtain

$$I(t^{\pm}\phi_{1}) = \int_{\Omega} G(x, t^{\pm}\phi_{1}) dx \le \int_{\Omega} T(x) < 0.$$
 (2.16)

If $u \in C^+$, we have that $I(u) = I(t\phi_1 + z)$. In particular, consider $t = t^+$ and z = 0; by inequality (2.16), we obtain that $I(t^+\phi_1) < 0$. Similarly, we have $I(t^-\phi_1) < 0$. Hence $\inf_{C^{\pm}} I(t^{\pm}\phi_1) < 0$. This concludes the proof of the lemma.

Now we show that the energy functional I verifies the geometry of the Mountain Pass Theorem.

Lemma 5. The energy functional I verifies the following properties.

- (a) I(0) = 0.
- (b) There exist positive constants ρ and R such that $I(u) \ge \rho > 0$ if ||u|| = R.
- (c) There exists $z \in X$ such that I(z) < 0 = I(0) if ||z|| > R.

Proof. The proof of the item (a) is immediate.

Since G is bounded and continuous, there exist $\theta \in \mathbb{R}$ (with $p < \theta < p^*$) and a constant C such that

$$G(x,t) \ge \frac{m}{p}h(x)|t|^p - C|t|^{\theta}, \text{ for all } |t| > \delta,$$

where δ is given by (G_5) . Therefore, by (G_5) we conclude that

$$G(x,t) \ge \frac{m}{p}h(x)|t|^p - C|t|^{\theta}, \text{ for all } |t| \in R, \ p < \theta < p^* \text{ and for all } x \in \Omega.$$
(2.17)

By the previous inequality we have

$$I(u) \ge \frac{1}{p} \int_{\Omega} \rho |\Delta u|^p dx + \int_{\Omega} \left[\frac{m}{p} h(x) |u|^p - C|u|^{\theta} \right] dx - \frac{\lambda_1}{p} \int_{\Omega} h|u|^p dx.$$

We recall that the embedding $W^{1,p}(\mathbb{R}) \hookrightarrow L^s(\mathbb{R})$ is continuous for $1 and compact for <math>s < p^*$ and

$$\lambda_1 \le \frac{\int_{\Omega} \rho |\Delta u|^p dx}{\int_{\Omega} h |u|^p dx}.$$

Then, for $p < \theta < p^*$ we have

$$I(u) \geq \frac{1}{p} \int_{\Omega} \rho |\Delta u|^{p} dx - \left[\frac{\lambda_{1} - m}{p}\right] \frac{1}{\lambda_{1}} \int_{\Omega} \rho |\Delta u|^{p} dx - C \int_{\Omega} |u|^{\theta} dx$$

$$\geq \frac{m}{p\lambda_{1}} ||u|| - \mu ||u||^{\theta}.$$

Since

$$I(u) \geq \frac{m}{p\lambda_1} \|u\| + o(\|u\|), \text{ as } \|u\| \to \infty,$$

we can find R > 0 small enough and $\rho > 0$ such that if $||u|| \leq R$, then $I(u) \geq 0$ and if ||u|| = R, then $I(u) \geq \rho > 0$. As a result, item (b) is proved.

To prove item (c), it is sufficient to remark that by (G_6) we conclude that $I(t^{\pm}\phi_1) < 0$. Then we define $z \equiv t^{\pm}\phi_1$ and we get $||z|| = \int_{\Omega} \rho |\Delta(t^{\pm}\phi_1)|^p dx = t^{\pm} ||\phi_1|| \equiv R_1$. Note that $R_1 > R$ and it follows that ||z|| > R and I(z) < 0. This concludes the proof of item (c).

3 Proof of Theorem 1

To prove item (i) we use inequality (2.16) to obtain

$$\inf_{C^{\pm}} I(u) \le I(t^{\pm}\phi_1) = \int_{\Omega} G(x, t^{\pm}\phi_1) dx \le \int_{\Omega} T(x) < 0.$$

If $\inf_{C^{\pm}} I(u) = I(t^{\pm}\phi_1)$, then it is enough to take $u = t^+\phi_1$ and $v = t^-\phi_1$ to get two solutions such that I(u) < 0 and I(v) < 0.

Otherwise, if $\inf_{C^{\pm}} I(u) < I(t^{\pm}\phi_1)$ then we have

$$\inf_{C^{\pm}} I(u) < \int_{\Omega} T(x). \tag{3.1}$$

By Lemma 4, the functional I is bounded from below on X and it is easy to prove that I is lower semicontinuous in X. Hence, the Ekeland's Variational Principle guarantees the existence of two sequences $u_n \subset C^+$ and $v_n \subset C^-$ satisfying

$$I(u_n) \to \inf_{C^+} I(u)$$
 and $I'(u_n) \to 0$,

and

$$I(v_n) \to \inf_{C^+} I(v)$$
 and $I'(v_n) \to 0.$

as $n \to \infty$. By (3.1) and by Lemma 2, there exist u and v such that

$$u_n \to u$$
 and $v_n \to v$ in X

as $n \to \infty$. Therefore, u and v are solutions of problem 1.1 verifying

$$I(u) = \inf_{C^+} I(z) < 0 \text{ and } I(v) = \inf_{C^-} I(z) < 0.$$

Moreover, it follows from assumption (G_4) and from inequality (1.6) that

$$I(z) \ge \frac{1}{p} \int_{\Omega} \rho |\Delta u|^p dx - \frac{\lambda_2}{p} \int_{\Omega} h |z|^p dx \ge 0, \text{ for all } z \in Z.$$

Then $I(z) \ge 0$ for all $z \in Z$ and Lemma 2 implies that the infimum of I on C^{\pm} is achieved in $C^{\pm} \setminus Z$. Therefore $u \in C^+$ and $v \in C^-$.

To prove item (ii) we use Lemma 5 and a variant of the Mountain Pass Theorem without the Palais-Smale condition. (See [9, Theorem 6].) Then there exists a sequence $\{w_n\} \subset X$ such that

$$I(w_n) \to c_1 > \rho > 0$$
 and $||I'(w_n)||_{X^*}(1 + ||w_n||) \to 0$ in X^* as $n \to \infty$. (3.2)

Arguing as in the prove of Lemma 2, we choose $t_n = ||w_n||$ to obtain

$$\left|\frac{I'(u_n) \cdot w_n}{t_n^p}\right| \le \frac{\|I'(w_n)\|_{X^*}(1+\|w_n\|)}{t_n^p} \to 0, \text{ as } n \to \infty.$$

If the sequence $\{w_n\} \subset X$ is unbounded, then

$$|w_n(x)| \to 0$$
, as $n \to \infty$, for all $x \in \Omega$.

Since

$$|I'(w_n) \cdot w_n| \le ||I'(w_n)||_{X^*} (1 + ||w_n||),$$

by (3.2) we obtain that

$$|I'(w_n) \cdot w_n| \to 0 \text{ as } n \to \infty$$

and hence

$$o(1) = I'(w_n) \cdot w_n = ||w_n||^p + \int_{\Omega} g(x, w_n) w_n dx - \lambda_1 \int_{\Omega} h|w_n|^p dx.$$

By (2.8) we conclude that

$$0 \le ||w_n||^p - \lambda_1 \int_{\Omega} h|w_n|^p dx = -\int_{\Omega} g(x, w_n) w_n dx + o(1) \le \left| \int_{\Omega} g(x, w_n) w_n dx \right| + o(1)$$

By (G_1) and (G_3) , the function $g(x, w_n(x))w_n(x)$ is bounded for all $x \in \Omega$ and for all n. By (2.6), $g(x, w_n(x))w_n(x) \to 0$ as $n \to \infty$ a. e. on Ω . Using the Dominated Convergence Theorem we obtain $\int_{\Omega} g(x, w_n)w_n dx \to 0$, as $n \to \infty$.

Then

$$||w_n||^p - \lambda_1 \int_{\Omega} h|w_n|^p dx \to 0$$
, as $n \to \infty$.

Since

$$c_1 + o(1) = I(w_n) = \frac{1}{p} \left[\|w_n\|^p - \frac{\lambda_1}{p} \int_{\Omega} h |w_n|^p dx \right] + \int_{\Omega} G(x, w_n) dx,$$

using Fatou's Lemma, together with (2.6) and (G_7) , we obtain

$$c_1 \leq \limsup_{n \to \infty} \int_{\Omega} G(x, w_n) dx \leq \int_{\Omega} S(x) dx \leq 0,$$

which contradicts (3.2). Hence the sequence $\{w_n\} \subset X$ is bounded and, passing to a subsequence if necessary (still denoted in the same way), there exists $w \in X$ such that

$$w_n \rightharpoonup w \quad \text{in } X, \quad \text{as } n \rightarrow \infty.$$

We also have $||I'(w_n)||_{X^*}(1+||w_n||) \to 0$ as $n \to \infty$, it follows that $||I'(w_n)||_{X^*} \to 0$, in X^* as $n \to \infty$ and by a similar argument as that of Lemma 2 we conclude that

$$w_n \to w$$
, in X as $n \to \infty$

and the Theorem is proved.

4 Example

In this section, inspired by [3], we will define a function g that satisfies the assumptions $(G_1) - (G_7)$.

Consider $\Omega = (0, 1)$, p = 2 and h = 1. In this case, the function $\phi_1(x) = \sin(\pi x)$ is an eigenfunction associated to the first eigenvalue $\lambda_1 = \pi^4$ of

problem (1.1). We remark that ϕ_1 is symmetric with respect to $x = \frac{1}{2}$. Let $g: \Omega \times \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x,s) = R(x)g_1(x)$$

where R(x) = 1 and $g_1 : \mathbb{R} \to \mathbb{R}$ is given by

$$g_{1}(s) = \begin{cases} s, \text{ for } 0 \leq s \leq 1, \\ 2 - s, \text{ for } 1 < s \leq 5, \\ s - 8, \text{ for } 5 < s \leq 8 + \frac{\sqrt{30}}{2}, \\ 8 + \sqrt{30} - s, \text{ for } 8 + \frac{\sqrt{30}}{2} < s \leq 8 + \sqrt{30}, \\ 0, \text{ for } s \geq 8 + \sqrt{30}, \\ -g(-s), \text{ for } s \leq 0, \end{cases}$$

Defining $G_1(s) = \int_0^s g_1(t)dt$ we have

$$G(x,s) = \int_0^s g(x,t)dt = R(x)G_1(s)$$
 and $S(x) = T(x) = -\frac{R(x)}{2}$.

Choosing $\delta < 1$ it is easy to see that g verifies the assumptions $(G_1) - (G_5)$ and (G_7) .

Now we have to prove that g also verifies (G_6) , for $t^+ = 8$ and $t^- = -8$. Since ϕ_1 is symmetric with respect to $x = \frac{1}{2}$, the same is true for G. Then we have $G(x, 8\phi_1(x)) = G(1 - x, 8\phi_1(1 - x))$ and

$$\int_{0}^{1} G(x, 8\phi_{1}(x))dx = 2\int_{0}^{\frac{1}{2}} G(x, 8\phi_{1}(x))dx = \int_{0}^{\frac{1}{2}} G_{1}(8\phi_{1}(x))dx$$
$$= 2\left[\int_{0}^{\frac{1}{6}} G_{1}(8\phi_{1}(x))dx + \int_{\frac{1}{6}}^{\frac{1}{3}} G_{1}(8\phi_{1}(x))dx + \int_{\frac{1}{3}}^{\frac{1}{2}} G_{1}(8\phi_{1}(x))dx\right]$$

Note that for $0 \le x \le \frac{1}{6}$ we have that $0 \le 8\sin(\pi x) \le 4$. Then we have

$$\max_{x \in [0, \frac{1}{6}]} G_1(8\phi_1(x)) = \max_{y \in [0, 4]} G_1(y) = G_1(2).$$

Similarly,

$$\max_{x \in [\frac{1}{6}, \frac{1}{3}]} G_1(8\phi_1(x)) = \max_{y \in [4, 4\sqrt{3}]} G_1(y) = G_1(4)$$

and

$$\max_{x \in [\frac{1}{3}, \frac{1}{2}]} G_1(8\phi_1(x)) = \max_{y \in [4\sqrt{3}, 8]} G_1(y) = G_1(4\sqrt{3}) < G_1(6).$$

Therefore,

$$\int_{0}^{1} G(x, 8\phi_{1}(x))dx = 2\int_{0}^{\frac{1}{2}} G(x, 8\phi_{1}(x))dx = \int_{0}^{\frac{1}{2}} G_{1}(8\phi_{1}(x))dx$$
$$\leq 2\left[\int_{0}^{\frac{1}{6}} G_{1}(2)dx + \int_{\frac{1}{6}}^{\frac{1}{3}} G_{1}(4)dx + \int_{\frac{1}{3}}^{\frac{1}{2}} G_{1}(6)dx\right] < \int_{0}^{1} T(x)dx < 0.$$

Similarly, we can prove that G satisfies (G_6) for $t^- = -8$.

References

- Anane, A.; Gossez, J. P., Strongly nonlinear elliptic problems near resonance: variational approach, Comm. Partial Differential Equations. 15 (1990), 1141-1159.
- [2] Alves, M. J.; Carrião, P. C.; Miyagaki, O. H., Soliton solutions for a class of quasilinear elliptic equations on R, Adv. Nonl. Studies 7 (2007), 579-597.
- [3] Alves, C. O.; Carrião, P. C. Miyagaki, O. H., Multiple solutions for a problem with resonance involving the p-laplacian, Abstr. Appl. Anal. 3 (1998), n. 1-2, 191-201.
- [4] Benedikt, J., On the discretness of the spectra of the Dirichlet and Neumann pbiharmonic problem, Abstr. Appl. Anal. 293 (2004), 777-792.
- [5] Boccardo, L.; Murat, F., Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581-597.
- [6] Dautray, R.; Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology I: Physical Origins and Classical Methods, Springer-Verlag, Berlin, 1985.
- [7] dos Santos, E. M., Multiplicity of solutions for a fourth-order quasilinear nonhomogeneous equations, J. Math. Anal. Appl. 342 (2008), 277-297.

- [8] Drábek, P.; Ôtani, M., Global bifurcation result for the p-biharmonic operator, Electron. J. Differential Equations 48 (2001), 1-19.
- [9] Ekeland, I., Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, New York, 1994.
- [10] Gonçalves, J. V.; Miyagaki, O. H., Three solutions for a strongly resonant elliptic problem, Nonlinear Anal. 24 (1995), 265-272.
- [11] He, H.; Yang, J., Asymptotic behavior of solutions for Hénon systems with nearly critical exponent, J. Math. Anal. Appl. 347 (2008), 459–471.
- [12] Hewitt, E.; Stromberg, K., Real and Abstract Analysis, Springer-Verlag, Berlin, 1955.
- [13] Lazer, A. C.; McKenna, P. J., Large-amplitude periodic oscilations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev. 32 (1990), 537–578.
- [14] Liu, H.; Su, N., Existence of three solutions for a p-biharmonic problem, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis 15 (2008), 445–452.
- [15] Ma, T. F.; Sanches, L., Three solutions of a quasilinear elliptic problem near resonance, Mathematica Slovaca, Eslovaquia 47 (1997), n. 4, 451-457.
- [16] Peral, I., Multiplicity of Solutions for the p-Laplacian, Second School on Nonlinear Functional Analysis and Appl. Diff. Eqns., I.C.T.P.I., Trieste, 1997.
- [17] Simon, J., Regularité de la Solution d'une Equation Non Linéarire dans ℝⁿ, Lectures Notes in Math. N. 665, Springer Verlag, Berlin, 1978.
- [18] Talbi, M.; Tsouli, N., On the spectrum of the weighted p-biharmonic operator with weight, Mediterranean Journal of Mathematics 4 (2007), 73-86.
- [19] Wang, W.; Zhao, P., Nonuniformly nonlinear elliptic equations of p-biharmonic type, J. Math. Analy. Appl. 348 (2008), 730–738.

M. J. Alves	O. H. Miyagaki
R. B. Assunção	Departamento de Matemática
P. C. Carrião	Universidade Federal de Viçosa
Departamento de Matemática	36571-000, Viçosa-MG, Brasil
Universidade Federal de Minas Gerais	<i>E-mail</i> : olimpio@ufv.br
30161970, Belo Horizonte-MG, Brasil	
<i>E-mail</i> : mariajose@mat.ufmg.br	
carrion@mat.ufmg.br	
ronaldo@mat.ufmg.br	