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Abstract

The paper considers compactness properties in the borderline

imbedding of the Sobolev space H2
0 (Ω) where Ω is the unit ball

in R4. While the Trudinger-Moser-Adams functional
∫
Ω
e32π

2u2

dx

is bounded on the unit ball B of H2
0 (Ω), continuous in the whole

H2
0 (Ω) and weakly continuous in B \{0}, it is not weakly continuous

at zero. We show that the functional is continuous at zero if the

sequence satisfies a modified weak convergence requirement. Such

behavior of the sequence is inspired by cocompactness/concentration

compactness reasoning used in the study of other semilinear elliptic

problems.
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1 Introduction

This paper is concerned with weak continuity properties of functionals

with critical growth in the Sobolev spaces Hm
0 (Ω), where Ω ⊂ R2m is

the unit ball, m ∈ N. The critical growth in this case is understood in

the sense of the following generalization of Pohozhaev-Trudinger-Moser

inequality (case m = 1, [5],[6],[10]) for W
N/m,m
0 -spaces by D. R. Adams

[1].

Let the norm in the Sobolev space Hm
0 (Ω) over an open bounded set

Ω ⊂ R2m, m ∈ N, be specified as

∥u∥2 def
=

∫
Ω
L(u),

where L(u) = |∆ku|2 if m = 2k and L(u) = |∇∆ku|2 if m = 2k+1, k ∈ N.
Then

sup
u∈Hm

0 (Ω),∥u∥≤1

∫
Ω
eβmu2

< ∞, (1.1)

where

βm
def
= (4π)mm!

is the largest constant for which (1.1) holds.

Imbedding of the Sobolev space into the correspondent Orlicz space de-

fined by the exponential nonlinearity in (1.1) is not compact, as it is the

case for the limit imbedding of Hm(RN ) when N > 2m. The analogy

is, however, not complete, since
∫
|u|

2N
N−2m lacks weak continuity at any

point, while
∫
eβmu2

on the closed unit ball of Hm
0 (Ω) is weakly continuous

at every point but the origin (see e.g. [4]). Lack of weak continuity in

the case N > 2m is easy to demonstrate by perturbing a given function

u by a sequence t
(N−2)/2
k w(tk(x − x0)), tk → +0 that weakly converges

to zero, where the “profile” w, subjected to the scaling, is arbitrary. In

fact, presence of such scaling profiles is, roughly speaking, the only way the

imbedding of Hm(Ω) into L2N/(N−2m) loses compactness (see Lions, [3, 4])

and Struwe [7]). A general functional-analytic theorem [8, Theorem 3.1]

demonstrated that in Hilbert spaces, equipped with noncompact gauges,
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one can always improve convergence of a bounded sequence (on an appro-

priate subsequence) by subtracting from it a series of gauged profiles, and

the degree of improvement in the convergence depends on the robustness

of the gauge group. In particular, the use of the product group of shifts

and of dilation actions, leads to the L2N/(N−2m)(RN )-convergence. In the

terminology introduced in [9] (an imbedding of a Banach space X into a

topological vector space Y is cocompact relative to a group D of automor-

phisms of X if for any gk ∈ D gkuk ⇀ 0 in X implies uk → 0 in Y ), one

says that the imbedding of D1,2(RN ) into L2N/(N−2m)(RN ) is cocompact

(relative to the action of translations and dilations on RN ).

In the case N = 2m, a recent paper [2], dealing with the case m = 1 had

introduced a group of unitary operators on H1
0 (Ω) that play a role similar

to dilations in the case of higher dimensions, namely the transformations

u(x) 7→ s−
1
2u(|x|s−1x), (1.2)

and proved cocompactness of imbedding of the subspace of radial functions

in H1
0 (Ω) into the Orlicz space associated with the Pohozhaev-Trudinger-

Moser inequality. The paper also proves the following continuity prop-

erty of the Pohozhaev-Trudinger-Moser functional
∫
Ω e4πu

2
dx: if uk is a

sequence of radial functions in H1
0 (Ω) such that (uk, µtk) → 0 for any se-

quence tk ∈ (0, 1), and the function F ∈ C(R) satisfies 0 ≤ F (s) ≤ Cepu
2

for some C, p > 0, then∫
Ω
(F (uk)− F (0)) dx → 0,

where µt are Moser functions known from evaluation of the best constant

in (1.1) (for m = 1 see the definition in (2.1) below). This property can be

also regarded as a cocompactness property, in the sense that convergence

in the target space follows from a weak convergence enhanced by a set

of operators. The transformations involved here are, however, not auto-

morphisms of H2
0 (Ω) but linear functionals on H2

0 (Ω). Notably, operators

(1.2) map Moser functions into Moser functions.
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In this paper we prove a similar continuity property for the case m = 2.

It remains, however, an open problem to find automorphisms for Hm
0 (Ω)

for m > similar to (1.2). The case of general m is addressed in Conjec-

ture 2.3.

2 Adams-Moser functions

Let us recall the family of functions µt ∈ Hm
0 (B1(0)), t ∈ (0, 1), intro-

duced by Moser [5] in the case m = 1 and by [1] in the case m ≥ 2, that

verify that betam is the best exponent in (1.1), that is, for any β > βm,

limt→0

∫
eβµt = +∞), while ∥µt∥Hm

0
= 1.

For m = 1

µt(x)
def
= (2π)−

1
2

(
log

1

t

) 1
2

h0

(
log

1

|x|
/ log

1

t

)
, t ∈ (0, 1), (2.1)

where

h0(s)
def
= min{s, 1).

The corresponding function family for m ≥ 2 differs from the family for

m = 1 only by a normalization constant and the function h0 replaced by

hϵ with mollified corners s = 0, t so it remains in Hm
0 (B1(0)).

µt(x) =

(
ω2m−1 log

1

t

) 1
2

α−1
m hϵ(t)(log

1

|x|
/ log

1

t
) (2.2)

where

αm = ω2m−12
m/2−1(

m

2
− 1)!m(m+ 2) · · · (2m− 2),m even,

αm = ω2m−12
(m−1)/2(

m− 1

2
)!(m+ 1)(m+ 3) · · · (2m− 2),m odd,

hϵ(s) = ϵΦ( sϵ ) for s ∈ (0, ϵ), hϵ(s) = s for s ∈ (ϵ, 1−ϵ], hϵ(s) = 1−ϵΦ(1−s
ϵ )

for s ∈ (1− ϵ, 1] and hϵ(s) = 1 for s > 1,

with Φ ∈ C∞([0, 1]) such that Φ(0) = Φ′(0) = · · · = Φ(m−1)(0) = 0,

Φ(1) = Φ′(1) = 1,Φ′′(1) = · · · = Φ(m−1)(1) = 0, and ϵ(t) is an arbitrarily
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fixed continuous function such that

lim
t→0

ϵ(t) = 0, lim
t→0

ϵ(t)(log
1

t
) = ∞. (2.3)

At the end of Section 3 in [1] it is shown that the functions µt have

Hm
0 (B1(0))-norm equal 1 + ot→0(1). For m = 1 the norm equals 1.

Let us in what follows, for the sake of convenience, use the notation

ηt
def
= log 1

t and let Hm
0,r(B1(0)) denote the subspace of radially symmetric

functions in Hm
0 (B1(0)). We prove the following asymptotic orthogonality

property of Adams-Moser functions.

Lemma 2.1. If ηt/ηs → 0, s, t ∈ (0, 1), then

(µt, µs) → 0, (2.4)

where the scalar product is that of H2
0 (B1(0)).

Proof: Assume without loss of generality that t > s. Then

(µt, µs) = Cη
1/2
t η1/2s

∫ 1

t
∆hϵ(t)(ηr/ηt)∆hϵ(s)(ηr/ηs) =

Cη
−1/2
t η−1/2

s

∫ 1

t

1

r3
∂r[r

2h′ϵ(t)(ηr/ηt)]
1

r3
∂r[r

2h′ϵ(s)(ηr/ηs)]r
3dr =

Cη
−1/2
t η−1/2

s

∫ 1

t

4

r4
h′ϵ(t)(ηr/ηt)h

′
ϵ(s)(ηr/ηs)r

3dr−

Cη
−1/2
t η−3/2

s

∫ 1

t

2

r4
h′ϵ(t)(ηr/ηt)h

′′
ϵ(s)(ηr/ηs)r

3dr−

Cη
−3/2
t η−1/2

s

∫ 1

t

2

r4
h′′ϵ(t)(ηr/ηt)h

′
ϵ(s)(ηr/ηs)r

3dr+

Cη
−3/2
t η−3/2

s

∫ 1

t

1

r4
h′′ϵ(t)(ηr/ηt)h

′′
ϵ(s)(ηr/ηs)r

3dr. (2.5)

The principal asymptotic term in this expansion is the first term with h′ϵ
replaced with 1[0,1]. Evaluation of the principal term gives

η
−1/2
t η−1/2

s

∫ 1

t

1

r
dr = η

1/2
t η−1/2

s → 0. (2.6)
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We now have to estimate the error in the first term in (2.5) due to the

difference between hϵ and 1, as well as the remaining three terms. We

give only typical calculations near the origin (the quantities near r = 1

are smaller). For the error in the first term the largest quantity we have

η
−1/2
t η−1/2

s

∫ t1−ϵ(t)

t

1

r
dr = η

1/2
t η−1/2

s ϵ(t)ηt = ϵ(t)η
1/2
t /η1/2s → 0 (2.7)

as s ≤ t → 0. For the second term:

η
−1/2
t η−3/2

s

∫ t1−ϵ(t)

t

1

r
1/ϵ(t)dr = η

−1/2
t η−1/2

s → 0. (2.8)

Evaluation for the third term is similar. For the last term we have

η
−3/2
t η−3/2

s

∫ t1−ϵ(t)

t

1

r

1

ϵ(t)ϵ(s)
dr =

η
−3/2
t η−3/2

s

1

ϵ(t)ϵ(s)
ϵ(t)ηt =

η
−3/2
t η−1/2

s

1

ϵ(s)ηs
→ 0 (2.9)

as s ≤ t → 0.

2

Lemma 2.2. Let uk ∈ H2
0,r(Ω). If for every sequence tk ∈ (0, 1), (uk, µtk) →

0, then

sup
0<r<1

|uk(r)|
(
log

1

r

)− 1
2

→ 0. (2.10)

Proof: We have

(u, µt) = C(ηt)
1
2

∫ 1

t
∆hϵ(t)(ηr/ηt)∆ur3dr =

C(ηt)
− 1

2

∫ 1

t

1

r3
∂r[r

2h′ϵ(t)]∆ur3dr =

C(ηt)
− 1

2

∫ 1

t

2

r2
h′ϵ(t)∆ur3dr−

− C(ηt)
− 3

2

∫ 1

t

1

r2
h′′ϵ(t)∆ur3dr (2.11)
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We give first a heuristic sketch of the evaluation of (u, µt). Replace h
′
ϵ with

the value 1 which it approximates and take note that 1/r2 is a biharmonic

function in the annulus of integration t < r < 1. Thus simplified, we

would have, using Gauss formula on the annulus t < r < 1,

(u, µt) ∼ C(ηt)
− 1

2

∫ 1

t

2

r2
∆ur3dr =

C(ηt)
− 1

2 (
1

t2
u′(t) +

2

t3
u)t3 =

C(ηt)
− 1

2
1

t
(t2u(t))′. (2.12)

Then if (uk, µtk) → 0, then, in the heuristic approximation,

(ηtk)
− 1

2
1

tk
(t2kuk(tk))

′ → 0,

and using compactness of the Sobolev imbedding for radial functions, we

would have

sup
0≤t≤1

(ηt)
− 1

2
1

t
(t2kuk(t))

′ → 0

Integrating the (uniform in t) relation

(t2uk(t))
′ = o(t(ηt)

− 1
2 )

we obtain (2.10). It remains, however, to evaluate all the errors produced

by the heuristic approximation. It suffices to show that the error terms

where

E1(u, t)
def
= (ηt)

− 1
2

∫ 1

t

1

r2
(h′ϵ(t) − 1)∆ur3dr

and

E2(u, t)
def
= (ηt)

− 3
2

∫ 1

t

1

r2
h′′ϵ(t)∆ur3dr

satisfy Ei(uk, tk) → 0, i = 1, 2 for every sequence tk → 0. Indeed, applying

the Gauss formula on the annulus t < r < 1, noting that all the boundary
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terms vanish and that 1/r2 is a harmonic function, we have

E1(u, t) = (ηt)
− 1

2

∫ 1

t

1

r2
(∆ur3dr =

(ηt)
− 1

2

∫ 1

t

1

r2
∆h′ϵ(t)ur

3dr+

2(ηt)
− 1

2

∫ 1

t
∂r

1

r2
∂rh

′
ϵ(t)ur

3dr. (2.13)

After elementary evaluations one may see that all three terms in the right

hand side are dominated by the sum of

(ηt)
− 1

2
1

(ϵ(t)ηt)j

∫ t1−ϵ(t)

t

1

r4
ur3dr, (2.14)

and of

(ηt)
− 1

2
1

(ϵ(t)ηt)j

∫ t

tϵ(t)
dr, (2.15)

with j = 1 or j = 2. By (2.3) it suffices to consider j = 1. The expression

(2.15) can be estimated by C(ϵ(t)η
3/t
t )−1

∫
B1(0)

|u|dx, with C(ϵ(t)η
3/t
t )−1 →

0 as t → 0 by (2.3) and
∫
|uk| → 0 since uk ⇀ 0. The term (2.15) can be

estimated by use of the Cauchy inequality and then, in the second factor,

of the Hardy inequality

(ηt)
− 1

2
1

ϵ(t)ηt

∫ t1−ϵ(t)

t
(|u|r−

1
2 )r−

1
2dr ≤

(ηt)
− 1

2
1

ϵ(t)ηt

(∫ t1−ϵ(t)

t

1

r
dr

) 1
2

·

(∫ t1−ϵ(t)

t

u2

r4
r3dr

) 1
2

≤

(ηt)
− 1

2
1

ϵ(t)ηt
(ϵ(t)ηt)

1
2

(∫ t1−ϵ(t)

t

1

r
dr

) 1
2

∥∆u∥2, (2.16)

which also converges to zero whenever t → 0. Evaluation of E2 is analo-

gous: the use of Gauss formula brings only zero boundary terms, ∆ 1
r2

= 0
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and the integrals eventually involved in evaluation are all of the form

(2.14) or (2.15) with only different factors that depend on t and vanish as

t → 0.

2

Conjecture 2.3. Orthogonality relation (2.4) and relation (2.10) are

valid for all m ∈ N.

The volume of calculations necessary to verify this conjecture is ex-

cessive for the scope of this paper. Under the heuristic approximation

h′ϵ = 1[t,1] the aymptotic orthogonality is easy to illustrate, but (2.10) un-

der the heuristic approximation yields as a counterpart of (truk(r))
′ from

the proof above, an action of elliptic differential operators of increasing

order which is not trivial to integrate. In either the evaluation of the error

terms requires very bulky calculations.

3 A cocompactness property

Theorem 3.1. Assume now that uk ∈ H2
0,r(Ω) satisfies

(uk, µtk) → 0 for any sequence tk ∈ (0, 1). (3.1)

Let F (x, s) be a continuous function on Ω× R satisfying

|F (x, s)| ≤ Ceps
2

(3.2)

for some C, p > 0. Then∫
Ω
F (x, uk(x))dx →

∫
Ω
F (x, 0)dx. (3.3)

Proof: By Lemma 2.2, there exists a sequence ϵk such that |uk(r)| ≤
ϵkη

1
2
r .

Then for k sufficiently large

|F (x, uk(x))| ≤ Cr−pϵk ≤ Cr−1 (3.4)

Then (3.3) follows from (2.10) and Lebesgue theorem.

2
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