
Matemática Contemporânea, Vol. 35, 131–142

http://doi.org/10.21711/231766362008/rmc358

©2008, Sociedade Brasileira de Matemática

THE EULER CLASS AND THE

VOLUME FUNCTIONAL OF VECTOR

FIELDS

R. M. de Mesquita F. G. B. Brito

Abstract

A vector field X on a riemannian manifold M determines a sub-

manifold in the tangent bundle. The volume of X is the volume of

this submanifold for the induced Sasaki metric. When M is compact,

the volume is well defined and, usually, this functional is studied for

unit fields. Parallel vector fields are trivial minima of this functional.

For odd-dimensional manifolds, we obtain an explicit result show-

ing how the topology of a vector field with constant length influences

its volume. We apply this result to the case of vector fields that de-

fine riemannian foliations with all leaves compact.

1 Introduction

Let (Mn, g) be an n-dimensional closed riemannian manifold and X a

smooth vector field on M . The metric g induces a natural metric on the

tangent bundle TM , usually called the sasakian metric. The volume of

X is defined as the volume of the section X : M → TM , see [GZ]. An

expression of the volume of X in terms of the Levi-Civita connection ∇
of (M, g) is:
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vol(X) =

∫
M

(
1 +

n∑
a=1

∥∇eaX∥2 +
∑

a1<a2

∥∥∇ea1
X ∧∇ea2

X
∥∥2 + · · ·+

+ · · ·+ ∥∇e1X ∧ . . . ∧∇enX∥2
) 1

2

ν (1)

where ν is the volume form of M and {ea}na=1 is an orthonormal local

frame. Note that for any vector field vol(X) ⩾ vol(M). The zero section

has minimum volume (for the moment, X is merely a smooth flow). From

a geometric viewpoint, the first natural restriction would be to consider

the functional simply on unit vector fields. Possible, vector fields with

constant length are the following step. Note that this requirement is also

a restriction for M (for example, the Euler characteristic of M must be

zero).

For the case of unit vector fields, only parallel fields on M attain the

trivial minimum for volume. Unit parallel vector fields are rare in mani-

folds of dimensional higher than 1. In fact, the existence of parallel fields

implies that locally the manifold is a riemannian product. For example,

odd-dimensional spheres of any radius (except S1) admit no unit parallel

vector field.

In S3 we know from [GZ] that Hopf vector fields VH (The unit flow

tangent to the classical Hopf fibration) and no others, are the minima of

the volume (among globally defined unit vector fields).

We prove the following theorem relating the geometry and topology of

arbitrary vector fields with constant length.

Theorem 1.1. Let M be a compact riemannian manifold of dimension

2k+1. Let r > 0 and X a vector field over M such that ∥X∥ = 1√
r
. Denote

by θ2k+1 the unit dual form to X and by R2 the sum
∑

1⩽i,j,k,l⩽2k R
2
ijkl,

where Rijkl are the components of the curvature tensor of M . If r ⩾
1

2
√

k(2k−1)
R, then

vol(X) ⩾
(4π)kk!

rk(2k)!

∥∥∥∥∫
M

χ(X⊥) ∧ θ2k+1

∥∥∥∥ (2)
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Where χ(X⊥) is the Euler form of the orthogonal subbundle to X.

A first reading of this theorem suggests that the volume of a vector

field of constant length is greater than or equal to some constant times

the integral of the Lipschitz-Killing curvature of the distribution comple-

mentary to the field.

From now on we adopt the same notation as in [BC]. We think useful

to make some remarks about the theorem before proving it.

2 Examples

a) If M = S2k+1 is the standard unit sphere, computation shows that

−Ωij = θi ∧ θj .

This equation expresses the fact that the sectional curvature of the

unit sphere is identically equal to +1. Furthermore, by definition,

choosing an oriented, orthonormal basis θ1, . . . , θk for the sections

of X⊥,

(−1)nPf(Ω̃) = Pf(θi ∧ θj) = (1.3.5. · · · .(2k − 1))θ1 ∧ . . . ∧ θ2k.

so,

(4k)kk!

(2k)!rk

∥∥∥∥∫
M

χ(X⊥) ∧ θ2k+1

∥∥∥∥ =
(2)kk!

(2k)!rk

∥∥∥∥∫
S2k+1

Pf(Ω̃) ∧ θ2k+1

∥∥∥∥ =

=
(2)kk!

(2k)!rk
(1.3.5. · · · .(2k − 1))

∫
S2k+1

dS2k+1 =

=
(2)kk!

(2k)!rk
.
(2k)!

2kk!

∫
S2k+1

dS2k+1 =
1

rk
vol(S2k+1).

b) Supposing X⊥ to be an integrable normal bundle, we have∫
M

χ(X⊥) ∧ θ2k+1 =

∫
M

κx⊥(p)ν,



134 R. M. de Mesquita and F. G. B. Brito

where κX⊥ : M → R is the Lipschitz-Killing curvature of the leave

through p ∈ M , of the foliation X⊥; Recall that the definition of

Lipschitz-Killing curvature of a manifold M at a point p ∈ M is

κ(p) = 1
(2π)nPf(Ωij), where ν is the volume element of M and Ω =

(Ωij) is a 2n globally defined differential form on M .

c) S3 × S2

The integral of Lipschitz-Killing of the leaves may be, in some cases

expressed only in terms of the metric invariants of the manifold (see

[BLR]). This computation, in the non constant curvature case is,

as far as we know, undone. The three dimensional case is easier to

compute and reads:

Proposition 2.1. If M3 is a closed 3-dimensional riemannian

manifold, F a transversely oriented codimension one foliation of M3.

Then ∫
M

κF = 3

∫
M

κ−
∫

MRic(F⊥)

where κ(p) is the scalar curvature of M at p and Ric(F⊥) is the

Ricci curvature in the normal direction to F, and κ(p) is the gaussian

curvature of F at p;

A detailed proof for a similar result can be found in [B].

d) In totally symmetric spaces, the tensor R is locally constant, and,

so is its lengths. Ins some particular spaces like product of round

spheres, complex projective spaces, or some classical Lie groups, one

can make explicit the norm ∥R∥ of the curvature tensor which appear

in the statement of the main theorem.

e) Finally, notice that the main result of this paper is a natural exten-

sion of the one appearing in [BC] which states:

Theorem 2.2. Let M be a compact riemannian manifold of di-

mension 5. Let r > 0 and X a vector field over M such that
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∥X∥ = 1√
r
. Denote by θ5 the unit dual form to X and by R2 the

sum
∑

1⩽i,j,k,l⩽4R
2
ijkl, where Rijkl are the components of the curva-

ture tensor of M . If r ⩾ 1
2
√
6
R, then

vol(X) ⩾
4π2

3r2

∥∥∥∥∫
M

χ(X⊥) ∧ θ5

∥∥∥∥ (3)

Where χ(X⊥) is the Euler form of the orthogonal subbundle to X.

3 Proof of the theorem.

Associated with Y we have the unit vector field given by X =
√
rY .

Consider a local frame {e1, . . . , e2k+1 = X} adapted to X. Disregarding

the terms involving the acceleration of X (that is, the terms where ∇XX

appear):

vol(Y ) ⩾
1

rk

∫
M

(
r2k + r2k−1

∑
a

∥∇eaX∥2 + r2k−2
∑

a1<a2

∥∥∇ea1
X ∧∇ea2

X
∥∥2 +

+r2k−3
∑

a1<a2<a3

∥∥∇ea1
X ∧∇ea2

X∇ea3
X
∥∥2 + . . .+

+ . . .+
∑

a1<...<a2k

∥∇e1X ∧ . . . ∧∇e2kX∥2
) 1

2

ν

(4)

where all the indices run form 1 to 2k.

The first sum of (4) is merely the sum of squares of all the entries of

the matrix associated with the second fundamental form H. That is,

2k∑
a=1

∥∇eaX∥2 =
2k∑

a,b=1

h2ab

The second and third sums of (4) are respectively the sum of the squares

of all the 2×2 and 3×3 minors of H. Finally, the last sum in (4) is simply

the square of the determinant of H. Like in [BC], we denote by (∆i)
2 the
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sum of the squares of all the i× i minors of H. With this, we can rewrite

(4) as:

vol(Y ) ⩾
1

rk

∫
M

(
r2k+r2k−1(∆1)

2+r2k−2(∆2)
2+. . .+r(∆2k−1)

2+(∆2k)
2
) 1

2

ν

(5)

Let us consider the 2k× 2k symmetric matrix A = (g(∇eaX,∇ebX))ab,

The elementary symmetric functions of A, σi(A), are exactly the terms

∆2
i :

det(Id+ tA) =

2k∑
i=0

σi(A)t
i =

2k∑
i=0

(∆i)
2ti

where ∆2
0 = σ0(A) = 1. The normalized symmetric functions satisfy

the following properties, see [HLP] and [BCN]:

For j even and s = 0, 1, . . . , j2 ,

σ2
j ⩾

(
2k
j

)2(
2k

j−2s

)(
2k

j+2s

)σj−2sσj+2s.

and for j odd and s = 0, . . . , j−1
2 ,

σ2
j ⩾

(
2k
j

)2(
2k

j−2s−1

)(
2k

j+2s+1

)σj−2s−1σj+2s+1.

Then, for j even and s = 0, . . . , j2 ,

∆4
j ⩾

(
2k
j

)2(
2k

j−2s

)(
2k

j+2s

)∆2
j−2s∆

2
j+2s,

but since all the ∆i are positive, we have:

∆2
j ⩾

(
2k
j

)√(
2k

j−2s

)(
2k

j+2s

)∆j−2s∆j+2s. (6)
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For the other case,

∆2
j ⩾

(
2k
j

)√(
2k

j−2s−1

)(
2k

j+2s+1

)∆j−2s−1∆j+2s+1. (7)

Now we need of the following preliminary lemma.

Lemma 3.1. with the same notations adopted until now, we have that

1. (i)For each j = 1, . . . , 2k,

∆2
j ⩾

j∑
i=0

(
k
i

)(
k

j−i

)√(
2k
2i

)(
2k

2j−2i

)∆2i∆2j−2i (8)

2. (ii)For each k ⩾ 1 e 0 ⩽ i ⩽ k, (i and k integers),

(2k)!

(2i)!
⩾

(4
(
2k
2

)
)k−i

(2k − 2i)!
(9)

Proof: Part (i), is proven in [BCN].

In order to show (ii), we consider the function f : [0,∞) × [0,∞) −→ R
given by

f(k, x) =
(2k)!

Γ(2x+ 1)
−

(4
(
2k
2

)
)k−x

Γ(2k − 2x+ 1)

where Γ(x) is the restriction of the Euler gamma function to R. Com-

puting its derivative we can see that

∂f

∂x
=

(2k)!

2Γ(2x+ 1)
+

(4
(
2k
2

)
)k−x

(Γ(2k − 2x+ 1))2

[
Γ(2k − 2x+ 1) ln

(
4

(
2k

2

))
+

+ 4
∂

∂x
Γ(2k + 2x+ 1)

]
> 0,

Notice that f is an increasing function on the second variable. It is then

sufficient to prove (ii) for x = 0 ∀k ⩾ 1.

((2k)!)2 ⩾
(
4

(
2k

2

))k
(10)
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The proof follows by a induction argument: For k = 1, (10) verifies.

Suppose that (10) is true, we need to show that

((2k + 2)!)2 ⩾
(
4

(
2k + 2

2

))k+1
. (11)

Because
(
2k+2
2

)
= (2k+2)(2k+1)

2k(2k−1)

(
2k
2

)
, follows that (11) is equivalent to

(2k+2)2(2k+1)2((2k)!)2 ⩾ 4

(
2k + 2

2

)[(2k + 2)(2k + 1)

2k(2k − 1)

]k
4k
(
2k

2

)k

(12)

with
(
2k+2
2

)
= (k + 1)(2k + 1), and the induction hypothesis, it is clear

that it is sufficient for the proof of (12), to show that

4(k + 1)2(2k + 1)2 ⩾ 4(k + 1)(2k + 1)
[
(1 +

1

k
)(1 +

2

2k − 1
)
]k
,

or, equivalently,

(k + 1)(2k + 1) ⩾
(
1 +

1

k

)k(
1 +

2

2k − 1

)k
. (13)

notice that, ak = (1 + 1
k )

k is a bounded increasing positive real sequence,

ak < 3. Then (1 + 2
2k−1)

k < 3
√
2 < 6, and this implies that bk = (1 +

1
k )

k(1+ 2
2k−1)

k is a bounded increasing real sequence, with bk < 18. Also,

ck = (k+1)(2k+1) is strictly increasing, ck ⩾ 28 for k ⩾ 4, and, because

this (13) is true for k ⩾ 4. By direct computation, (13) is true for 1 ⩽

k ⩽ 3, and the lemma is proven.

2

By (5), (8) and the lemma(3.1)
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vol(Y ) ⩾
1

rk

∫
M

( 2k∑
j=0

∆2
jr

2k−j
) 1

2
ν ⩾

⩾
1

rk

∫
M

(
2k∑
j=0

j∑
i=0

(
k
i

)(
k

j−i

)√(
2k
2i

)(
2k

2j−2i

)∆2i∆2j−2ir
2k−j

) 1
2

ν ⩾

⩾
1

rk

∫
M

([ k∑
i=0

(
k
i

)√(
2k
2i

)∆2ir
k−i

]2) 1
2

ν ⩾

⩾
1

rk

∫
M

∥∥∥∥∥ 1

(2k)!

k∑
i=0

(2i)!

(
k

i

)
Rk−i∆2i

∥∥∥∥∥ ν.

(14)

The last integral is related to the Pfaffian of X⊥ in the following way (see

[BC])

2k(k)!Pf(Ω̃) =

=
∑

τ∈S2k

ϵ(τ)
(
Ωτ(1)τ(2)+ωτ(1)2k+1∧ωτ(2)2k+1

)
∧
(
Ωτ(3)τ(4)+ωτ(3)2k+1∧ωτ(4)2k+1

)
∧ . . . ∧

(
Ωτ(2k−1)τ(2k) + ωτ(2k−1)2k+1 ∧ ωτ(2k)2k+1

)
.

Then,∑
τ∈S2k

ϵ(τ)Ωτ(1)τ(2)∧. . .∧Ωτ(2k−(2k−i))τ(2k−2i)∧ωτ(2k−2i+1)2k+1∧. . .∧ωτ(2k)2k+1

= 2(k−i)(2i)!
∑

aj<aj+1

ε(a)Ωa1a2∧. . .∧Ωa2k−(2i+1)a2k−2i
∧ωa2k−2i+12k+1∧. . .∧ωa2k2k+1

where each ai to run from 1 to 2k and, if i ̸= j, the pair (ai, ai+1) is not

ordered with respect to (aj , aj+1).

Denoting by
(
k
i

)
Pi the i-th term of the expression for the Pfaffian and ap-

plying to {e1, . . . , e2k}, we have, applying the Cauchy-Schwartz inequality
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we obtain:

Pi(e1, . . . , e2k) ⩽ 2(k−i)(2i)!
( ∑

a1<a2
b1<b2

R2
a1a2b1b2

) 1
2 ·
( ∑

a3<a4
b3<b4

R2
a3a4b3b4

) 1
2 ·

· . . . ·
( ∑

a2k−(2i+1)<a2k−2i

b2k−(2i+1)<b2k−2i

R2
a2k−(2i+1)a2k−2ib2k−(2i+1)b2k−2i

) 1
2 · (∆2

2i)
1
2

⩽ 2(k−i)(2i)!
(1
4
R2
) 1

2 · . . . ·
(1
4
R2
) 1

2︸ ︷︷ ︸
(k−i)−terms

·(∆2
2i)

1
2

⩽ (2i)!R(k−i)∆2i;

(15)

therefore, we have:

Pf(Ω̃)(e1, . . . , e2k) ⩽
(2k!)

2kk!

(
1

(2k)!

k∑
i=0

(2i)!

(
k

i

)
R(k−i)∆2i

)
. (16)

Finally, by this inequality, by (14) and by the definition of the Pfaffian of

the curvature (in terms of the Euler class )

vol(Y ) ⩾
2kk!

(2k)!rk

∥∥∥∥∫
M

Pf(Ω̃) ∧ θ2k+1

∥∥∥∥ =
(4π)kk!

(2k)!rk

∥∥∥∥∫
M

χ(X⊥) ∧ θ2k+1

∥∥∥∥
and this ends the proof of the theorem.

2

Like in [BC], is valid the following

Remark 3.2. : In view of the proof, the inequality of Theorem 2.2 will

be sharp int the following situation:

1. (1)The flow of the field is geodesic;

2. (2)All the eigenvalues of the symmetric matrix A are equal;
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3. (3) The curvature of M satisfy several relations, such proportional-

ity:

Ra1a2b1b2 = λRa3a4b3b4, where an < an+1 and bm < bm+1 (por 15);

4. (4)

Ra1a2b1b2 = µ det


ha3b3 · · · ha3b2i+2

...
. . .

...

ha2i+2b3 · · · ha2i+2b2i+2


In spaces of constant sectional curvature the conditions hold when X

is geodesic and X⊥ is integrable with umbilical leaves. It would be very

interesting to know if the inequality can be attained in other manifolds for

some specific field.

3.1 A topological corollary

Like in [BC], we observe which the minorization of the Theorem 2.2

involves the Euler class of the bundle X⊥ and the dual form to the unit

field X. When this form is closed then X⊥ will be a riemannian foliation.

This means that the flow of Y is geodesic and the distribution X⊥ is

integrable.

In this situation, if the foliation defined by X⊥ has a compact leaf then

all the leaves are compact and M is a fiver bundle over S1 (a circle of

length L) the fiber being the compact leaves of the foliation (see [Mo]).

We are now in a position to state the following consequence.

Corollay 3.3. Let M be a closed riemannian manifold of dimension 2k+

1 and X a vector field of constant length 1√
r

such that its unit dual

form is closed and the orthogonal foliation X⊥ has a compact leaf. Thus,

M fibers over a circle of length L. Let us assume that r ⩾ 1

2
√

k(2k−1)
R;

We thus have

vol(X) ⩾
(4π)kk!L

rk(2k)!

∥∥∥χ(X⊥)
∥∥∥

where χ(X⊥) is the Euler characteristic of the leaves of X⊥.
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Our corollary gives a partial description of how the topology of X in-

fluences its volume, at least when the unit dual form of X is closed and

X⊥ only has compact leaves. We also wish to remark that the constant

length of Y , the factor 1√
r
appears in the lower bound of Theorem 2.2.

When the length of Y is small (i.e., flow is slow), then the lower bound of

vol(Y ) is small.
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distribuições. Volume de campos unitários. Ph.D. Thesis, Universidade de
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