
Matemática Contemporânea, Vol. 35, 95–113

http://doi.org/10.21711/231766362008/rmc356

©2008, Sociedade Brasileira de Matemática
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Abstract

In this paper we review some author’s results about Weingarten

surfaces in Euclidean space R3 and hyperbolic space H3. We stress

here in the search of examples of linear Weingarten surfaces that
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rotational, a Riemann example or a generalized cone. Next we clas-
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1 Statement of results

A surface S in Euclidean space R3 or hyperbolic space H3 is called a

Weingarten surface if there is some smooth relation W (κ1, κ2) = 0 be-

tween its two principal curvatures κ1 and κ2. In particular, if K and H

denote respectively the Gauss curvature and the mean curvature of S,

W (κ1, κ2) = 0 implies a relation U(K,H) = 0. The classification of Wein-

garten surfaces in the general case is almost completely open today. After

earlier works in the fifties due to Chern, Hopf, Voss, Hartman, Winter,

amongst others, there has been recently a progress in this theory, specially

when the Weingarten relation is of type H = f(H2 − K) and f elliptic.

In such case, the surfaces satisfy a maximum principle that allows a best

knowledge of the shape of such surfaces. These achievements can see, for

example, in [2, 4, 5, 14, 15, 16].

The simplest case of functions W or U is that they are linear, that is,

aκ1 + bκ2 = c or aH + bK = c, (1)

where a, b and c are constant. Such surfaces are called linear Weingarten

surfaces. Typical examples of linear Weingarten surfaces are umbilical sur-

faces, surfaces with constant Gauss curvature and surfaces with constant

mean curvature.

A first purpose of the present work is to provide examples of linear

Weingarten surfaces that satisfy a certain geometric condition. A first

attempt is to consider that the surface is rotational, that is, invariant by

a group of isometries that leave fixed-pointwise a geodesic of the ambient

space. In such case, equations (1) lead to an ordinary differential equations

and the study is then reduced to finding the profile curve that defines the

surface.

A more general family of rotational surfaces are the cyclic surfaces,

which were introduced by Enneper in the XIX century. A cyclic surface

in Euclidean space R3 or H3 is a surface determined by a smooth unipara-

metric family of circles. Thus, a cyclic surface S is a surface foliated by

circles meaning that there is a one-parameter family of planes which meet
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S in these circles. The planes are not assumed parallel, and if two circles

should lie in planes that happen to be parallel, the circles are not assumed

coaxial. Rotational surfaces are examples of cyclic surfaces.

Our first result is motivated by what happens for cyclic surfaces with

constant mean curvature H. Recall that the catenoid is the only minimal

(H = 0) rotational surface in R3. If the surface is not rotational, then

the only cyclic minimal surfaces are a family of examples of periodic min-

imal surfaces discovered by Riemann, usually called in the literature as

Riemann examples [13]. If the mean curvature H is a non-zero constant,

then the only cyclic surfaces are the surfaces of revolution (Delaunay sur-

faces) [12]. In order to find new examples of linear Weingarten surfaces,

we pose the following question: do exist non-rotational cyclic surfaces that

are linear Weingarten surfaces?

In Section 2 we prove the following result:

Theorem 1.1. Let S be a cyclic surface in Euclidean space R3.

1. If S satisfies a relation of type aκ1 + bκ2 = c, then S is a surface of

revolution or it is a Riemann example (H = 0).

2. If S satisfies a relation of type aH + bK = c, then S is a surface of

revolution or it is a Riemann example (H = 0) or it is a generalized

cone (K = 0).

Recall that a generalized cone is a cyclic surface formed by a unipara-

metric family of u-circles whose centres lie in a straight line and the radius

function is linear on u. These surfaces have K ≡ 0 and they are the only

non-rotational cyclic surfaces in R3 with constant Gaussian curvature [6].

After Theorem 1.1, we focus on Weingarten surfaces of revolution in R3.

The classification of linear Weingarten surfaces strongly depends on the

sign of ∆ := a2 + 4bc. If ∆ > 0, the surface is said elliptic and satisfies

good properties, as for example, a maximum principle: see [5, 14]. If

∆ = 0, the surface is a tube, that is, a cyclic surface where the circles

have the same radius. Finally, if ∆ < 0, the surface is said hyperbolic
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(see [1]). In Section 3 we study hyperbolic rotational surfaces in R3. We

do an explicit description of the hyperbolic rotational linear Weingarten.

Examples of hyperbolic Weingarten surfaces are the surfaces with constant

negative Gaussian curvature K: we take a = 0, b = 1 and c < 0 in the

right relation (1). In contrast to the Hilbert’s theorem that asserts that

do not exist complete surfaces with constant negative Gaussian curvature

immersed in R3, we obtain (see Theorem 3.5):

Theorem 1.2. There exists a family of hyperbolic linear Weingarten com-

plete rotational surfaces in R3 that are non-embedded and periodic.

Finally, we are interested in linear Weingarten surfaces of revolution in

hyperbolic space H3. In hyperbolic space there exist three types of ro-

tational surfaces. We will study one of them, called parabolic surfaces,

that is, surfaces invariant by a group of parabolic isometries of the am-

bient space. This was began by do Carmo and Dajczer in the study of

rotational surfaces in H3 with constant curvature [3] and works of Gomes,

Leite, Mori et al. We will consider problems such as existence, symmetry

and behaviour at infinity. As a consequence of our work, we obtain the

following

Theorem 1.3. There exist parabolic complete surfaces in H3 that satisfy

the relation aH + bK = c.

Part of the results of this work have recently appeared in a series of

author’s papers: [7, 8, 9, 11].

2 Cyclic Weingarten surfaces in R3

In this section we will study linear Weingarten surfaces that are foliated

by a uniparametric family of circles (cyclic surfaces). In order to show the

techniques to get Theorem 1.1, we only consider Weingarten surfaces that

satisfy the linear relation aH+ bK = c. The proof consists into two steps.

First, we prove
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Theorem 2.1. Let S be a surface that satisfies aH + bK = c and it is

foliated by circles lying in a one-parameter family of planes. Then either

S is a subset of a round sphere or the planes of the foliation are parallel.

Proof: Consider P (u) the set of planes of the foliation, that is, S =⋃
u∈I P (u) ∩ S, u ∈ I ⊂ R, and such that P (u) ∩ S is a circle for each u.

Assume that the planes P (u) are not parallel . Then we are going to show

that the surfaces is a sphere. The proof follows the same ideas for the

case of the constancy of the mean curvature [12]. Let Γ be an orthogonal

curve to the foliation planes, that is, Γ′(u)⊥P (u). If {t,n,b} denotes the

usual Frenet trihedron of Γ, the surface S is locally parametrized by

X(u, v) = c(u) + r(u)(cos v n(u) + sin v b(u)), (2)

where r = r(u) > 0 and c = c(u) denote respectively the radius and centre

of each circle P (u) ∩ S. We compute the mean curvature and the Gauss

curvature of S using the usual local formulae

H =
eG− 2fF + gE

2(EG− F 2)
, K =

eg − f2

EG− F 2
.

Here {E,F,G} and {e, f, g} represent the coefficients of the first and sec-

ond fundamental form, respectively. Then the relation aH + bK = c

writes in terms of the curve Γ. Using the Frenet equations of Γ, we are

able to express the relation aH + bK = c as a trigonometric polynomial

on cos (nv) and sin (nv):

A0 +

8∑
n=1

(
An(u) cos (nv) +Bn(u) sin (nv)

)
= 0, u ∈ I, v ∈ [0, 2π].

Here An and Bn are smooth functions on u. Because the functions cos (nv)

and sin (nv) are independent, all coefficient functions An, Bn must be zero.

This leads to a set of equations, which we wish to solve. Because the curve

Γ is not a straight line, its curvature κ does not vanish.

The proof consists into the explicit computation of the coefficients An

and Bn and solving An = Bn = 0. The proof program begins with the



100 R. LÓPEZ

equations A8 = 0 and B8 = 0, which yields relations between the ge-

ometric quantities of the curve Γ. By using these data, we follow with

equations A7 = B7 = 0 and so on, until to arrive with n = 0. The author

was able to obtain the results using the symbolic program Mathematica to

check his work: the computer was used in each calculation several times,

giving understandable expressions of the coefficients An and Bn. Finally,

we achieve to show that X is a parametrization of a round sphere.

2

Once proved Theorem 2.1, the following step consists to conclude that

either the circles of the foliation must be coaxial (and the surface is ro-

tational) or that K ≡ 0 or H ≡ 0. In the latter cases, the Weingarten

relation (1) is trivial in the sense that a = c = 0 or b = c = 0.

Theorem 2.2. Let S be a cyclic surface that satisfies aH + bK = c. If

the foliation planes are parallel, then either S is a surface of revolution or

a = c = 0 or b = c = 0.

Proof: After an isometry of the ambient space, we parametrize S as

X(u, v) = (f(u), g(u), u) + r(u)(cos v, sin v, 0),

where f, g and r are smooth functions on u, u ∈ I ⊂ R and r(u) > 0

denotes the radius of each circle of the foliation. Then S is a surface of

revolution if and only if f y g are constant functions. Proceeding similarly

as in the proof of Theorem 2.1, Equation aH + bK = c is equivalent to an

expression
8∑

n=0

(
An(u) cos (nv) +Bn(u) sin (nv)

)
= 0.

Again, the functions An and Bn must vanish on I. Assuming that the

surface is not rotational, that is, f ′(u)g′(u) ̸= 0 at some point u, we

conclude that a = c = 0 or b = c = 0.

2

Recall what happens in the latter cases. The computation of H ≡ 0

and K ≡ 0 gives

f ′′ = λr2, g′′ = µr2, 1 + (λ2 + µ2)r4 + r′2 − rr′′ = 0, (3)
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and

f ′′ = g′′ = r′′ = 0, (4)

respectively. If (3) holds, we have the equations that describe the Riemann

examples (λ2+µ2 ̸= 0) and the catenoid (λ = µ = 0). In the case (4), the

surface S is a generalized cone.

As a consequence of the above Theorems 2.1 and 2.2, we obtain Theo-

rem 1.1 announced in the introduction of this work. Finally, the previous

results allow us to give a characterization of Riemann examples and gen-

eralized cones in the class of linear Weingarten surfaces.

Corollary 2.3. Riemann examples and generalized cones are the only

non-rotational cyclic surfaces that satisfy a Weingarten relation of type

aH + bK = c.

3 Hyperbolic linear Weingarten surfaces in R3

We consider surfaces S in Euclidean space that satisfy the relation

a H + b K = c (5)

where a, b and c are constants under the relation a2 + 4bc < 0. These

surfaces are called hyperbolic linear Weingarten surfaces. In particular,

c ̸= 0, which can be assumed to be c = 1. Thus the condition ∆ < 0 writes

now as a2 + 4b < 0. In this section, we study these surfaces in the class

of surfaces of revolution. Equation (5) leads to an ordinary differential

equation that describes the generating curve α of the surface. Without

loss of generality, we assume S is a rotational surface whose axis is the

x-axis. If α(s) = (x(s), 0, z(s)) is arc-length parametrized and the surface

is given by X(s, ϕ) = (x(s), z(s) cosϕ, z(s) sinϕ), then (5) leads to

a
cos θ(s)− z(s)θ′(s)

2z(s)
− b

cos θ(s)θ′(s)

z(s)
= 1, (6)

where θ = θ(s) the angle function that makes the velocity α′(s) at s with

the x-axis, that is, α′(s) = (cos θ(s), 0, sin θ(s)). The curvature of the
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planar curve α is given by θ′. In this section, we discard the trivial cases

in (5), that is, a = 0 (constant Gauss curvature) and b = 0 (constant

mean curvature).

The generating curve α is then described by the solutions of the O.D.E.
x′(s) = cos θ(s)

z′(s) = sin θ(s)

θ′(s) =
a cos θ(s)− 2z(s)

az(s) + 2b cos θ(s)

(7)

Assume initial conditions

x(0) = 0, z(0) = z0, θ(0) = 0. (8)

Without loss of generality, we can choose the parameters a and z0 to have

the same sign: in our case, we take to be positive numbers.

A first integral of (7)-(8) is given by

z(s)2 − az(s) cos θ(s)− b cos2 θ(s)− (z20 − az0 − b) = 0. (9)

By the uniqueness of solutions, any solution α(s) = (x(s), 0, z(s)) of (7)-

(8) is symmetric with respect to the line x = 0.

In view of (8), the value of θ′(s) at s = 0 is θ′(0) =
a− 2z0
az0 + 2b

. Our study

depends on the sign of θ′(0). We only consider the case

z0 >
−2b

a
(10)

which implies that z0 > a/2. The denominator in the third equation of (7)

is positive since it does not vanish and at s = 0, its value is az0 + 2b > 0.

As z0 > a/2, the numerator in (7) is negative. Thus we conclude that the

function θ′(s) is negative anywhere.

From (9), we write the function z = z(s) as

z(s) =
1

2

(
a cos θ(s) +

√
(a2 + 4b) cos2 θ(s) + 4(z20 − az0 − b)

)
. (11)

Lemma 3.1. The maximal interval of the solution (x, z, θ) of (7)-(8) is

R.
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Proof: The result follows if we prove that the derivatives x′, z′ and θ′ are

bounded. In view of (7), it suffices to show it for θ′ (recall that θ′(s) < 0).

We are going to find a negative number m such that m ≤ θ′(s) for all s.

To be exact, we show the existence of constants δ and η independent on

s, with η < 0 < δ, such that

az(s) + 2b cos θ(s) ≥ δ and a cos θ(s)− 2z(s) ≥ η. (12)

Once proved this, it follows from (7) that

θ′(s) ≥ η

δ
:= m. (13)

Define the function f(z0) := z20 − az0 − b. The function f is strictly

increasing on z0 for z0 > a/2. Using that a2 + 4b < 0, we have a
2 < −2b

a .

As z0 satisfies (10), there exists ϵ > 0 such that

z20 − az0 − b = f(−2b

a
) + ϵ =

b(a2 + 4b)

a2
+ ϵ.

From (11),

z(s) ≥ 1
2

(
a cos θ +

√
(a2 + 4b) cos2 θ + 4b

a2
(a2 + 4b) + 4ϵ

)
≥ 1

2

(
a cos θ − a2+4b

a + ϵ′
)
,

for a certain positive number ϵ′. By using that a2+4b < 0 again, we have

az(s) + 2b cos θ(s) ≥ a2 + 4b

2
(cos θ(s)− 1) +

a

2
ϵ′ ≥ a

2
ϵ′ := δ.

By using (11) again, we obtain

a cos θ(s)− 2z(s) ≥ −
√

(a2 + 4b) cos2(s)θ + 4f(z0) ≥ −2
√
f(z0) := η,

which concludes the proof of this lemma. 2

Lemma 3.2. For each solution (x, z, θ) of (7)-(8), there exists M < 0

such that θ′(s) < M .
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Proof: It suffices if we prove that there exist δ2, η2, with η2 < 0 < δ2

such that

az(s) + 2b cos θ(s) ≤ δ2 and a cos θ(s)− 2z(s) ≤ η2,

since (7) yields θ′(s) ≤ δ2/η2 := M . Using (11), we have

az(s) + 2b cos θ(s) =
1

2

(
(a2 + 4b) cos θ(s) + a

√
(a2 + 4b) cos2 θ(s) + 4f(z0)

)
≤ a

√
f(z0) := δ2.

On the other hand,

a cos θ(s)− 2z(s) = −
√

(a2 + 4b) cos2 θ(s) + 4f(z0)

≤ −
√
(a2 + 4b) + 4f(−2b/a) := η2.

2

Lemma 3.2 implies that θ(s) is strictly decreasing with

lim
s→∞

θ(s) = −∞.

Since Lemma 3.1 asserts that any solution is defined for any s, put T > 0

the first number such that θ(T ) = −2π. We prove that α is a periodic

curve.

Lemma 3.3. Under the hypothesis of this section and with the above

notation, we have:

x(s+ T ) = x(s) + x(T )

z(s+ T ) = z(s)

θ(s+ T ) = θ(s)− 2π

Proof: This is a consequence of the uniqueness of solutions of (7)-(8).

We only have to show that z(T ) = z0. But this is a direct consequence of

the assumption (10), that a2 + 4b < 0 and (11). 2

As conclusion of Lemma 3.3, we describe the behavior of the coordinates

functions of the profile curve α under the hypothesis (10). Due to the
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monotonicity of θ, let T1, T2 and T3 be the points in the interval [0, T ] such

that the function θ takes the values −π/2,−π and −3π/2 respectively. In

view of the variation of the angle θ with the time coordinate s, it is easy

to verify the following Table:

s θ x(s) z(s)

[0, T1] [−π
2 , 0] increasing decreasing

[T1, T2] [−π, −π
2 ] decreasing decreasing

[T2, T3] [−3π
2 ,−π] decreasing increasing

[T3, T ] [−2π, −3π
2 ] increasing increasing

Theorem 3.4. Let α = α(s) = (x(s), 0, z(s)) be the profile curve of a

rotational hyperbolic surface S in R3 where α is the solution of (7)-(8).

Assume that the initial condition on z0 satisfies z0 >
−2b
a . Then (see Fig.

1)

1. The curve α is invariant by the group of translations in the x-

direction given by the vector (x(T ), 0, 0).

2. In the period [0, T ] of z given by Lemma 3.3, the function z = z(s)

presents one maximum at s = 0 and one minimum at s = T2. More-

over, α is symmetric with respect to the vertical line at x = 0 and

x = x(T2).

3. The height function of α, that is, z = z(s), is periodic.

4. The curve α has self-intersections and its curvature has constant

sign.

5. The part of α between the maximum and the minimum satisfies that

the function z(s) is strictly decreasing with exactly one vertical point.

Between this minimum and the next maximum, z = z(s) is strictly

increasing with exactly one vertical point.
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6. The velocity α′ turns around the origin.

Theorem 3.5. Let S be a rotational hyperbolic surface in R3 whose profile

curve α satisfies the hypothesis of Theorem 3.4. Then S has the following

properties:

1. The surface has self-intersections.

2. The surface is periodic with infinite vertical symmetries.

3. The surface is complete.

4. The part of α between two consecutive vertical points and contain-

ing a maximum corresponds with points of S with positive Gaussian

curvature; on the other hand, if this part contains a minimum, the

Gaussian curvature is negative.

-2 -1 1 2

0.5

1

1.5

2

2.5

3

Figure 1: The generating curve of a rotational hyperbolic surfaces, with

a = −b = 2. Here z0 = 3. The curve α is periodic with self-intersections.

As it was announced in Theorem 1.2, and in order to distinguish from

the surfaces of negative constant Gaussian curvature, we conclude from

Theorem 3.5 the following

Corollary 3.6. There exists a one-parameter family of rotational hyper-

bolic linear Weingarten surfaces that are complete and with self-intersections

in R3. Moreover, the generating curves of these surfaces are periodic.
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4 Parabolic Weingarten surfaces in H3

A parabolic group of isometries of hyperbolic space H3 is formed by

isometries that leave fix one double point of the ideal boundary S2∞ of

H3. A surface S in H3 is called a parabolic surface if it is invariant by a

group of parabolic isometries. A parabolic surface S is determined by a

generating curve α obtained by the intersection of S with any geodesic

plane orthogonal to the orbits of the group.

We consider the upper half-space model of H3, namely, H3 =: R3
+ =

{(x, y, z) ∈ R3; z > 0} equipped with the metric ⟨, ⟩ = dx2+dy2+dz2

z2
. The

ideal boundary S2∞ of H3 is identified with the one point compactification

of the plane Π ≡ {z = 0}, that is, S2∞ = Π ∪ {∞}. In what follows, we

will use the words vertical or horizontal in the usual affine sense of R3
+.

Denote L = S2∞ ∩ {y = 0}.
Let G be a parabolic group of isometries. In the upper half-space model,

we take the point ∞ ∈ S2∞ as the point that fixes G. Then the group G

is defined by the horizontal (Euclidean) translations in the direction of a

horizontal vector ξ with ξ ∈ Π which can be assumed ξ = (0, 1, 0).

A (parabolic) surface S invariant by G parametrizes as

X(s, t) = (x(s), t, z(s)), where t ∈ R and the curve α = (x(s), 0, z(s)), s ∈
I ⊂ R, is assumed to be parametrized by the Euclidean arc-length. The

curve α is the generating curve of S. We write α′(s) = (cos θ(s), 0, sin θ(s)),

for a certain differentiable function θ, where the derivative θ′(s) is the Eu-

clidean curvature of α. With respect to the unit normal vector N(s, t) =

(− sin θ(s), 0, cos θ(s)), the principal curvatures are

κ1(s, t) = z(s)θ′(s) + cos θ(s), κ2(s, t) = cos θ(s).

The relation aH + bK = c writes then(a
2
+ b cos θ(s)

)
z(s)θ′(s) + a cos θ(s)− b sin2 θ(s) = c. (14)

We consider initial conditions

x(0) = 0, z(0) = z0 > 0, θ(0) = 0. (15)
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Then any solution {x(s), z(s), θ(s)} satisfies properties of symmetry which

are consequence of the uniqueness of solutions of an O.D.E. For example,

the solution is symmetric with respect to the vertical straight line x = 0.

Using uniqueness again, we infer immediately

Proposition 4.1. Let α be a solution of the initial value problem (14)-

(15) with θ(0) = θ0. If θ
′(s0) = 0 at some real number s0, then α is param-

eterized by α(s) = ((cos θ0)s, 0, (sin θ0)s+ z0), that is, α is a straight line

and the corresponding surface is a totally geodesic plane, an equidistant

surface or a horosphere.

In view of this proposition, we can assume that the function θ′(s) do

not vanish, that is, θ is a monotonic function on s. At s = 0, Equation

(14) is

θ′(0) =
2

z0

c− a

a+ 2b
.

This means that the study of solutions of (14)-(15) must analyze a variety

of cases depending on the sign of θ′(0). In this section, we are going to

consider some cases in order to show techniques and some results. First,

assume that c ̸= 0, which it can be assumed to be c = 1. Then we write

(14) as

θ′(s) = 2
1− a cos θ(s) + b sin2 θ(s)

z(s)(a+ 2b cos θ(s))
. (16)

Our first result considers a case where it is possible to obtain explicit

examples.

Theorem 4.2. Let α(s) = (x(s), 0, z(s)) be the generating curve of a

parabolic surface S in hyperbolic space H3 that satisfies aH + bK = 1 with

initial conditions (15). Assume a2 + 4b2 + 4b = 0. Then α describes an

open of an Euclidean circle in the xz-plane.

Proof: Equation (14) reduces into

−2bz(s)θ′(s) = a+ 2b cos θ(s).

By differentiation with respect to s, we obtain z(s)θ′′(s) = 0, that is, θ′(s)

is a constant function. Since θ′(s) describes the Euclidean curvature of α,
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we conclude that α parametrizes an Euclidean circle in the xz-plane and

the assertion follows. This circle may not to be completely included in the

halfspace R3
+. 2

From now, we assume a2 + 4b2 + 4b ̸= 0. Let us denote by (−s̄, s̄) the

maximal domain of the solutions of (14)-(15). By the monotonicity of

θ(s), let θ1 = lims→s̄ θ(s).

Theorem 4.3 (Case 0 < a < 1). Let α(s) = (x(s), 0, z(s)) be the gener-

ating curve of a parabolic surface S in hyperbolic space H3 that satisfies

aH + bK = 1 with initial conditions (15). Assume b ̸= 0 and 0 < a < 1.

1. If a+ 2b < 0, α has one maximum and α is a concave (non-entire)

vertical graph. If b < −(1 +
√
1− a2)/2, the surface S is complete

and intersects S2∞ making an angle θ1 such that 2 cos θ1− b sin2 θ1 =

0. The asymptotic boundary of S is formed by two parallel straight

lines. See Fig. 2 (a). If −(1 +
√
1− a2)/2 < b < −a/2, then S is

not complete. See Fig. 2 (b).

2. Assume a+ 2b > 0. If a− 2b > 0, then S is complete and invariant

by a group of translations in the x-direction. Moreover, α has self-

intersections and it presents one maximum and one minimum in

each period. See Fig. 3, (a). If a− 2b ≤ 0, then S is not complete.

Moreover α is not a vertical graph with a minimum. See Fig. 3, (b).

We point out that in each one of the cases of Theorem 4.3, we assert

the existence of parabolic complete surfaces in H3 with the property aH+

bK = c, such as it was announced in Theorem 1.3.

Proof: The second derivative of θ′′(s) satisfies

−θ′(s) sin θ(s)
[
bθ′(s)+

(a
2
+ b cos θ(s)

) ]
+
(a
2
+ b cos θ(s)

)
z(s)θ′′(s) = 0. (17)

1. Case a + 2b < 0. Then θ′(0) < 0 and θ(s) is strictly decreasing.

If cos θ(s) = 0 at some point s, then (14) gives (a/2)z(s)θ′(s) −
b − 1 = 0. Thus, if b ≥ −1, cos θ(s) ̸= 0 and −π/2 < θ(s) <

π/2. In the case that b < −1 and as a + 2b cos θ(s) < 0, it follows
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Figure 2: The generating curve of a parabolic surface with aH + bK = 1,

with 0 < a < 1 and a+ 2b < 0. Here z0 = 1 and a = 0.5. In the case (a),

b = −1 and in the case (b), b = −0.8.
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Figure 3: The generating curve of a parabolic surface with aH + bK = 1,

with 0 < a < 1 and a+ 2b > 0. Here z0 = 1 and a = 0.5. In the case (a),

b = −0.2 and in the case (b), b = 0.3.
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from (14) that a cos θ(s) − b sin2 θ(s) − 1 < 0 for any value of s,

in particular, cos θ(s) ̸= 0. This proves that x′(s) = cos θ(s) ̸= 0

and so, α is a vertical graph on L. This graph is concave since

z′′(s) = θ′(s) cos θ(s) < 0. Moreover, this implies that s̄ < ∞ since

on the contrary, and as z(s) is decreasing with z(s) > 0, we would

have z′(s) → 0, that is, θ(s) → 0: contradiction.

For s > 0, z′(s) = sin θ(s) < 0 and z(s) is strictly decreasing. Set

z(s) → z(s̄) ≥ 0. The two roots of 4b2 + 4b + a2 = 0 on b are

b = −1
2(1±

√
1− a2). Moreover, and from a+ 2b < 0, we have

−1

2
(1 +

√
1− a2) <

−a

2
< −1

2
(1−

√
1− a2).

(a) Subcase b < −(1 +
√
1− a2)/2. Under this assumption, a2 +

4b2 + 4b > 0. Since a < 1, we obtain

a+ 2b cos θ(s) < −
√
a2 + 4b2 + 4b. (18)

If z(s̄) > 0, then lims→s̄ θ
′(s) = −∞. In view of (16) we

have a + 2b cos θ(s̄) = 0: contradiction with (18). Hence,

z(s̄) = 0 and α intersects L with an angle θ1 satisfying a cos θ1−
b sin2 θ1 − 1 = 0.

(b) Subcase −(1+
√
1− a2)/2 < b < −a/2. Now a2+4b2+4b < 0.

The function 1−a cos θ(s)+b sin2 θ(s) is strictly decreasing and

its value at s̄ satisfies cos θ(s) > −a/2b. Thus

1− a cos θ(s) + b sin2 θ(s) ≥ a2 + 4b2 + 4b

4b
> 0. (19)

Assume z(s̄) = 0. Then (16) and (19) imply that θ′(s̄) = −∞.

Combining (16) and (17), we have

θ′′(s)

θ′(s)2
=

b sin θ(s)

z(s)
(
a
2 + b cos θ(s)

) +
sin θ(s)

(
a
2 + b cos θ(s)

)
1− a cos θ(s) + b sin2 θ(s)

.

From this expression and as sin θ(s̄) ̸= 0, we conclude

lim
s→s̄

θ′′(s)

θ′(s)2
= −∞.
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On the other hand, using L’Hôpital rule, we have

lim
s→s̄

z(s)θ′(s) = lim
s→s̄

−sin θ(s)
θ′′(s)
θ′(s)2

= 0.

By letting s → s̄ in (16), we obtain a contradiction. Thus,

z(s̄) > 0. This means that lims→s̄ θ
′(s) = −∞ and it follows

from (14) that

lim
s→s̄

(a
2
+ b cos θ(s)

)
= 0.

2. Case a+ 2b > 0. Then θ′(0) > 0 and θ(s) is strictly increasing. We

distinguish two possibilities:

(a) Subcase a − 2b > 0. We prove that θ(s) reaches the value π.

On the contrary, θ(s) < π and z(s) is an increasing function.

The hypothesis a − 2b > 0 together a + 2b > 0 implies that

a + 2b cos θ(s) ≥ δ > 0 for some number δ. From (16), θ′(s)

is bounded and then s̄ = ∞. In particular, lims→∞ θ′(s) = 0.

As both a − 2b and a + 2b are positive numbers, the function

bθ′(s) + (a + 2b cos θ(s)) is positive near s̄ = ∞. Then using

(17), θ′′(s) is positive for a certain value of s big enough, which

it is impossible. As conclusion, θ(s) reaches the value π at some

s = s0. By the symmetry properties of solutions of (14), α is

symmetric with respect to the line x = x(s0) and the velocity

vector of α rotates until to the initial position. This means that

α is invariant by a group of horizontal translations.

(b) Subcase a − 2b ≤ 0. As θ′(s) > 0, Equation (16) says that

cos θ(s) ̸= −1, and so, θ(s) is bounded by −π < θ(s) < π. As

in the above subcase, if s̄ = ∞, then θ′(s) → 0, and this is

a contradiction. Then s̄ < ∞ and lims→s̄ θ
′(s) = ∞. Hence,

cos θ(s̄) = −a/(2b) and θ(s) reaches the value π/2. 2
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