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Abstract

We use a complex analysis trick to provide a description in ex-

plicit coordinates of some fundamental dualities appearing in Bryant

surface theory. In particular, given a Bryant surface, we construct

in explicit coordinates the minimal surface in R3 associated to it via

the Lawson correspondence. We also give in explicit coordinates,

for any simply connected surface (Σ, g) of constant curvature κ, the

canonical isometric immersion of Σ into the model space Q2(κ) in

terms of a solution to the Liouville equation.

1 Introduction

Integrability theorems such as the Frobenius theorem and its modifica-

tions constitute a fundamental tool in surface theory, since they provide
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in many cases existence of surfaces with prescribed geometric data, or

correspondences between different classes of surfaces. In this sense, we

may quote for instance the fundamental theorem of surface theory, or the

correspondence between surfaces of constant negative curvature in R3 and

solutions to the sine-Gordon equation.

A limitation of these integrability techniques is that they do not provide

explicit coordinates for the surfaces that they prove to exist. Hence, it is

natural to analyze if some of these correspondences can be made explicit

in an alternative way.

In this note we will discuss the previous problem for the class of Bryant

surfaces. Let us recall that a Bryant surface is an immersed surface of

constant mean curvature H = 1 in the hyperbolic 3-space H3. These

surfaces are special among constant mean curvature (CMC) surfaces in

many aspects. For instance, they are connected to minimal surfaces in

R3 by the so-called Lawson correspondence: if (I, II) denote the first and

second fundamental forms of a simply connected Bryant surface, then

there exists a minimal surface in R3 whose first and second fundamental

forms are (I, II − I). In particular, both surfaces are locally isometric.

The term Bryant surface comes from the celebrated paper by R.L.

Bryant [Bry], in where a conformal representation for this type of sur-

faces was obtained. This representation constitutes the basic tool in the

global study of Bryant surfaces, and is basically a correspondence between

such surfaces and the class of holomorphic null curves in SL(2,C).
The Bryant representation uses the Hermitian model for H3 (see Section

3), and tells the following:

Theorem 1 ([Bry]). Let F : Σ → SL(2,C) be a holomorphic immersion

from a Riemann surface Σ, and suppose that F is null, i.e. det(dF ) = 0.

Then

f := FF ∗ : Σ→ H3 (1.1)

is a Bryant surface.

Conversely, any simply connected Bryant surface in H3 can be expressed

as (1.1) for some holomorphic null immersion F : Σ→ SL(2,C).
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These two fundamental results, the Bryant representation and the Law-

son correspondence, rely on the Frobenius theorem or some of its variants.

Thus, none of them is explicit at a first sight (although they can actually

be reformulated only in terms of first order data on the surfaces).

Our aim in this note is to show how, by means of a very simple classical

trick of complex analysis (see Section 2), we can make both correspon-

dences explicit. As a corollary, we will also describe in explicit coordi-

nates other useful dualities of Bryant surface theory, due to Umehara and

Yamada, and MartÃn, Umehara and Yamada, respectively. This will be

done in Section 3.

Besides, in Section 4, we will provide explicit coordinates for the canoni-

cal isometric immersion of a simply connected surface with constant curva-

ture surface κ into the 2-dimensional model space Q2(κ). This is another

basic result of surface theory that relies on auxiliary integrability results.

We make this existence result explicit by using complex analysis and the

connection of the problem with Liouville’s equation ∆u+ aeu = 0.

It is a pleasure for us to dedicate this paper to Prof. Manfredo do

Carmo, from whom we have learned so much through his books, articles,

conferences and personal conversations.

2 The extension operation

Let a(s, t) : Ω ⊂ R2 → C denote a real analytic function with complex

values, where Ω is a simply connected domain. We shall identify R2 ≡ C
by means of (s, t) 7→ s+ it.

By real analyticity, we may extend a(s, t) to a complex function

a(w1, w2) : Ω̃ ⊂ C2 → C,

where a(w1, ·), a(·, w2) are holomorphic functions on their corresponding

domains.

Let us remark that the complex function a(w1, w2) extends the original
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real analytic function a(s, t), in the sense that

Ω ⊂ {(w1, w2) ∈ Ω̃ : Imw1 = 0 = Imw2}.

So, formally, the extension is performed just by replacing the real variable

s (resp. t) by the complex variable w1 (resp. w2) in the expression a(s, t).

In order to simplify our reasoning, we will assume (0, 0) ∈ Ω. Thus, the

image of the complex curve

Γ : Ω −→ C× C

z 7→
(z
2
,
z

2i

)
.

lies on Ω̃ for |z| small enough.

Therefore, sufficiently close to the origin, the holomorphic function

a
(z
2
,
z

2i

)
(2.1)

is well defined. Formally, (2.1) is obtained just by making the substitutions

s 7→ z/2, t 7→ z/(2i) on a(s, t).

At this point, it is important to observe that if a(s, t) is holomorphic

and we denote z = s+ it, then the extension (2.1) is actually the proper

function a(s+it). Contrastingly, if a(s, t) is antiholomorphic, i.e. a(s, t) =

f(s− it) where f is holomorphic, then

a
(z
2
,
z

2i

)
= f(0) = const.

Thus, the idea behind the above extension operation is that (2.1) preserves

the holomorphic parts of a(s, t) and kills the antiholomorphic parts, turn-

ing them into constants.

3 Bryant surfaces

Let L4 be the Minkowski 4-space with canonical coordinates (x0, x1, x2, x3)

and the Lorentzian metric ⟨, ⟩ = −dx20 + dx21 + dx22 + dx23. The Hermitian
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model for L4 identifies L4 ≡ Herm(2) as

(x0, x1, x2, x3) ∈ L4 ←→

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
∈ Herm(2).

The metric ⟨, ⟩ on this model is determined by ⟨m,m⟩ = −det(m) for all

m ∈ Herm(2). In addition, the complex Lie group SL(2,C) acts on L4

through the isometric and orientation-preserving action

Φ ∈ SL(2,C) 7→ Φ ·m = ΦmΦ∗, m ∈ Herm(2), Φ∗ = Φ̄t.

This implies that the hyperbolic 3-space H3 = {x ∈ L4 : ⟨x, x⟩ = −1, x0 >
0} may be regarded as H3 = {ΦΦ∗ : Φ ∈ SL(2,C)}, where in this decom-

position Φ is unique up to right multiplication by an element of SU(2).

The next result recovers the holomorphic null immersion F in the Bryant

representation from the explicit coordinates of the surface, using the ex-

tension procedure explained in the previous section.

Theorem 2. Let f(s, t) : Ω ⊂ C→ H3 denote a simply connected Bryant

surface, where z = s+ it is a conformal parameter of the surface. Assume

without loss of generality that (0, 0) ∈ Ω and that f(0, 0) = Id2.

Then, the holomorphic null immersion F : Ω → SL(2,C) such that

F (0) = Id2 given by the Bryant representation can be explicitly obtained

from f by the formula

F (z) = f
(z
2
,
z

2i

)
. (3.1)

Proof: Define F̂ (z) := F ∗(z̄), which is a holomorphic curve in SL(2,C).
Then, from the Bryant representation, and using the real parameters (s, t)

with z = s+ it, we have

f(s, t) = F (s+ it) F̂ (s− it).

Now, we are in the conditions to apply the extension technique of Section

2, from which we get

f
(z
2
,
z

2i

)
= F (z)F̂ (0).
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Finally, using that f(0, 0) = Id2 and the SU(2) ambiguity of F , we can

assume that F (0) = Id2, and hence we obtain (3.1).

2

Remark: It is interesting to observe that for establishing (3.1) we did not

use that F is null, or that z = s+ it is conformal for the first fundamental

form of the surface. In other words, Theorem 2 is also true for any class

of surfaces in H3 for which a representation formula of the type f =

FF ∗ holds (F : Σ → SL(2,C) being holomorphic). This is the case, for

instance, of flat surfaces [GMM1] and, more generally, of linear Weingarten

surfaces of Bryant type [GMM2].

Example 3. An example of a Bryant surface invariant by hyperbolic

translations is

f(s+ it) =

 es cosh t −ieit sinh t

ie−it sinh t e−s cosh t

 : C→ H3 ⊂ Herm(2). (3.2)

The characteristic property of this example is that it contains the axis of

the hyperbolic translation group, see Figure 3.

By applying Theorem 2 we get directly that its associated null immersion

is

F (z) = f
(z
2
,
z

2i

)
=

 ez/2 cos(z/2) −ez/2 sin(z/2)

e−z/2 sin(z/2) e−z/2 cos(z/2)

 : C→ SL(2,C).

Indeed, a straightforward computation yields that F is null with f = FF ∗.

Application: the Lawson correspondence.

Any holomorphic null immersion F : Σ→ SL(2,C) satisfies (see [UY1])

F−1dF =

(
g −g2

1 −g

)
ω, (3.3)
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Figure 1: Hyperbolic invariant Bryant surfaces in the Poincaré model

containing the axis of the hyperbolic translation

where g is meromorphic and ω is a holomorphic 1-form. As F is an

immersion, the quantity (1+|g|2)2|ω|2 is a well defined Riemannian metric,

and (g, ω) are the Weierstrass data of a minimal surface ψ : Σ→ R3 given

by

ψ(z) = Re

∫ z

z0

(
(1− g2)ω, i(1 + g2)ω, 2gω

)
, (3.4)

provided that Σ is simply connected. In this situation, ψ is the cousin

surface of f = FF ∗, i.e. ψ and f are connected by the Lawson correspon-

dence.

Once here, it comes clear from Theorem 2 and (3.4) that the cousin

surface ψ : Σ→ R3 can be obtained from the coordinates of f : Σ→ H3,

just by performing an integration. Specifically, if

f(s, t) =

(
a(s, t) b(s, t)

b̄(s, t) c(s, t)

)
: Σ→ H3, (3.5)
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we have that

ψ(z) = Re

∫ z

z0


cbz − bcz + ab̄z − b̄az
i(bcz − cbz + ab̄z − b̄az)

2(caz − bb̄z)

(w2 , w2i) dw. (3.6)

Here, by definition,
∂

∂z
:=

1

2

(
∂

∂s
− i ∂

∂t

)
.

Example 4. Let us explain how formula (3.6) works if we start with the

specific Bryant surface of Example 3. In this case, the coordinates (3.5)

are given by (3.2), and so we have
cbz − bcz + ab̄z − b̄az
i(bcz − cbz + ab̄z − b̄az)

2(caz − bb̄z)

 (s, t) =


sinh(s− it)− i cosh(s− it) sinh(2t)
i cosh(s− it) + sinh(s− it) sinh(2t)

cosh(2t).

 .

Applying now the substitution in (3.6) and integrating yields

ψ(s, t) = (cos s cosh t,−t, sin s cosh t) : C→ R3,

i.e. the standard conformal parametrization of (the universal covering of) an

Euclidean catenoid.

Application: dual Bryant surfaces.

An extremely useful notion in Bryant surface theory is the following

duality introduced in [UY2]: if F : Σ → SL(2,C) is a null holomorphic

immersion, then so is F−1. By applying the Bryant representation to

F−1, and if Σ is simply connected, we obtain a new Bryant surface f ♯ :

Σ → H3 that is called the dual of the Bryant surface f = FF ∗. This

duality switches the roles played by the meromorphic function g and the

hyperbolic Gauss map G of the surface, and one is complete if and only

if the other one is complete, see [Yu].

With this, it is immediate from Theorem 2 that if f : Σ → H3 is a

Bryant surface given in coordinates by (3.5), then its dual surface f ♯ is
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explicitly given by

f ♯(z) =

 c
(
z
2 ,

z
2i

)
−b
(
z
2 ,

z
2i

)
−b̄
(
z
2 ,

z
2i

)
a
(
z
2 ,

z
2i

)
 c

(
z
2 ,

z
2i

)
−b̄
(
z
2 ,

z
2i

)
−b
(
z
2 ,

z
2i

)
a
(
z
2 ,

z
2i

)
 : Σ→ H3.

Application: a correspondence for null curves in C3 and SL(2,C).

In [MUY], the following correspondence was used to prove the existence

of complete bounded Bryant surfaces Ã la Nadirashvili :

T : {(x1, x2, x3) ∈ C3 : x3 ̸= 0} ↔ {(yij) ∈ SL(2,C) : y11 ̸= 0},

T (x1, x2, x3) =
1

x3

(
1 x1 + ix2

x1 − ix2 x21 + x22 + x23

)
.

This correspondence takes holomorphic null immersions in C3 into holo-

morphic null immersions in SL(2,C). As every minimal surface in R3 is

the real part of a null holomorphic immersion in C3, we can associate to

any Bryant surface f : Σ → H3 a new minimal surface ψ♭ : Σ → R3 by

the formula

ψ♭ = Re(T −1 ◦ F ),

where F is the null SL(2,C) immersion associated to f of Bryant’s repre-

sentation.

Thus, again, we can recover ψ♭ explicitly from the coordinates of f , by

means of Theorem 2. We omit the final formula, as the process is clear.

4 The Liouville equation

The Liouville equation is the quasilinear elliptic PDE

∆u+ aeu = 0, (4.1)

where a ∈ R is a constant that can be assumed to be a = 2ε, ε ∈ {−1, 0, 1},
up to a change of the form u 7→ u + c, c ∈ R. This equation has a
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geometrical nature. Indeed, on a given planar domain Ω, the conformal

metric eu(ds2+dt2) has constant curvature a/2 if and only if u is a solution

to (4.1). This tells in particular that (4.1) is conformally invariant.

The Liouville equation admits a resolution in terms of holomorphic data,

mainly due to Liouville [Lio] (see also [Bry, ChWa, GaMi1, GaMi2]).

Theorem 5. Let u : Ω ⊂ R2 ≡ C→ R denote a solution to ∆u+2ε eu = 0

in a simply connected domain Ω. Then there exists a locally univalent

meromorphic function g (holomorphic with 1 + ε|g|2 > 0 if ε ≤ 0) in Ω

such that

u = log
4|g′|2

(1 + ε|g|2)2
. (4.2)

Conversely, if g is a locally univalent meromorphic function (holomorphic

with 1+ ε|g|2 > 0 if ε ≤ 0) in Ω, then (4.2) is a solution to ∆u+2εeu = 0

in Ω.

The function g in the above theorem is called the developing map, and

is unique up to a transformation of the form

g 7→ αg − β̄
εβg + ᾱ

, |α|2 − ε|β|2 = 1. (4.3)

Consider now dσ2 = eu(ds2 + dt2) = eu|dz|2 a Riemannian metric of

constant curvature ε ∈ {−1, 0, 1} defined on a simply connected complex

domain Ω ⊂ C. Let g denote the developing map of u. Then g : (Ω, dσ2)→
Q2(ε) is an isometric immersion, where Q2(ε) is the 2-dimensional space

form of constant curvature ε:

Q2(1) = (C ∪ {∞}, 4|dw|2
(1+|w|2)2 ), Q2(0) = (C, 4|dw|2),

Q2(−1) = (D, 4|dw|2
(1−|w|2)2 ).

Observe that the change (4.3) amounts to compose g with an isometry

of Q2(ε), i.e. (4.3) is the natural ambiguity of the isometric immersion

problem.

Thus, any simply connected surface of constant curvature ε can be

isometrically immersed into Q2(ε), and the problem that we address here
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is: can this canonical isometric immersion be explicitly described? For

that, we only need to find the developing map g explicitly from dσ2 =

eu|dz|2.

Theorem 6. Let dσ2 = eu|dz|2 denote Riemannian metric of constant

curvature ε ∈ {−1, 0, 1} defined on a simply connected domain Ω ⊂ C.
Assume without loss of generality that 0 ∈ Ω, and that its developing map

g satisfies g(0) = 0 and g′(0) ∈ R. Then g is explicitly given by

g′(z) =
1

2 exp (u(0)/2)
exp

(
u
(z
2
,
z

2i

))
. (4.4)

Proof: Observe first that the conditions on g are not restrictive, by the

ambiguity (4.3).

Writing g∗(z) = g(z̄), by (4.2) we have

eu(s,t) =
4|g′(s+ it)|2

(1 + ε|g(s+ it)|2)2
=

4g′(s+ it)(g∗)′(s− it)
(1 + εg(s+ it)g∗(s− it))2

.

By the extension operation of Section 2 we have

exp
(
u
(z
2
,
z

2i

))
= 4(g∗)′(0)

g′(z)

(1 + εg(z)g(0))2
. (4.5)

Now, as g′(0) ∈ R and g(0) = 0, we have

(g∗)′(0) = g′(0) =
1

2
exp(u(0)/2).

Thus, we obtain (4.4) from (4.5).

2
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