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Abstract

The question of deciding when a locally invertible map admits a

global inverse is one of obvious importance, with applications and

connections to many different areas of mathematics. In this paper

we survey some of the recently discovered invertibility mechanisms,

rooted in global analysis, algebraic and differential geometry, topol-

ogy, complex analysis and dynamical systems.

1 Introduction

Various existence and uniqueness problems arising in algebraic geome-

try, complex analysis, nonlinear analysis and dynamical systems, as well

as various branches of applied mathematics, can be subsumed under a

single, unifying theme:

Programme. Let M be an n-dimensional non-compact differentiable

manifold, and f : M → Rn a smooth local diffeomorphism. Identify the

general topological, analytic and geometric mechanisms that force the map

f to be injective.
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The aim of this paper is to report on some of the work done in recent

years by the present author and his collaborators on various aspects of

the above Programme. To be sure, the issue of global invertibility has

been examined by many other authors in the past, but mainly from the

analytic and algebraic standpoints. For a sampler, we refer the reader

to [B1], [B2], [BW], [CMe], [D], [E], [Fe], [H], [G], [GLS], [Gu], [M], [O],

[P], [R], [So], [W], [Y], [Z], and the references therein. Here, we shall

concentrate on other aspects of the problem, most notably the ones that

have a topological or geometric flavor.

Since this (admittedly incomplete) survey is meant to appear on a Vol-

ume commemorating the many scientific accomplishments of Manfredo do

Carmo – the founder of the Brazilian School of Differential Geometry –,

special emphasis will be placed on interactions with differential geometry

itself but, to the extent possible, we will also discuss results originating in

other areas of mathematics.

The organization of this paper is as follows. In Section 2 we provide

several examples of central topics where the issue of global invertibility

comes up naturally, explaining along the way how the topics themselves

are interconnected. In the remaining sections we elaborate on some fairly

recent topological, analytic, dynamic and geometric results that comple-

ment our discussion in Section 2.

The presentation is interspersed with several open problems, no doubt

an attempt to lure the unsuspecting mathematician to this beautiful cor-

ner of our discipline.

2 A cornucopia of topics

We begin with a brief discussion of some important topics related to

the above Programme. Although at first they look disparate, as we shall

see in the course of our discussion they are actually connected at several

different levels.
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Topic I: The classical theory of univalent functions. A conformal

orientation-preserving local diffeomorphism that is defined in the open

unit disc D = {z ∈ C : |z| < 1} and takes values into R2 can be viewed as

a holomorphic function f : D → C. Of special interest is the case when

f is univalent, that is, injective. The class S of all holomorphic univalent

functions in D satisfying f(0) = 0 and f ′(0) = 1 was the object of much

study in the last century, culminating with the solution by de Branges [Br],

[S] of the celebrated Bieberbach conjecture: for any f ∈ S, the estimate

|f (k)(0)| ≤ kk! holds for all k ≥ 2. Equivalently, |f (k)(0)| ≤ kk!|f ′(0)| for
any injective holomorphic function on D.

The case k = 2, due to Bieberbach, yields the so-called distortion the-

orems which, in turn, imply the compactness of the class S ([S], p. 264).

Thus, the basic estimate |f ′′(0)| ≤ 4 for f ∈ S, most commonly written in

the form |a2| ≤ 2 where f(z) = z + a2z
2 + · · · , already yields important

qualitative information. In particular, it follows from the compactness

of S that there are constants Ck such that |f (k)(0)| ≤ Ck|f ′(0)| for ev-

ery k ≥ 2 and injective holomorphic function f on D. The Bieberbach

conjecture (the de Branges theorem) asserts that one can take Ck to be

kk!.

The Bieberbach estimate |f ′′(0)| ≤ 4|f ′(0)| has recently been general-

ized by F. Fontenele and the author [FX] to the case of arbitrary conformal

injective f : D → Rn, n ≥ 3. The new estimate involves two correction

terms. The first one is geometric, coming from the second fundamental

form of the image surface. The second term is of a dynamical nature and

involves certain Riemannian quantities associated to conformal attractors.

As we shall see in Section 4, this generalized Bieberbach estimate leads to

a natural conjecture in the theory of embedded minimal surfaces.

Topic II: The asymptotic stability conjecture. Consider a smooth

vector field X on the plane, vanishing at zero. If the eigenvalues of DX(0)

have negative real parts, an elementary result shows that every trajectory

of X that starts near 0 will be attracted to the origin. The asymptotic sta-
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bility conjecture, also known as the Markus-Yamabe conjecture, claimed

that if the eigenvalues of DX(z) have negative real part, for all z ∈ R2,

then 0 is a global attractor in the sense that every positive trajectory of

X converges to the origin.

By a theorem of Olech [O], it was known that the conjecture would

follow if it could be established that X, when viewed as a map from R2

into itself, is injective. This was accomplished by Gutierrez [Gu] (see

also Glutsiuk [G] and Fessler [Fe]). The solution by Gutierrez is specially

interesting to us. In fact, he proved the following stronger result: If a local

diffeomorphism F : R2 → R2 is such that [0,∞) ∩ Spec DF (z) = ∅ for

every z ∈ R2, then F is injective. In Section 5 we propose a considerable

strengthening of the Gutierrez theorem, casting the result in a differential-

geometric context.

Topic III: The jacobian conjecture. This well-known problem in

algebraic geometry claims that if K is an algebraically closed field and F :

Kn → Kn, n ≥ 2, is a polynomial map with constant jacobian determinant,

then F must be bijective [BW], [E]. It is known that it suffices to consider

the caseK = C, and to show that F is injective. Notice that for polynomial

maps F : Cn → Cn, the jacobian determinant is constant if and only if

F is a holomorphic immersion. In short, the jacobian conjecture can be

reformulated as follows: Every polynomial local biholomorphism F : Cn →
Cn is injective.

Despite considerable work, which led to the solution of the conjecture in

some special cases, in its full generality the problem remains open, even in

case of two variables. In [NTX], topological arguments are used to prove

that the jacobian conjecture is true in a ”generic” sense (see Section 4 for

details).

The search for a solution to the jacobian conjecture can be seen as being

part of the much larger (and seemingly harder) task of understanding the

structure of the group of biholomorphisms of Cn, when n ≥ 2. This is the
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subject of the next topic.

Topic IV: Automorphisms of Cn. The group Aut (Cn) of biholomor-

phisms of Cn is largely unknown if n > 1. In stark contrast, Aut (C)
is rather small, consisting of the non-constant affine linear maps. The

description of Aut (C) follows from the observation that an injective holo-

morphic function f : C → C satisfying f(0) = 0 and f ′(0) = 1 must be

the identity. These considerations suggest that similar characterizations

of the identity might be useful in understanding the structure of Aut (Cn).

On the other hand, any expectations in this regard should be tempered

by the fact that injective entire maps are not necessarily in Aut (Cn) if

n ≥ 2, as shown by the classical examples given by Fatou and Bieberbach

([BM], p. 45), where the image of the map omits a non-empty open set.

Another consideration is the fact that the identity cannot be characterized,

if n ≥ 2, solely by finitely many pointwise conditions at zero. In order

to see this, one can take the automorphisms of C2 given by F (x, y) =

(x+ p(y), y), where the polynomial p is arbitrary. In particular, F can be

made to coincide with the identity up to an arbitrarily high order simply

by taking p(y) = yd with d sufficiently high.

The above discussion shows that some kind of global condition is nec-

essary if one is to prove a rigidity theorem for the identity ICn in higher

dimensions. Such a condition was found in [X3] and will be discussed in

Section 4.

3 Global Inversion: Topological and real-analytic

arguments

A basic result in Riemannian geometry, the Cartan-Hadamard theo-

rem, states that the exponential map at any point of a complete simply-

connected manifold of non-positive sectional curvature is a diffeomor-

phism. From a geometric standpoint, what makes the theorem true is
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the fact that the exponential map does not decrease distance or, what is

the same, that the inverse of the differential of the exponential map has

norm bounded by one.

The same kind of argument applies to local diffeomorphisms of Rn,

yielding what is known as the Hadamard Theorem in the classical litera-

ture on the theory of ordinary differential equations. In fact, the topolog-

ical arguments involved are fairly basic facts about covering spaces and

proper maps (but not local compactness), and so they work for infinite

dimensional spaces as well:

Theorem 1 ([P]). Let X be a Banach space and f : X → X a smooth

local diffeomorphism. If

sup
x∈X

||Df(x)−1|| < ∞,

then f is bijective.

In [NX1] the authors used degree theory to show that the above theorem

can be substantially improved if dimX < ∞:

Theorem 2 ([NX1]). Let f : Rn → Rn be smooth. For v ∈ Rn, let

Sv = {Df(x)∗v : x ∈ Rn}.

(a) If 0 /∈ Sv for each non-zero v ∈ Rn, then f is locally invertible.

(b) If 0 /∈ Sv for each non-zero v ∈ Rn, then f is globally invertible.

Observe that condition (b) amounts to

inf
x∈Rn

||Df(x)∗v|| = inf
x∈Rn

||∇⟨f, v⟩(x)|| > 0, v ̸= 0.

Part (a) is the usual inverse function theorem and is included in the state-

ment of the theorem for comparison purposes only. Thus, the passage

from local to global injectivity is achieved by stipulating that 0 should not

be in the closure of Sv, for every non-zero v. Consider the containment
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⋃
v ̸=0

Sv ⊂
⋃
v ̸=0

Sv.

Condition (b) asks only that

0 /∈
⋃
v ̸=0

Sv.

The stronger condition

0 /∈
⋃
v ̸=0

Sv

turns out to be simply a rewriting of the Hadamard condition in Theorem

1 above. This subtle distinction is illustrated by the simple map f : R2 →
R2, given by f(x, y) = (x + y3, y). The map f is clearly injective, a fact

that is picked up by Theorem 2 but not by Theorem 1 (see [NX1], p. 19).

The basic idea in the proof of Theorem 2 is to create a mechanism

that works as a “non-linear adjoint”, transforming injectivity questions

into problems about surjectivity that can then be handled using degree

theory.

Example 1. Every quadratic polynomial local diffeomorphism of Rn

into itself is bijective. Indeed, for a given v ̸= 0 the set Sv is an affine

hyperplane, hence closed. Since f is a local diffeomorphism, 0 /∈ Sv = Sv,

and the result follows from the above theorem. The first proof of the

invertibility of quadratic polynomial with constant jacobian determinant

was given by Wang [W], using algebraic arguments. Thanks to the work of

Yagzhev [Y], Druzkowski [D], and Bass-Connell-Wright [BW], it is known

that it suffices to settle the jacobian conjecture for certain types of cubic

polynomial maps.

2

As it was mentioned before, the proof of Theorem 2 is based on argu-

ments involving degree theory, and so they cannot be directly extended to

the infinite dimensional setting. On the other hand, various degree the-

ories have been introduced in infinite dimensions, for suitably restricted
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classes of maps. The main argument in [NX1] extends verbatim to the

infinite dimensional situation, but it is not clear what kind of differential

condition on f should be imposed in order for the relevant maps to be

admissible for degree theory. A positive solution to the problem below

would quite likely have interesting applications in non-linear analysis.

Problem 1. Under what additional structural conditions on the differ-

ential of a smooth Banach space local diffeomorphisms f : X → X is the

condition

inf
x∈X

||Df(x)∗v|| > 0, v ̸= 0,

sufficient to guarantee that f is bijective? What if Df(x) is a suitable

Fredholm operator, perhaps a compact perturbation of the identity?

Another insight into the global injectivity question, one that has been

proven rather fruitful, is the following nearly tautological observation: a

local diffeomorphism f : Rn → Rn is injective if and only if the pre-image

of every point is a connected set. Can one infer injectivity from the knowl-

edge that the pre-images of certain positive dimensional submanifolds are

connected?

In regards to this question, it can be shown that (b) in Theorem 2

implies directly that the pre-image of every affine hyperplane is connected.

Earlier, S. Nollet and the author had noticed that any map satisfying the

hypotheses of the jacobian conjecture (Topic III) automatically possesses

the property that the pre-image of every real hyperplane in R2n ∼= Cn

is connected. This is a consequence of a classical theorem of Bertini in

algebraic geometry (apart from some exceptional situations, the generic

element in a pencil is irreducible). We were then led to ask

Problem 2. Let f : Rn → Rn be a local diffeomorphism satisfying the

property that the pre-image of every affine hyperplane is non-empty and

connected. Must f be bijective?

In his 2006 University of Notre Dame Dissertation (see also [B1]), E.



THE GLOBAL INVERSION PROBLEM: A CONFLUENCE OF 249

Cabral Balreira gave an affirmative solution to this problem under a

stronger assumption on the topology of the pre-images of the affine hy-

perplanes. Recall that a topological space is called acyclic if it has the

homology of a point.

Theorem 3 ([B1]). Let f : Rn → Rn be a local diffeomorphism.

(a) If the pre-image of every affine hyperplane is empty or acyclic, then f

is injective.

(b) If the pre-image of every affine hyperplane is non-empty and acyclic,

then f is bijective.

Observe that the second part of Theorem 3 provides a condition that

is both necessary and sufficient for a local diffeomorphism to be bijective.

As remarked before, Theorem 1 follows from Theorem 2. Using simple

arguments from Morse theory one can see that Theorem 2 is a consequence

of Theorem 3.

Recent discoveries have added considerably to our understanding of the

phenomenon of global injectivity. This is exemplified by the three theo-

rems discussed in this section, based on increasingly more sophisticated

topological arguments: covering spaces theory, degree theory, and inter-

section theory.

4 Global Inversion: Topological and complex-

analytic arguments

We now turn our attention to the jacobian conjecture (Topic III). Let

then F : Cn → Cn be a polynomial local biholomorphism. Recall that

(JC) claims that F must be injective. From general principles in algebraic

geometry, it is known that there exists an algebraic complex hypersurface

D ⊂ Cn (possibly reducible and with singularities) such that the induced

map Cn − F−1(D) → Cn −D is a d-sheeted covering map where d < ∞.

Injectivity will follow if one can show d = 1.
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We summarize below the study made in [NTX] of the topological prop-

erties of D in a possible counterexample to the jacobian conjecture.

An algebraic hypersurface D ⊂ Cn is given by a polynomial equation

f(z1, · · · , zn) = 0. A theorem of Verdier [V] states that the corresponding

map f : Cn → C is a locally trivial topological fibration away from a

finite set subset of C. The smallest such set is called the bifurcation

locus of f , and is denoted by Bf . The bifurcation locus contains the

images of critical points of f , but it may also contain other points, coming

from “singularities at infinity”. The hypersurface D will be called non-

bifurcated if 0 /∈ Bf , where f is a polynomial of minimal degree defining

D.

Theorem 4 ([NTX]). Fix n > 1 and let D ⊂ Cn be a smooth connected

non-bifurcated hypersurface. If F : X → Cn is a local diffeomorphism of

simply connected manifolds which is a d-fold covering map away from D,

then d = 1 or d = ∞.

The proof of the above dichotomy is based on: i) a counting argu-

ment that uses the orientability of complex hypersurfaces in a crucial way,

ii) separation properties of real hypersurfaces, and iii) arguments from

surgery theory.

After certain geometric constructions, the relevant question becomes

the following: Given an algebraic hypersurface D of Cn, is there a real

hypersurface V such that ∂V = D and Cn − V is simply-connected?

When n = 1 an algebraic hypersurface is simply a finite number of points

in C, and one can take V to be the union of non-intersecting infinite rays

emanating from the points of D. Realizing the condition ∂V = D is

easy in any dimension, but there are obstructions if n ≥ 2 to make the

complement of V simply-connected. It is precisely to achieve this that

surgery theory is used, in order to kill certain homotopy classes.

If the map F in Theorem 4 is algebraic the alternative d = ∞ can-

not occur, and thus one obtains the following application to the jacobian
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conjecture.

Theorem 5 ([NTX]). Let D ⊂ Cn be a smooth connected non-bifurcated

hypersurface. If F : Cn → Cn is a polynomial map with non-vanishing ja-

cobian determinant and #F−1(q) = degF for q /∈ D, then F ∈ Aut (Cn).

Next, we consider the global invertibility problem in the context of

general local biholomorphisms, not necessarily algebraic. But first we

discuss an example where differential geometry plays a key role.

Example 2. Let F : Cn → Cn, n ≥ 2, be a local biholomorphism with

the property that the pre-image of every complex line is both connected

and simply connected. We claim that F is injective.

Indeed, if F is not injective we may suppose that F (p) = F (q) = 0,

with p ̸= q, so that F−1(l) contains both p and q for all one-dimensional

complex subspaces l. It is easy to see that the complex curve F−1(l) (=

an open Riemann surface) is properly embedded in Cn, whether F is a

proper map or not. Hence, with respect to the induced flat Riemannian

metric of Cn, F−1(l) is a complete simply connected real surface.

Since F−1(l) is a complex submanifold of Cn, it has non-positive cur-

vature. Hence, F−1(l) is a Hadamard surface, so that any two points can

be joined by a unique geodesic. Given l ∈ Pn−1, let w(l) denote the initial

vector of the (unique) unit-speed geodesic along F−1(l) joining p to q, and

set v(l) = dF (p)w(l) ∈ Tl,0.

Notice that, as l varies inside CPn−1, all geodesic segments are con-

tained in a fixed compact set of Cn. The map v is continuous because

geodesics converge to geodesics in the C2 topology (which, after passing

to subsequences, is a consequence of C3 uniform boundedness) and from

the uniqueness of the geodesic along F−1(l). Since v is non-vanishing, it is

clear that the map CPn−1 → S2n−1, given by l → v(l)/|v(l)|, is a continu-

ous section of the Hopf map π : S2n−1 → CPn−1 (the latter is the natural

map that associates to a point in the unit sphere the unique complex line
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joining the origin to the point in question). But this is a contradiction

since, as it is well known, the Hopf map admits no continuous sections.

For instance, the composite map in cohomology

H2(CPn−1) → H2(S2n−1) → H2(CPn−1),

induced by a continuous section, would be the identity. But this is impos-

sible, since H2(CPn−1) ̸= 0 whereas H2(S2n−1) = 0.

2

For some questions in complex analysis curvature considerations are

indispensable. For instance, the invariant form of the Schwarz lemma

simply says that every holomorphic self-map of the open unit disc in C
is distance non-increasing, relative to the Poincaré metric. The question

then arises as to whether the role of curvature in the above example is

essential, or merely a technical artifact. In [NX2], the authors prove a

theorem, using similar arguments, that is curvature-free.

To explain the result, we start by defining a rigid domain D ⊂ CP1 to

be an open domain that can be holomorphically embedded in CP1 in a

unique way, up to Moebius transformations. For instance, the complement

of a finite set in C (a connected rational curve, in the algebraic geometry

terminology) is rigid. By contrast, any simply-connected subset of C,
other than C itself, is highly non-rigid by the Riemann mapping theorem.

Theorem 6 ([NX2]). Let X be a connected complex manifold of dimen-

sion n ≥ 2, F : X → Cn a local biholomorphism. Fix q ∈ F (X) and

suppose that F−1(l) is conformal to a rigid domain Dl for every complex

line l passing through q. Then q is assumed exactly once by F .

Next, we turn our attention to Topic IV in Section 2. As we indicated

there, in [X3] we were able to prove a rigidity theorem for the identity in

Cn, among univalent local biholomorphisms:
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Theorem 7 ([X3]). An injective local biholomorphism f : Cn → Cn is

the identity if and only if

(i) The power series at 0 of f − I has no terms of order ≤ 2n+ 1.

(ii) The function |detDf(z)| |z|2n |f(z)|−2n is subharmonic on Cn.

Problem 3. One would like to improve the vanishing condition in (i) to

≤ 2n−1, or even replace it with f(0) = 0, Df(0) = I. If this could be done

the resulting statement would be sharp, regarding the dimension, already

when n = 1. Indeed, when n = 1 the function in (ii) can be realized as

the absolute value squared of a holomorphic function, and therefore it is

automatically subharmonic.

2

The arguments in [X3] are essentially of a real-variables nature, al-

though they are inspired by the proof of the classical Bieberbach estimate

(see Topic I). In the classical setting, an important role is played by the

complex inversion z → z−1. The main idea in the higher dimensional case

is to use the inversion in the unit sphere, to the extent that is possible,

as a substitute for the complex inversion. At the conceptual level, Fourier

(power) series are then replaced by spherical harmonics.

We close this section by making some comments about the embeddednes

question for minimal surfaces in R3. Although we are no longer working

in the realm of local diffeomorphisms, embeddednes of surfaces can clearly

be cast as an injectivity question. A simply-connected immersed minimal

surface M in R3 is obtained as the image of a conformal harmonic im-

mersion f : Ω → R3, where Ω is either the open unit disc D ⊂ C, or C
itself. The only such examples M that are proper and embedded (i.e., f

is injective) are planes and helicoids. This important theorem was estab-

lished by Meeks-Rosenberg [MR] using, among other arguments, results

from the Colding-Minicozzi theory of embedded minimal discs (see, e.g.

[CM1]-[CM4]).



254 F. Xavier

The classical link between the theory of minimal surfaces and complex

analysis has been explored, with great success, to tackle other fundamental

geometric problems. Given the history of the subject, one would like to

have a complex-analytic interpretation of the works of Colding-Minicozzi

and Meeks-Rosenberg, with the hope that more could be revealed about

the structure of embedded minimal discs.

In this context, a central theme is the role of the conformal type in the

embeddedness question for minimal surfaces. In particular, one would like

to know, in the Meeks-Rosenberg theorem, if parabolicity alone suffices:

Problem 4. If g : C → R3 is a non-flat conformal harmonic embedding,

must g(C) be a helicoid?

There is a vague and yet compelling analogy between the theory of

conformal harmonic embeddings of the open unit disc D into R3, and the

theory of holomorphic univalent functions on D (Topic I). Below is one

aspect of this relationship.

It is an easy matter to use the Bieberbach estimate |f ′′(0)| ≤ 4|f ′(0)|
and a scaling argument to retrive the well known fact that the only uni-

valent entire functions are of the form f(z) = az + b, a ̸= 0. One ought

to regard the last statement as the complex analytic form of the (much

harder) Problem 4. Indeed, in both cases one would have scarcity of in-

jective objects.

As mentioned in our discussion of Topic I in Section 2, the Bieberbach

estimate |f ′′(0)| ≤ 4|f ′(0)| has been generalized recently by F. Fontenele

and the author [FX] to the case of arbitrary conformal embeddings f :

D → Rn. At present, however, it is not clear how these results can be

used to study Problem 4.
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5 Global Inversion: Geometric and dynamical

arguments (I)

We begin by elaborating on our comments about Topic III, Section

2. The global stability conjecture (also known as the Markus -Yamabe

conjecture), stated that if X is a sufficiently smooth vector field in the

plane such that X(0) = 0 and the real parts of the eigenvalues of the

matrices DX(z) have negative real part, for all z ∈ R2, then the origin is

a global attractor. In other words, every forward trajectory ϕt(z) of X is

defined for all positive times and satisfies limt→∞ ϕt(z) = 0.

We recall the famous Gutierrez Injectivity Theorem [Gu], which implies

the Markus-Yamabe conjecture: If a local diffeomorphism F : R2 → R2 is

such that [0,∞) ∩ Spec DF (z) = ∅ for every z ∈ R2, then F is injective.

Before we go on to propose a geometric framework for the Gutierrez the-

orem, we provide some elementary examples to illustrate the truly global

nature of his result.

It is natural to inquire if injectivity is a consequence of the spectral

condition [0,∞)∩ Spec DF (z) = ∅, where the map F is now defined only

on a convex subset Ω of the plane. This question has a negative answer, as

shown by the following simple example. Take Ω to be the open upper half

plane in C and consider the real map underlying F : Ω → C, F (z) = z3.

For z ∈ Ω, the derivative F ′(z) = 3z2 misses [0,∞) and yet F is not

one-to-one.

Despite the observation in the last paragraph, under a suitable spectral

condition a local diffeomorphism defined on a convex set can be shown

to be injective: If Ω ⊂ R2 is open, convex and F : Ω → C satisfies the

stronger spectral condition R ∩ Spec DF (z) = ∅ for all z ∈ Ω, then F is

injective.

To see this, suppose F (a) = F (b), with a ̸= b, and set v = b − a. The

function g on [0, 1] given by g(t) = ⟨F (a + tv), v⊥⟩ satisfies g(0) = g(1).

By the mean value theorem, there is a point z in the line segment [a, b]
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such that ⟨DF (z)v, v⊥⟩ = 0. In particular, v is an eigenvector of DF (z)

corresponding to a real eigenvalue, a contradiction.

Differential geometry provides concrete examples of planar maps whose

jacobians have no real eigenvalues. Let M ⊂ R3 be a surface of positive

curvature that is given by the graph of a function f defined on a convex

subset Ω of R2. Consider now the map F : Ω → R2,

F (x, y) = (
∂f

∂y
,−∂f

∂x
) = −J∇f,

where J is the complex structure. Since DF is traceless and detDF > 0,

the eigenvalues of DF are purely imaginary. By the argument in the

preceding paragragh, F is injective.

Notice that the last conclusion is equivalent to the fact that the Gauss

map G : M → S2,

G(x, y) = (1 + |∇f |2)−
1
2 (−fx,−fy, 1),

of a graph z = f(x, y) of positive curvature, is necessarily injective if (x, y)

runs over a convex domain (recall that the sign of the curvature is the sign

of the quantity fxxfyy−f2
xy). Here, the condition of convexity is essential.

Indeed, there exist graphs of positive curvature (over non-convex domains,

obviously) that have non-injective Gauss maps. One such explicit example

was kindly communicated to us by M. Ghomi (who also draw our attention

to [AG], [Gh1] and [Gh2]). In fact, as it will be shown below, it is not

difficult to construct such examples.

Example 3. Start with the arc Γ of the unit circle given by Γ =

{(cos θ, sin θ) | − π
2 ≤ θ ≤ π}. Let a = a(θ), b = b(θ) be positive smooth

functions on [−π
2 , π] such that∫ π

−π
2

a(θ) sin θ =

∫ π

−π
2

b(θ) cos θ = 0.

One can see, either arguing directly or by invoking the Whitney extension

theorem, that there is a smooth function f , defined in a neighborhood of
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Γ, such that, along Γ, one has fxx = a, fxy = 0, fyy = b. One can then

compute, along Γ,

d

dθ
(fx) = −a sin θ,

d

dθ
(fy) = b cos θ.

The above orthogonality conditions imply that∇f takes on the same value

at (0,−1) and (−1, 0). In particular, the graph z = f(x, y), for (x, y) in

a sufficiently small (hence non-convex) neighborhood of Γ has positive

curvature (fxxfyy − f2
xy > 0 near Γ) and non-injective Gauss map.

2

To sum up, we have seen that the Gutierrez theorem fails for convex

subsets of the plane; also, under the stronger assumption that the spectra

of the jacobians miss the real line, convexity of the domain implies injec-

tivity. Besides, the last conclusion may fail if the domain in question is

not convex. In [SX], Thm. 3, we proved a “hybrid ”injectivity theorem,

involving both spectral conditions:

(•) If the C1 map F : B(r) → R2 satisfies [0,∞) ∩ Spec DF (z) = ∅
∀z ∈ B(r) and R ∩ Spec DF (z) = ∅ ∀z /∈ B(r/

√
2), then F is injective on

B(r/
√
2).

Problem 5. Is the constant
√
2 that appears in the above theorem the

best possible?

In exploring the relationship between the phenomenon of global injec-

tivity and the eigenvalues of the Jacobian matrix, one cannot fail to men-

tion the Chamberland conjecture, which is more general than the jacobian

conjecture:

Problem 6. (Chamberland) If F : Rn → Rn is a C1 map and the

eigenvalues of DF (p) are globally bounded away from zero, then F is

injective.

Next, we return to our original theme of understanding the Gutierrez

theorem from a geometric point of view. Consider two smooth oriented
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planar foliations. We say that they are loosely transversal if, for every

point of their common domain, either the leaves are transversal or they

are tangent but have opposite orientations at the tangency point.

It is not difficult to see that the spectral condition [0,∞)∩Spec DF (z) =

∅ in the Gutierrez theorem is equivalent to the geometric condition that

every foliation of R2 by parallel lines is loosely tranversal to its pull-back

foliation under the local diffeomorphism. Likewise, the stronger spectral

condition R ∩ Spec DF (z) = ∅ is equivalent to the condition that the

above foliations are actually transversal.

In the context of Hadamard surfaces (i.e., complete simply connected

surfaces of non-positive curvature), parallel lines are horocycles corre-

sponding to the same point at infinity. One is thus led to the following

problem, meant to provide a geometrization of the Gutierrez Injectivity

Theorem:

Problem 7. Let f : (M, g) → (M, g) be an orientation-preserving local

diffeomorphism of an oriented Hadamard surface. Suppose that for every

ideal point v ∈ M(∞), the horocycle foliation Hv and its pull-back folia-

tion f∗(Hv) are loosely transversal. Is it true that f must be injective?

If (M, g) is the flat plane the answer is yes, as given by the Gutier-

rez theorem. In [X1] we used degree theory to answer this question in

the affirmative, under the additional assumption that, asymptotically, the

foliations Hv and f∗(Hv) are actually transversal, for all v ∈ M(∞).

The arguments of Gutierrez are based on the analysis of the so-called

Half-Reeb components. It is quite possible that his original arguments

carry over to the geometric setting of Problem 7. Of course, one would still

need a “dictionary”to go from the linear (flat) case to general Hadamard

surfaces (e.g., linear functions correspond to Busemann functions).

One should also point out that the natural generalization of the theorem

of Gutierrez does not hold if n ≥ 3, although one can prove a global
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injectivity theorem with nearly spectral hypotheses ([SX]).

6 Global Inversion: Geometric and dynamical

arguments (II)

We end this survey with a class of geometric theorems where the key

insight comes from dynamics. Given a local diffeomorphism f : Rn → Rn,

the following naive idea comes to mind in trying to prove that f is bijective.

Let q be a point in Rn and consider the n affine coordinate hyperplanes

through q, say H1, · · · , Hn. The point q will be in the image of f if

and only if the hypersurfaces f−1(Hj), 1 ≤ j ≤ n, have a non-empty

intersection. Furthermore, q is covered only once if the intersection of

these hypersurfaces reduces to a single point. One is then led to the

following purely geometric question:

Problem 8. Given compact submanifolds with boundary, sayM1, · · · ,Mk ⊂
Rn, perhaps of different dimensions, under what geometric conditions are

the interiors of the submanifolds going to have a non-empty stable inter-

section?

Although at first this looks like a hopelessly general question, it is never-

theless possible to give a satisfactory answer that allows for some amusing

global applications.

In order to guarantee that the property of non-empty intersection in

Problem 8 is persistent under small deformations, and since one does not

know a priori, where the intersection is going to lie, it is natural to require

that for all choices of points pj ∈ Mj , the normal spaces

[Tp1M1]
⊥, · · · , [TpkMk]

⊥

are in direct sum. Starting from this natural assumption, we proved in

[X2] that the intersection of all submanifolds Mj is non-empty provided a

certain estimate holds. The inequality in question involves what seems to

be the three essential quantitative features of the problem:
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i) The Riemannian sizes of the submanifolds (relative to the natural in-

duced metrics).

ii) A weighed measure of the effect of the Euclidean translations.

iii) The deviation from orthogonality of all direct sums [Tp1M1]
⊥ ⊕ · · · ⊕

[TpkMk]
⊥.

For the sake of illustration, we give here the special case of the main

estimate of [X2] that corresponds to two compact hypersurfaces (with

boundary) contained in Rn:

(•) Let α ∈ [0, π2 ] be the infimum of the angles formed by all normal lines

corresponding to arbitrary points in intM1 and intM2, one point from each

hypersurface. If α > 0 and
√
1 + cosα

1− cosα
< sup

q1∈M1,q2∈M2

min{d1(q1, ∂M1), d2(q2, ∂M2)}
|q1 − q2|

,

then (intM1) ∩ (intM2) ̸= ∅.

The reader is invited to experiment with flat discs in R3, of various sizes

and normals, in order to show that the above result is sharp.

The global consequences of the general version of the above inequality

are quite pleasing, allowing one to extend the basic intersection properties

of linear affine subspaces to the non-linear context:

Theorem 8 (A non-linear view of linear algebra [X2]). Let M1, · · · ,Mk

be connected complete embedded non-compact smooth submanifolds, 1 ≤
dimMj = mj < n, codim M1 + · · · + codim Mk ≤ n. Let Gj : Mj →
G(n−mj , n), Gj(p) = [TpMj ]

⊥, be the Grassmanian-valued Gauss map of

Mj. Assume that for all points Ej in the closure of Gj(Mj), 1 ≤ j ≤ k,

the subspaces E1, · · · , Ek of Rn are in direct sum. Then M1 ∩ · · · ∩Mk

is non-empty. Moreover, this intersection reduces to a single point if

codim M1 + · · ·+ codim Mk = n.

Corollary 1. If M1,M2 are complete embedded connected hypersurfaces,
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then

G1(M1) ∩G2(M2) = ∅ ⇒ M1 ∩M2 ̸= ∅.

Corollary 2. Let M1, · · · ,Mn be complete embedded connected hyper-

surfaces of Rn. If every hyperplane in RPn−1 ∼= G(1, n) intersects at most

n − 1 of the sets G1(M1), · · · ,Gn(Mn), then M1 ∩ · · · ∩ Mn consists of a

single point.

As we pointed out in our remarks preceding Problem 8, there is a clear

dynamical interpretation behind these results, which we now explain.

SupposeM1, · · · ,Mk are compact submanifolds with boundary, perhaps

of different dimensions, but for which the sum of the codimensions does

not exceed n. Let us assume that their intersection is empty. We fix M1

and continuously translateM2, · · · ,Mk along suitable directions until they

intersect M1 at the same point, after one unit of time. The idea is to undo

the motion of the submanifolds M2, · · · ,Mk, in the direction of increasing

times, starting say at time t = −1, while keeping track of the evolution

of the (local) intersection set. Since we are assuming that
⋂k

j=1Mj = ∅,
the backwards motion will cease to have a common intersection sometime

before (or when) one unit of time has elapsed.

One wants to control the speed at which the intersection set is prop-

agating. Of course, it is technically easier to observe the evolution of a

single point (given by the flow of a vector field, say), rather than that of

the entire intersection set. In order to minimize speed, we choose curves

parametrized by time that move orthogonally to the intersection set. As

explained, the intersection must cease to exist before (or at) time t = 0.

But this can only happen if for some submanifold Mj the appropriate

integral curve xj in the interior of Mj reaches ∂Mj before (or at) time 0.

The speed of motion of the intersection set is controlled by the local

configuration of normal spaces to the moving submanifolds. In fact, the

speed increases if the normal spaces of the submanifolds tend to “rest ”on

each other. A somewhat similar situation occurs if one rotates a line L1
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in the plane about one of its points. The intersection Lθ
1∩L2 between the

line L1 rotated by θ and a line L2 parallel to L1 moves faster as θ → 0.

In other words, the speed of Lθ
1 ∩ L2 increases when the distortion of the

configurations of their normal spaces, coming from iii) above, tends to ∞.

As we indicated above, one must control the distortion of the direct sum

of normal spaces at the intersection set during the evolution. But since we

are simply translating the submanifolds, the supremum of the distortions

of the configurations of all normal spaces remains constant throughout

the motion. An estimate can then be written down (the above one, in the

case of two hypersurfaces), which guarantees that the intersection set in

the backward motion will exist for more than one unit of time, a contra-

diction to the original assumption that the interiors of the submanifolds

are disjoint.

2

Some form of the technique introduced in [X2] should work whenever the

ambient manifold has a large enough group of isometries. In particular,

one would like to know the answer to the following

Problem 9. Given compact submanifolds with boundary of either the

n-sphere or the hyperbolic n-space, under what geometric conditions are

the interiors of the submanifolds going to have a non-empty stable inter-

section?

The search for new mechanisms of global injectivity remains a lively area

of investigation. The author can only hope that this short survey article

will encourage others to pursue their own exploration of the subject.
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Math., 36 (1976), 295-312.

[W] Wang, S., A jacobian criterion for separability, J. Algebra, 69 (1980), 453-494.

[X1] Xavier, F., Injectivity as a transversality phenomenon in geometries of negative

curvature, Illinois J. Math., 43 (1999), 256-263.

[X2] Xavier, F., Using Gauss maps to detect intersections, L’Enseignement Math., 53

(2007), 15-31.

[X3] Xavier, F., Rigidity of the Identity, Comm. Contemp. Math., 9 (2007), 691-699.

[Y] Yagzhev, A., On Keller’s problem, Siberian Math. Jour., 21 (1980), 747-754.



THE GLOBAL INVERSION PROBLEM: A CONFLUENCE OF 265

[Z] Zampieri, G., Finding domains of invertibility for smooth functions by means of

attraction basins, Journal of Differential Equations, 104 (1992), 11-19.

Department of Mathematics

University of Notre Dame

Notre Dame IN, 46635

E-mail: xavier.1@nd.edu

xavier.1@nd.edu

	Introduction 
	A cornucopia of topics
	Global Inversion: Topological and real-analytic arguments 
	Global Inversion: Topological and complex- analytic arguments 
	Global Inversion: Geometric and dynamical arguments (I)
	Global Inversion: Geometric and dynamical arguments (II)

