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STABILITY OF MINIMAL AND

CONSTANT MEAN CURVATURE

SURFACES WITH FREE BOUNDARY

A. ROS

Abstract

We prove that stable balance minimal surfaces with free bound-

ary in a centrally symmetric mean-convex region of R3 are topo-

logical disks. For surfaces with constant mean curvature and free

boundary, we prove that volume-preserving stability implies that

the surface has either genus zero with at most four boundary com-

ponents or genus one with 1 or 2 curves at its boundary.

1 Introduction

Given a smooth region W ⊂ R3, we can consider compact orientable

surfaces S of stationary area among surfaces in W whose boundary lies

on ∂W and whose interior lies on the interior of W . Then S is a minimal

surface (i.e. it has mean curvature zero) and it meets orthogonally ∂W

along its boundary. We will then say that S is a minimal surface with

free boundary in W . These surfaces have been considered by Courant
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FQM-01642 grants

http://doi.org/10.21711/231766362008/rmc3514
https://orcid.org/0000-0001-5811-5642


222 A. ROS

and Davies [4], Meeks and Yau [8], Smyth [24], Jost [7], Tomi [26], Moore

and Schulte [10] and other authors. For the case of general dimension

and codimension see the survey by Schoen [23]. In applications there is

an interest into area minimizing and stable minimal surfaces with free

boundary, i.e. stationary surfaces with nonnegative second variation of

the area.

We can also consider surfaces with free boundary in a region W and

stationary area under other natural geometric constraints. In this paper

we will assume thatW is a mean-convex region, i. e. ∂W has nonnegative

inward mean curvatureHW ≥ 0, and we will study the stability of the area

for surfaces with free boundary inW in two different contexts related with

the above: balance minimal surfaces and volume-preserving stationary

surfaces.

Assume that the region W ⊂ R3 is mean-convex and invariant under

the central symmetry x 7→ −x in R3. Following Fischer and Koch [5], we

say that an embedded proper surface S ⊂ W with −S = S is a balance

surface if it dividesW into two regions,W−S =W1∪W2, interchanged by

the central symmetry −W1 =W2. A balance minimal surface is a balance

surface inW which is minimal and meets the boundary ofW orthogonally.

This is the same to say that S is a critical point of the area among balance

surfaces. More generally, given a group G of symmetries ofW and an index

two subgroup H ⊂ G, we can consider (G,H)-balance surfaces. These are

proper surfaces S invariant under G and such that the components of

W − S are preserved by the symmetries in H and interchanged by those

in G − H. Balance minimal surfaces appear in geometric crystallography

and play a role similar to sphere packing and space filling polyhedra. A

number of interesting examples of balance minimal surfaces in classical

geometry can be found in [5]. Area minimizing balance surfaces may

present singularities at the fixed points of the symmetries of G. These

singularities are described by Morgan [11] (Theorem 5.3 and comments

below its proof). In this paper we will restrict to the particular case

G = {±Id} and it follows from [11] that in this situation area minimizing
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balance surfaces exist and are regular embedded minimal surfaces with

free boundary in W . We will prove in Theorem 5 that nonflat stable

balance minimal surfaces with free boundary inW are (topological) disks.

We will also prove that nonflat stable closed balance minimal surfaces in

a 3-torus have genus 3.

If S is a critical point of the area, not for any deformation but just

for those preserving the volume enclosed by the surface in W , then S

has constant mean curvature and contact angle π/2 with ∂W . Constant

mean curvature surfaces with free boundary appear as solutions of the

isoperimetric problem in the region W , see Ros [16] and they have been

studied, for instance, in Nitsche [12], Struwe [25], Ros and Vergasta [21]

and Bürger and Kuwert [2]. In particular, volume-preserving stability for

constant mean curvature surfaces with free boundary was considered in

[21] in the case W is convex and Ros and Souam [20] study the stability

of capillary surfaces (this is a related situation where the contact angle

between S and ∂W is a prescribed constant). We show that volume-

preserving stable constant mean curvature surfaces with free boundary in

W have either genus 0 and at most four boundary components or genus

1 and at most two components at its boundary, see Theorem 9.

In Theorem 7 we will prove that the results above extend to piecewise

smooth regions W ⊂ R3.

Stable surfaces with involved topology can be obtained from the Schwarz

P minimal surface in Figure 1. Ross [22] proved that this surface is

volume-preserving stable in the cubic 3-torus and from that we can de-

duce that it is a stable balance minimal surface in the 3-torus and that

the piece at the right of Figure 1 is stable among balance surfaces in the

cube (note that the area-minimizing balance surface in the cube is the

flat horizontal planar section, [16]). We can also see that the part of the

surface between two consecutive planes of symmetry is volume-preserving

with free boundary, genus 1 and 2 boundary components. However, in this

case W is not a region in the Euclidean space but a slab in the 3-torus.



224 A. ROS

Figure 1: Schwarz P minimal surface provides interesting examples of stable

surfaces with free boundary. The piece at the right is both balance stable and

volume-preserving stable in the unit cube. The same holds for the whole sur-

face in the cubic 3-torus. The piece of the P surface between two consecutive

horizontal planes of symmetry is a volume-preserving stable surface in the flat

region T 2 × [0, 12 ], T
2 being the square 2-torus, of genus 1 and two boundary

components.

The results of this paper follow by using, as test functions in the second

variation, functions which are constructed from harmonic 1-forms on S.

From the Hodge Theorem, the existence of these 1-forms depends on the

topology of the surface. These test functions where first used in Palmer

[13] to study the index of stability of harmonic Gauss maps and then by

Ros [18, 19] to obtain several stability properties in classical geometry of

surfaces. He proves the following results:

1) Complete stable minimal surfaces (either orientable or nonorientable)

in R3 are planar. This extends to the nonorientable case the well-known

characterization of the plane given by do Carmo and Peng [3], Fischer-

Colbrie and Schoen [6] and Pogorelov [14].

2) If Γ ⊂ R3 is a discrete group of translations of rank 1 or 2, then area

minimizing surfaces (mod 2) in R3/Γ, are either planar or (a quotient

of) the Helicoid or the doubly periodic Scherk surfaces (in the last two
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cases, the total curvature of the surface is −2π), [18]. This result gives

the first progress toward the classification of area minimizing surfaces in

flat 3-manifolds.

3) If Γ ⊂ R3 is a group of translations of rank k, then closed volume-

preserving stable surfaces in R3/Γ have genus ≤ k. This extends to the

periodic context the characterization by Barbosa and do Carmo of the

sphere as the unique stable constant mean curvature surface in R3, [1],

and provides the basic theoretical support for some mesoscopic phase sep-

aration phenomena appearing in material sciences, [19].

4) Closed volume-preserving stable constant mean curvature surfaces in

a 3-manifold of nonnegative Ricci curvature have genus ≤ 3, [18]. This

improves partial results by several authors and gives the optimal bound

for the first time as the Schwarz P minimal surface is volume-preserving

stable in the cubic flat 3-torus, Ross [22].

This paper is dedicated to Manfredo do Carmo on his 80th Birthday.

2 Preliminaries

Let W ⊂ R3 be a smooth region. Denote by σW and HW the second

fundamental form (with respect to the inward pointing unit normal vector)

and the mean curvature of ∂W . The region is convex if and only if σW ≥ 0

and W is said to be mean-convex if HW ≥ 0. A proper surface in W is an

immersed orientable compact surface S with S ∩ ∂W = ∂S. We assume

that the immersion of S is smooth even at the boundary and we denote by

D and ∇ the usual derivative in R3 and the covariant derivative operator

in S, respectively. Let N , σ, and A be the unit normal vector, the second

fundamental form and the Weingarten endomorphism of the immersion.

So, σ(v, w) = ⟨Av,w⟩ for any v, w tangent vectors to S at p ∈ S. Denote

by H, K and κ the mean curvature (normalized so that H = 1 for the unit

sphere in R3), the Gauss curvature of S and the inward geodesic curvature

of ∂S in S, respectively.
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A variation of S is a smooth family of proper surfaces in W given by

immersions ψτ : S →W , with |τ | < ε and ψ0 equal to the initial immersion

of S. We denote by A(τ) the area of ψτ . The first variation formula of

the area is

A′(0) = −2

∫
S
HudA+

∫
∂S

⟨dψ
dτ

(0), N⟩ds. (1)

We say that the surface S is a minimal surface with free boundary if it is a

critical point of the area functional among proper surfaces or, equivalently,

if H = 0 and S intersects ∂W orthogonally along ∂S. In this case, if we

consider a function u : S −→ R, smooth even at the boundary, then there

exists a variation ψτ of S by proper surfaces whose velocity vector at τ = 0

is dψ
dτ (0) = uN . For such a surface S, the second variation formula of the

area is

A′′(0) = Q(u, u) = −
∫
S
(u∆u+ |σ|2u2)dA+

∫
∂S

(u
∂u

∂n
− σW (N,N)u2)ds,

(2)

where ∆ is the Laplacian of S and n the (outward pointing) unit conormal

vector of S along its boundary, [1, 21]. Note that, S being orthogonal to

∂W along ∂S, N is tangent to ∂W and so σW (N,N) is well defined.

The operator ∆+ |σ|2 is called the Jacobi operator of the surface and the

solutions of the equation ∆u+ |σ|2u = 0 are called Jacobi functions. After

integration by parts, the second variation can be written as

Q(u, u) =

∫
S
(|∇u|2 − |σ|2u2)dA−

∫
∂S
σW (N,N)u2ds. (3)

The first term is the usual one in the second derivative of the area func-

tional and the integral along ∂S is the contribution of the free boundary

condition. A minimal surface with free boundary is said to be stable if it

has nonnegative second variation Q(u, u) ≥ 0, for all u.

If W is symmetric with respect to the origin, −W = W then we can

consider a version of the above adapted to the symmetric context. We say

that an embedded proper surface S is a balance surface if −S = S and

the two components of W − S are interchanged by the central symmetry.
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A balance surface has stationary area among balance surfaces if and only

if it is a minimal surface with free boundary in W . This kind of surfaces

can be constructed by area minimizing arguments and they are free of

singularities, see Morgan [11], and they play a important role in surface

crystallography, Fischer and Koch [5].

Another natural variational problem for proper surfaces appears when

we consider volume preserving variations. It follows form (1) that a proper

surface S is a critical point of the area functional, among proper surfaces

enclosing a fixed volume in W if and only if the mean curvature H is

constant and S meets ∂W orthogonally, see [12, 21]. We say that S is a

constant mean curvature surface with free boundary in W . If S is either

non embedded or does not enclose any volume, we consider variations ψτ

by proper surfaces in W which joint with S bound a net oriented volume

0, that is ∫
[0,τ ]×S

Ω = 0,

where Ω is the pullback of the euclidean volume element by the map

(τ, p) 7→ ψτ (p), with |τ | < ε and p ∈ S. As for minimal surfaces, given

a smooth function u on S with
∫
S u dA = 0 there exists a variation of S

by proper surfaces enclosing the same volume than S and such that the

velocity vector at τ = 0 is given by uN (this follows from a modification

of the arguments given in [1]). The second variation formula (2) still holds

for constant mean curvature surfaces with free boundary if we consider

functions u with mean value zero. The Jacobi operator ∆ + |σ|2 and

Jacobi functions, functions u satisfying ∆u+ |σ|2u = 0, are defined as in

the minimal case. The surface S is said to be volume-preserving stable if

Q(u, u) ≥ 0 for all u with
∫
S u dA = 0. This stability notion is related with

the isoperimetric problem which consists of studying least area surfaces

among the ones enclosing a given volume, see Ros [16, 17].
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2.1 Harmonic 1-forms

Let S be a compact, connected and orientable Riemannian surface with

smooth boundary and denote by t, n the unit tangent vector and the

(outward pointing) conormal vector along ∂S. So t, n is an orthonormal

basis of the tangent plane of S at the points of its boundary.

Let ω be an harmonic 1-form on S (smooth even at the boundary).

This means that ω is closed and coclosed, i.e. dω = 0 and divω = 0.

Thus the covariant derivative ∇ω is a symmetric tensor with trace 0 or,

equivalently, in a neighborhood of each point of S, ω is the differential

of a harmonic function. The conjugate harmonic 1-form of ω is another

harmonic 1-form ω∗ given by ω∗(e1) = ω(e2) and ω
∗(e2) = −ω(e1), e1, e2

being positive orthonormal basis in the tangent plane of S. The Hodge

Theorem gives a relation between the cohomology of S and the space

of harmonic 1-forms. When ∂S ̸= ∅ there are several natural boundary

conditions for ω. In this paper we will consider the spaceH(S) of harmonic

1-forms ω on S with Neumann boundary condition ω(n) = 0.

Lemma 1 (Hodge Theorem). Given a compact orientable surface with

boundary S, there is an isomorphism between the space H(S) of harmonic

1-forms on S with Neumann boundary condition and the first the Rham

cohomology group H1(S,R) of S.

Proof. From the divergence theorem we get that for any harmonic func-

tion f on S, ∫
S
|∇f |2dA =

∫
S
div(f∇f)dA =

∫
∂S
f
∂f

∂n
ds.

Therefore, if df(n) = 0 we get that f is constant. This means that if the

cohomology class of ω ∈ H(S) is zero then ω = 0. It follows that the map

H(S) −→ H1(S,R)

which applies a harmonic form ω into its cohomology class [ω] is injective.

Let α a closed 1-form on S and f be a smooth function given as a solution
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of the Neumann Problem

∆f = divα in S and
∂f

∂n
= α(n) in ∂S. (4)

It follows that ω = α− df lies in H(S) and defines the same class than α

in H1(S,R). This proves the lemma.

2

Note that in the case ∂S ̸= 0, from the unique continuation property,

it is not possible to have both ω ∈ H(S) and ω∗ ∈ H(S), unless ω = 0.

3 Minimal surfaces

In this section S will be a compact orientable minimal surface with free

boundary in a mean-convex region W ⊂ R3. We first prove the following

simple but interesting fact.

Proposition 2. LetW be a smooth mean-convex region and S a connected

stable minimal surface with free boundary in W . Then S is a (topological)

disk with total curvature smaller than 2π

Proof. As S meets ∂W ortogonally, along ∂S the conormal vector of S

coincides with the outward pointing normal vector of ∂W and we get

σW (t, t) = ⟨Dt n, t⟩ = ⟨∇t n, t⟩ = κ, (5)

κ being the geodesic curvature of the boundary curve of S. Therefore, from

the mean-convexity of W , we have σW (N,N) = 2HW − σW (t, t) ≥ −κ.
From the nonnegativity of the second variation (3) we obtain

0 ≤
∫
S
(|∇u|2 − |σ|2u2)dA+

∫
∂S
κu2ds, (6)

for any u ∈ C2(S) and the equality holds if and only if ∆u + |σ|2u = 0

on S and ∂u
∂n + κu = 0 on ∂S. Taking u = 1, using the Gauss equation

2K = −|σ|2 and the Gauss-Bonnet theorem, we conclude that

0 ≤ 2

∫
S
KdA+

∫
∂S
κ ds =

∫
S
KdA+ 2πχ(S).
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This implies that S is either a disk or an annulus. In the case of the

annulus, the function u = 1 gives the equality in (6) and so S is planar

and κ vanishes along ∂S, which is impossible.

2

In the proof of our results, we will use dual vector fields of harmonic

1-forms as test functions in the nonnegativity of the second variations

formula, see Palmer [13] and Ros [18, 19] for other applications of these

functions. For any harmonic 1-form ω on S we consider its dual vector field

X : S −→ R3, viewed as a vector valued function. Thus X(p) is tangent

to S for each point p ∈ S and ⟨X, v⟩ = ω(v), for any vector v tangent

to S at p. The dual vector field of the conjugate harmonic form ω∗ will

be denoted by X∗. The minimality of S implies that the differentials of

the linear coordinates of the immersion dx1, dx2, dx3 and their conjugates

dx∗1, dx
∗
2, dx

∗
3 span two spaces of harmonic 1-forms denoted by L(S) and

L∗(S), respectively. If ω ∈ L(S), then there is a vector a ∈ R3 such that,

for any vector v tangent to S, ω(v) = ⟨a, v⟩ and the dual vector fields of

ω and ω∗ are given by X = a − ⟨N, a⟩N and X∗ = a ∧ N , respectively.

We will need the following result.

Lemma 3 ([18]). Let S be an orientable minimal surface immersed in R3,

ω a harmonic 1-form on S and X its dual tangent vector field, viewed as

a R3-valued function. Then we have

∆X + |σ|2X = 2⟨∇ω, σ⟩N. (7)

Moreover, if S is nonflat, then X is a Jacobi function, i.e. ⟨∇ω, σ⟩ ≡ 0,

if and only if ω ∈ L∗(S).

Lemma 4. Let S be a proper surface immersed in a smooth region W ⊂
R3 which intersects ∂W orthogonally along ∂S (no assumption about the

mean curvature of the immersion) and ω ∈ H(S) a harmonic 1-form with

Neumann boundary condition. If X and X∗ are the dual vector fields of

ω and ω∗ respectively, then, along the boundary of S we have

⟨X, ∂X
∂n

⟩ = ⟨X∗,
∂X∗

∂n
⟩ = −σW (t, t)|X|2. (8)
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Proof. Given a local orthonormal basis ei, i = 1, 2, of tangent vector

fields to S, we have the duality relation ω(ei) = ⟨X, ei⟩ and its derivative

(∇ω)(ej , ei) = ⟨∇ejX, ei⟩. As ω(n) = 0, the normal derivative of X at the

points of ∂S satisfies

⟨X, ∂X
∂n

⟩ = ⟨X,∇nX⟩ = (∇ω)(n,X) = (∇ω)(n, t)ω(t).

Derivating ω(n) = 0 with respect to t, we obtain

0 =
d

dt
ω(n) = (∇ω)(t, n) + ω(∇t n) = (∇ω)(t, n) + ω(t) ⟨∇t n, t⟩ =

= (∇ω)(t, n) + ω(t)σW (t, t),

where we have used (5) and from the above calculation we obtain

⟨X, ∂X
∂n

⟩ = −σW (t, t)|X|2.

The conjugate vector field X∗ is obtained from X by a rotation of 90

degrees in the tangent planes of S. As this rotation is parallel, we have

⟨X∗,
∂X∗

∂n
⟩ = ⟨X∗,∇nX

∗⟩ = ⟨X,∇nX⟩ = −σW (t, t)|X|2,

and this proves the lemma.

2

3.1 Balance minimal surfaces

If the region W is symmetric with respect to the origin and S is a

balance surface with stationary area among balance surfaces, then it is a

minimal surface with free boundary in W . The surface S is stable if it

minimizes area up to second order among balance surfaces, i. e., it has

nonnegative second variation for odd infinitesimal variations u ∈ C2(S)

with u(−p) = −u(p) for any point p ∈ S. In the following result we

describe the topology of these surfaces.

Theorem 5. Let W ⊂ R3 be a centrally symmetric mean-convex region

and S ⊂W a nonflat stable balance minimal surface. Then, the connected

components of S are disks.
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Proof. If S has a connected component S0 not equal to −S0, then S0

is a stable minimal surface with free boundary in W , and Proposition 2

gives that S0 is a disk. Therefore we can assume that S is connected.

Let ϕ : S −→ S be the central symmetry ϕ(p) = −p and note that ϕ

preserves orientations and the Gauss map N of S satisfies N ◦ ϕ = N .

The quotient surface S′ = S/{Id, ϕ} has a structure of Riemann surface

and so, harmonic 1-forms are well defined over S′. The Euler charac-

teristic of these two surfaces are related by either χ(S) = 2χ(S′) − 1

(if 0 ∈ S) or χ(S) = 2χ(S′) (when 0 /∈ S). If S′ is not a disk, then

dimH1(S′,R) ≥ 1. Therefore, from Lemma 1 it admits a nonzero har-

monic 1-form with Neumann boundary condition. This 1-form lifts to a

harmonic 1-form ω ∈ H(S) such that its pullback image by the involution

ϕ satisfy ϕ∗ω = ω. The conjugate harmonic form satisfies ϕ∗ω∗ = ω∗,

too. As a consequence, the dual tangent vector fields X and X∗ of ω

and ω∗ satisfy X ◦ ϕ = −X and X∗ ◦ ϕ = −X∗. Now we use the lin-

ear coordinates of X∗ = (X∗
1 , X

∗
2 , X

∗
3 ) as test functions in the stability

inequality given by second variation formula (2), and with the notation

Q(X∗, X∗) =
∑3

j=1Q(X∗
j , X

∗
j ), we conclude that

0 ≤ Q(X∗, X∗) = −
∫
S

⟨∆X∗+|σ|2X∗, X∗⟩dA+
∫
∂S

(⟨X∗,
∂X∗

∂n
⟩−σW (N,N)|X∗|2)ds.

(9)

From (7) we have that ∆X∗ + |σ|2X∗ is normal to S and therefore the

integral over S in (9) vanishes. Along the boundary of S, the vectors t and

N form an ortonormal basis of the tangent plane of ∂W and so σW (t, t)+

σW (N,N) = 2HW . Hence, using (8), the inequality (9) transforms into

0 ≤ Q(X∗, X∗) = −2

∫
∂S
HW |X∗|2ds ≤ 0. (10)

As W is mean-convex, this implies that Q(X∗, X∗) = 0 and so the linear

coordinates of X∗ lie in the kernel of Q, i.e. Q(X∗, Y ) = 0, for all R3-

valued C2 function Y on S with Y ◦ ϕ = −Y . In particular, from linear
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elliptic theory, we get

∆X∗+ |σ|2X∗ = 0 on S and
∂X∗

∂n
= σW (N,N)X∗ on ∂S. (11)

As S is nonflat, from Lemma 3 we deduce that ω∗ ∈ L∗(S). This implies

that ω ∈ L(S). Hence ω is exact and using Lemma 1 we conclude that

ω = 0, which is a contradiction. Therefore S′ is a disk and the same holds

for the surface S.

2

Remark 1. In the same way, by applying the stability condition to the

dual vector field X, from (8) and (7) we obtain

0 ≤ Q(X,X) = −2

∫
∂S
HW |X|2ds ≤ 0 (12)

and from Lemma 3 we have that ω ∈ L∗(S), too.

Each torus T 3 admits a central symmetry −Id and several classical

periodic minimal surfaces are balance minimal surfaces for the case G =

{±I⌈}. In particular, minimal surfaces of genus 3 are all balance. The

proof of Theorem 5 applies to this case, and gives the following.

Theorem 6. Let S be a closed balance minimal surface embedded in a

flat three torus T 3. If S is stable and nonflat, then genus(S) = 3.

Proof. First we observe that for any closed minimal surface in T 3,

genus(S) ≥ 3. For any balance minimal surface S, denote by ϕ the central

symmetry of T 3 restricted to the surface. Then ϕ has 8 fixed points on

S. If the Riemann surface S′ = S/{Id, ϕ} is not a sphere, then it admits

a non zero harmonic 1-form which lifts to a harmonic 1-form ω on S such

that ϕ∗ω = ω and ϕ∗ω = ω. Following the proof of Theorem 5, we get

that ω ∈ L(S). As the 1-forms α ∈ L(S) verify ϕ∗α = −α, we have a

contradiction. So S′ is the Riemann sphere and, as the projection S → S′

has exactly 8 branch points, it follows that genus(S) = 3 .

2
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3.2 Piecewise smooth regions

We say that W is a piecewise smooth mean-convex region in R3 if it

satisfies the following conditions:

i) ∂W is a union of smooth surfaces with piecewise smooth boundary

(the faces of W ),

ii) the faces of W have nonnegative mean curvature and the angles at

each one of its vertices satisfy 0 < θ < 2π, and

iii) two of these faces are either disjoint or meet at some vertices and/or

along some common edges. If two faces meet along an edge, then their

interior angle is everywhere bigger that 0 and smaller than π.

These are natural regions to solve the Plateau Problem, see Meeks and

Yau [9]. We say that a proper minimal surface S ⊂W is a minimal surface

with free boundary if S has piecewise smooth boundary and meets the

faces and the edges of W but omits the vertices of ∂W . The edges of S

sit orthogonally on the faces of W and its corners lie on the edges of W .

Proposition 2 extends trivially to piecewise smooth regions in R3. In the

next result we prove that the same holds for Theorem 5. The argument

applies to volume-preserving stability, and so Theorem 9 below extends

to piecewise smooth regions, too.

Theorem 7. Let S be a nonflat balance stable minimal surface with free

boundary in a piecewise smooth mean-convex region W ⊂ R3. Then S is

a topological disk.

Proof. Given ε > 0, let φε : S −→ R be a logarithmic smooth cutoff

function vanishing in a neighborhood of the corners of S, equal to 1 at the

points whose distance to each vertex is larger than ε, with 0 ≤ φε ≤ 1 on

S and such that
∫
S |∇φε|

2dA converges to zero when ε→ 0.

If u is a smooth function on S minus the vertices and φ = φϵ, then after

integration by parts we get

Q(φu, φu) =

∫
S

(|∇(φu)|2 − |σ|2φ2u2)dA−
∫
∂S

σW (N,N)φ2u2ds2 =∫
S

(|∇φ|2u2 + |∇u|2φ2 +
1

2
⟨∇φ2,∇u2⟩ − |σ|2φ2u2)dA−

∫
∂S

σW (N,N)φ2u2ds =
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∫
S

(|∇φ|2u2+|∇u|2φ2−1

2
φ2∆u2−|σ|2φ2u2)dA+

∫
∂S

(φ2u
∂u

∂n
−σW (N,N)φ2u2)ds =∫

S

(|∇φ|2u2 − φ2(∆u+ |σ|2u)u)dA+

∫
∂S

φ2(u
∂u

∂n
− σW (N,N)u2)ds2.

The surface S is piecewise smooth with angles at most π at its corners. Then

it follows that the solution of the Neumann boundary problem (4) is smooth in

S minus its corners and C1 in S, see Wigley [27]. Therefore the harmonic forms

ω ∈ H(S) in the Hodge Theorem of Lemma 1 are smooth in S minus the corners

and belong to C0(S) and the same hold for ω∗ and the dual vector fields X and

X∗.

So, if in the computation above we take u equal to the linear coordinates of

X∗, using (7) and (8) we obtain

Q(φεX
∗, φεX

∗) =

∫
S

|∇φε|2|X∗|2dA− 2

∫
∂S

φ2
εHW |X∗|2ds

and taking ε→ 0 we conclude that X∗ belongs to the Sobolev space L1,2(S) and

Q(X∗, X∗) ≤ 0. Now we finish as in the proof of Theorem 5.

2

In particular, we can takeW to be a convex polyhedron in R3. Minimal

surfaces with free boundary in these regions have been constructed by

Smyth [24] and Jost [7].

4 Constant mean curvature surfaces.

Let S be a proper surface in a mean-convex region W ⊂ R3. Assume

that S has constant mean curvature H.

Lemma 8 ([19]). Let ω be a harmonic 1-form on a surface S in R3 of

constant mean curvature H and X : S → R3 its dual vector field. Then

∆X + |σ|2X = 4H2X − 2HAX + 2⟨∇ω, σ⟩N, (13)

where A denotes the Weingarten endomorphism of S.

In this section we will prove that if S has nonnegative volume-preserving

second variation, then the topology of S is controlled. Earlier results
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in this direction were obtained by Ros and Vergasta [21]. They proved

that if W is convex then genus(S) ∈ {0, 1} and S has at most three

boundary components, or genus(S) ∈ {2, 3} and ∂S is connected. In the

next theorem we improve that result.

Theorem 9. Let W ⊂ R3 be a smooth mean-convex region and S ⊂W a

nonflat surface of constant mean curvature with free boundary. If S has

nonnegative second variation for volume-preserving variations, then either

i) genus(S) = 0 and S has at most 4 boundaries components, or

ii) S has genus 1 and ∂S has at most two components.

Proof. Let ω ∈ H(S) a harmonic 1-form with Neumann boundary con-

dition. By applying the stability quadratic form (2) to (the linear coordi-

nates of) X, from (13) we have

Q(X,X) = −
∫
S
⟨∆X+|σ|2X,X⟩dA+

∫
∂S

(⟨X, ∂X
∂n

⟩−σW (N,N)|X|2)ds =

−
∫
Σ
(4H2|X|2 − 2Hσ(X,X))dA− 2

∫
∂S
HW |X|2ds.

If we put X∗, the dual tangent vector field of ω∗, in the second variation,

(13) and (8) give

Q(X∗, X∗) = −
∫
Σ
(4H2|X∗|2 − 2Hσ(X∗, X∗))dA− 2

∫
∂S
HW |X∗|2ds.

As in Palmer [13], from the identities |X∗| = |X| and ⟨X,X∗⟩ = 0, we

obtain

Q(X,X) +Q(X∗, X∗) = −4H2

∫
S
|X|2dA− 4

∫
∂S
HW |X|2ds ≤ 0. (14)

In order to apply the stability assumption in (14) we need that bothX and

X∗ have mean value zero. As ω satisfies the Neumann condition ω(n) = 0,

for each vector a ∈ R3 we have div(⟨p, a⟩ω) = ⟨X, a⟩+⟨p, a⟩divω = ⟨X, a⟩,
where p represent a point of S, and therefore∫

S
XdA =

∫
∂S
ω(n)pds = 0, (15)
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and so X has mean value zero. However this does not hold in general

for X∗. If dimH1(S,R) ≥ 4, we can find a nonzero harmonic 1-form

ω ∈ H(S) such that
∫
S X

∗ = 0. Thus 0 ≤ Q(X,X) +Q(X∗, X∗) and (14)

implies that S is a minimal surface and that Q(X,X) = Q(X∗, X∗) = 0.

Therefore Q(X,Y ) = Q(X∗, Y ) = 0 for any Y with mean value zero.

Thus, there exist a, b ∈ R3 such that

∆X + |σ|2X = a and ∆X∗ + |σ|2X∗ = b

and using (7) we conclude that 2⟨∇ω∗, σ⟩N = b.

As S is nonflat, the Gauss map of S is an open map which implies that

b = 0 and ⟨∇ω∗, σ⟩ = 0. Therefore Lemma 3 gives that ω∗ belongs to

L∗(S). Then ω ∈ L(S), ω is exact and Lemma 1 gives that ω = 0, a

contradiction. Hence dimH1(S,R) ≤ 3, which means that S is either a

genus zero surface with at most 4 boundary components or a surface of

genus 1 with 1 or 2 boundary components.

2

If W is convex, then the case genus(S) = 0 and four components at the

boundary cannot hold by Theorem 5 in Ros and Vergasta [21].

A wide vertical annulus in a horizontal slab give an example of a volume-

preserving stable surface with nontrivial topology. In fact it follows from

the results in Ros [19], that a volume-preserving stable constant mean

curvature surface with free boundary immersed in a horizontal slab is

either a half-sphere or a flat vertical cylinder (for the embedded case, see

also [15]). A more involved example in a related situation if given by

Schwarz P minimal surface in the cubic 3-torus R3/Z3, see Figure 1. Ross

[22] proved that the Schwarz P surface is volume-preserving stable. So, if

we take the piece of the surface between two consecutive horizontal planes

of symmetry, we get a volume preserving stable surface in T 2 × [0, 1/2],

where T 2 is the flat 2-torus generated by (1, 0), (0, 1). This surface has

genus 1 and two boundary components. We remark that part of the

arguments in the proof of Theorem 9 do not apply to surfaces in T 2× [0, a]

because in this case, the mean value property
∫
S X = 0 in (15) is no longer
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valid.

Remark 2. If W is a ball, then a volume-preserving stable surface with

free boundary S must be either a planar equator, a spherical cap or a

surface of genus 1 with at most two boundary components, see [21]. We

don’t know examples of surfaces S of genus 1 with free boundary in a

ball and nonnegative volume-preserving second variation, but it is worth

noticing that although the reasoning in [21] is different from the one used

in the proof of Theorem 9, both arguments give the same bound on the

topology of S.
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