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CONFORMAL INVARIANTS

INTERPRETED IN DE SITTER

SPACE

M. C. Romero Fuster E. Sanabria Codesal *

Abstract

We give a new interpretation of the conformally invariant differ-

ential 1-forms along the curvature lines of hypersurfaces in IRn+1,

obtained in [10], in terms of the infinitesimal arc-length of conve-

niently chosen curves in the (n+ 2)-dimensional de Sitter space.

Introduction

In [3], R. L. Bryant gave an interpretation of the conformally invariant

differential 2-form (K1−K2)
2 dx1 ∧ dx2 on a surface M in IR3 as the area

of the surface M ′, in the 5-dimensional Minkowski space, determined by

the family of tangent spheres to M whose curvature coincides with the

mean curvature of M at each point. More recently in [5], R. Langevin

and J. O’Hara use the natural association between the points of the de

Sitter (n+2)-space and the hyperspheres of IRn+1 (conveniently immersed

in the (n+3)-dimensional Minkowski space) in order to attach to the one-

parameter family of osculating circles of a curve α in IR2 or S2 a null

curve γ in the de Sitter 4-space. As a consequence they obtain a new
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interpretation of the conformal arc-lenght of α in terms of a 1
2 -dimensional

measure on γ.

In this work we use an analogous idea in order to provide a geometrical

interpretation of the following conformally invariant differential 1-forms

along to the i-th curvature lines φi, i = 1, · · ·n that were defined in [10]

for hypersurfaces in IRn+1:{√
| Ki

′(t) | dt
}n

i=1

and { (Ki −Kj) dt }1≤i ̸= j≤n

We characterize the first family of 1-forms in terms of the 1
2 -dimensional

length element of a lightlike curve in the (n + 2)-dimensional de Sitter

space. Such a curve is determined by the i-th focal hyperspheres along

the corresponding i-th curvature line on the considered hypersurface. We

obtain a characterization for the ridges of hypersurfaces in IRn+1 as points

for which the tangent of one of these lightlike curves is a lightlike vector.

On the other hand, we interpret the second family of 1-forms in terms of

the infinitesimal arc-length of curves determined in the (n+2)-dimensional

de Sitter space by the set of i-th focal hyperspheres along the j-th curva-

ture lines. We then characterize the umbilic points as points at which the

tangent of one of these curves is a lightlike vector.

We also apply this method to the study of the conformal invariants√
∥c′n(t)∥2 − r′n

2(t)

rn(t)
dt,

of curves in IRn+1, n ≥ 2, related to the osculating hyperspheres obtained

in [9]. We obtain a characterization for the vertices of curves in IRn+1 as

points for which the induced curve in de Sitter (n+2)-space has a lightlike

tangent.

1 Basic concepts in Minkowski space

Let En+3 = {(x0, · · · , xn+2) : xi ∈ IR, i = 0, 1, · · · , n+2} be the (n+3)-

dimensional vector space with the pseudo-metric
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⟨x, y⟩1 = −x0y0 +
n+2∑
i=1

xiyi

where x = (x0, · · · , xn+2), y = (y0, · · · , yn+2) ∈ En+3. The space (En+3, ⟨, ⟩1)
is called Minkowski (n+ 3)-space and written by En+3

1 .

A non zero vector x ∈ En+3
1 is said to be spacelike, lightlike or timelike

according to ⟨x, y⟩1 > 0,= 0 or < 0. The de Sitter (n+2)-space is defined

as

Sn+2
1 = {x ∈ En+3

1 : ⟨x, x⟩1 = 1}

and the quadratic lightcone is given by Q = {x ∈ En+3
1 : ⟨x, x⟩1 = 0}.

1.1 Conformal group

Let F be IR2 with the inner product (ϵ|ϵ) = 0, (η|η) = 0, (ϵ|η) = 1/2,

and {ϵ, η} is a basis of F . Take now the orthogonal sum H = IRn+1 ⊥ F,

and consider in IRn+1 the usual product g, such that H is a Minkowski

space whose pseudo-metric h is given by

h(aϵ+ x+ bη, cϵ+ y + dη) =
1

2
(ad+ bc) + g(x, y).

We denote by Q ⊂ H the quadratic lightcone defined by the zeros of

q(aϵ+ x+ bη) = ab+ g(x, x).

Consider now the affine hyperplane of H given by J = ϵ+ (IRn+1 ⊕ IRη)

and define an injective map

j : IRn+1 −→ J

x 7−→ ϵ+ x− g(x, x)η.

Let P : H → P (H) be the natural projection of H into its projective

space P (H) and put Q̃ = P (Q). The orthogonal group O(H) preserves

Q and the group PO(H) = O(H)/{−I, I} acts effectively on P (H) and

leaves Q̃ invariant.
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Figure 1: Quadratic light cone

In the following proposition, proved in [6], we identify Q̃ with the one

point compactification of IRn+1, and PO(H) with theConformal Group

generated by translations, homotheties, rotations and inversions of IRn+1

([4]).

Proposition 1. With the notation above, we have that

j(IRn+1) = Q ∩ J, Q̃− P (j(IRn+1)) = P (η).

The next proposition and corollary ([6]), tells us that spheres and planes

in IRn+1 are in a one-to-one correspondence with Minkowskian linear sub-

spaces in H.

Proposition 2. By considering the map j, we find the following equiva-

lence between subspaces:

a) Let S be an m-sphere of radius r with center c, that lies in the

affine subspace c + W, where W is an (m + 1)-dimensional linear

subspace of IRn+1. If the linear map jc : IRn+1 → H is given by

jc(x) = x− 2g(c, x)η and d = g(c, c)
1
2 , then j(S) is the intersection

of j(IRn+1) with the linear subspace

Wc,r = IR(ϵ+ c− (d2 + r2)η) + jc(W ).
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b) Let c+W be an affine subspace of IRn+1, where W is an m-dimensional

linear subspace. Then j(c+W ) is the intersection with j(IRn+1) of

the linear subspace of H, Wc,∞ = IR(ϵ+ c) +W + IRη.

Corollary 1. If w1, . . . , wm+1 is an orthonormal basis of W, then the

vectors

u0 =
1
r (ϵ+ c− (d2 + r2)η),

ui =wi − 2g(c, wi)η, i = 1, . . . , m+ 1

form an h-orthonormal basis of H (i. e, form an h-orthogonal basis and

q(u0) = −1, q(ui) = 1, i = 1, . . . ,m+ 1.)

2 Inversive Product of hyperspheres

We consider two hyperspheres S(ci, ri) ⊂ IRn+1 of center ci and radius

ri, i = 1, 2. The inversive product is given by ([2])

⟨S1, S2⟩ =
∣∣∣∣r21 + r22 − (c1 − c2)

2

2r1r2

∣∣∣∣
When S1 and S2 intersect each other we have that ⟨S1, S2⟩ is a function

of their angle of intersection. Whereas, when they are disjoint, this inver-

sive product is a function of the hyperbolic distance between them. This

product is a conformal invariant and generalizes the inversive distance

given by Coxeter in [1] for circles in the plane.

We remind that if M is a hypersurface in IRn+1 (locally embedded

through ϕ) and Γ : M → Sn represents its normal Gauss map, the eigen-

vectors of DΓ(ϕ(x)) are the principal directions of curvature of M at

the point ϕ(x) and the corresponding eigenvalues, {Ki(x)}ni=1, are the

principal curvatures. A curve all of whose tangents point in principal

directions at the corresponding points is a curvature line. We say that

a point ϕ(x) ∈ M is umbilic if at least two of the principal curvatures

coincide at this point. We shall denote by U(M) the subset of the umbilic
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points of M . For a generic M , the subset M−U(M) is an open and dense

submanifold of M, [7].

Provided ϕ(x) ∈ M−U(M), we can find exactly n focal hyperspheres

at ϕ(x), whose centres are given by ci(x) = ϕ(x) + ri(x)N(ϕ(x)), where

N(ϕ(x)) is the normal vector of the hypersurface in the point ϕ(x), and

whose radii are ri(x) = 1/Ki(x). We observe that the focal hyperspheres

are the tangent hyperspheres whose contact with M is higher than usual.

The singular points of ci, known as ridges, are the points at which the

hypersurface has stronger contact with its focal hyperspheres (see [8])

and we characterized them in [10] by K ′
i = 0, along the corresponding

curvature line. If some of the principal curvatures vanishes, i.e. ϕ(x) is a

parabolic point ofM, then the corresponding focal hypersphere becomes

a tangent hyperplane.

On the other hand, given a curve α : IR → IRn+1 parameterized by arc-

length, let {T (t), N1(t), ..., Nn(t)} denote its Frenet frame and {ki(t)}ni=1

the corresponding curvature functions at the point α(t). The osculating

hyperspheres of α are those whose centres are given by

cα(t) = α(t) +

n∑
i=1

µi(t)Ni(t),

where {µi(t)}ni=1 are rational functions of the curvatures {ki(t)}ni=1 and

their derivatives satisfy the following relations (see [9]):

µ1(t)k1(t)= 1,

µ2(t)k2(t)= µ′
1(t),

µi(t)ki(t)= µ′
i−1(t) + µi−2(t)ki−1(t), i = 3, ..., n,

Again, we have that the osculating hyperspheres are those having higher

order of contact with the curve at each point ([9]).

The curve cα is called the generalized evolute of α. The singular

points of cα, known as vertices, are precisely the points at which the curve
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has stronger contact with its osculating hyperspheres and we characterized

them in [9] by the relation

µ′
n(t) + µn−1(t)kn(t) = 0.

We observe that any inversive map φ : IRn+1 ∪ {∞} → IRn+1 ∪ {∞}
transforms hyperspheres into hyperspheres in IRn+1 ∪ {∞}, and since

it is a diffeomorphism, it must also preserve the contacts of the hyper-

spheres with submanifolds of IRn+1. Consequently it takes osculating

hyperspheres of a curve, or focal hyperspheres of a hypersurface into the

osculating hyperspheres, or the focal hyperspheres of their respective im-

ages.

Now, since the conformal maps preserve the inversive product of hyper-

spheres, we have that the infinitesimal distance between either two nearby

osculating hyperspheres, or two nearby focal hyperspheres must also be

preserved, i.e.

⟨S(t+ h), S(t)⟩ = ⟨φ(S(t+ h)), φ(S(t))⟩ = ⟨S̄(t+ h), S̄(t)⟩,

for h tending to 0. So the appropriate manipulation of the inversive prod-

uct on nearby focal (resp. osculating) hyperspheres may lead to the ob-

tention of conformal invariants on hypersurfaces (resp. curves) in IRn+1,

as we see next.

2.1 Conformal invariants on curves in IRn+1

Let α : IR → IRn+1 be a curve parameterized by its arclength. We

shall assume in what follows that the vectors {α′(t), α′′(t), ..., α(n)(t)} are

linearly independent at every point, i. e. α is a generic curve (in the sense

that most curves in IRn+1 satisfy this property).

By applying the inversive product to the osculating hyperspheres on the

curve, we obtained in ([9]) the following conformal invariant along it.
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Theorem 1. Given a curve α in IRn+1 parameterized by its arclength,

the differential 1-form

ωn(t) =

√
∥c′n(t)∥2 − r′n

2(t)

rn(t)
dt,

is an inversive invariant, where cn and rn are the center and the radius

of the osculating hypersphere of α.

In the particular case of circles, the conformal invariant
√
|k′1(t)|dt is

called the infinitesimal conformal arc-length.

Corollary 2. The zeroes of this 1-form ωn are the vertices of α.

2.2 Conformal invariants on hypersurfaces in IRn+1

Let M be a hypersurface immersed by ϕ : IRn → IRn+1 and we denote

by U(M) the subset of the umbilic points of M . For a generic M , the

subset M − U(M) is an open and dense submanifold of M and in ϕ(x) ∈
M −U(M) there exist exactly n linearly independent principal directions

associated to the corresponding curvature lines φi(t), i = 1, · · · , n.

On the other hand, by applying the inversive product to the i-th focal

hyperspheres on the curvature lines of a hypersurface, we found in ([10])

the following conformal differential 1-forms along them.

Theorem 2. The differential 1-form along the curvature line φi(t) of

M − U(M) defined by

ωi(t) =
√
| Ki

′(t) | dt

is a conformal invariant along the curvature line φi(t), where Ki
′ repre-

sents the derivative of the principal curvature Ki of M restricted to the

curve φi, i = 1 · · · , n.

Corollary 3. The zeroes of above 1-forms ωi, i = 1 · · · , n are the ridges

of M.
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Theorem 3. Given any curvature line φi, 1 ≤ i ≤ n− 1 of M − U(M),

the 1-forms defined by

ω̃i,j(t) = (Kj(t)−Ki(t))dt, 1 ≤ j ̸= i ≤ n

are conformal invariants along φi,.

This conformal invariant can be extended on the whole (generic) hyper-

surface M by assigning the value zero to the (isolate) umbilic points.

3 Interpretation of these invariants in (n+ 2)-di-

mensional de Sitter space

Consider the injective map

j : IRn+1 −→ J

x 7−→ ϵ+ x− g(x, x)η.

By using the Proposition 1 and the Corollary 1, we obtain that the image

of a hypersphere S(c, r) of radius r and center c in IRn+1 is a (n + 2)-

dimensional Minkowski space Wc,r ∈ H, i.e. a hyperplane in H generated

by the following h-orthonormal vectors:

u0 =
1

r
(ϵ+ c− (d2 + r2)η),

ui+1 =wi − 2g(c, wi)η, i = 0, . . . , n

where wj , j = 0, 1, . . . , n are a orthonormal basis of IRn+1 and d2 = g(c, c).

In the following proposition, we determine a spacelike unit vector un+2 ∈
H which is pseudo-orthogonal to the above basis.

Proposition 3. The vector un+2 = 1
r (ϵ+ c+ (r2 − d2)η) ∈ H is h-

orthogonal to the h-orthonormal basis {ui}n+1
i=0 and h(un+2, un+2) = 1.

Therefore un+2 belongs to the de Sitter (n + 2)-space Sn+2
1 = {x ∈ H :

h(x, x) = 1}.
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Proof: We have that the vector un+2 =
1
r (ϵ+ c+ (r2 − d2)η) ∈ H. More-

over:

h(u0, un+2) =
1

r2

(
−d2 + r2

2
+

r2 − d2

2
+ g(c, c)

)
=

1

r2
(−d2 + d2) = 0

h(ui+1, un+2) =
1

r
(−g(c, wi) + g(c,Ni)) = 0, i = 0, . . . , n,

then un+2 is h-orthogonal to {ui}n+1
i=0 . On the other hand

h(un+2, un+2) = q(un+2) =
1

r2
(r2 − d2 + g(c, c)) =

1

r2
(r2 − d2 + d2) = 1.

Therefore un+2 ∈ Sn+2
1 .

2

3.1 Conformally invariant 1-forms on curves in IRn+1

By applying the above methods to the osculating hyperspheres of a

curve α ⊂ IRn+1 we can define a curve in de Sitter space Sn+2
1 as follows,

γ : IR −→ Sn+2
1

t 7−→ 1

r(t)

(
ϵ+ c(t) + (r2(t)− d2(t))η

)
where c(t), r(t) are the center and radius respectively of the osculating

hypersphere of the curve α at α(t) and d2(t) = g(c(t), c(t)).

Then we obtain the following interpretation of the above conformal in-

variants:

Theorem 4. Given a curve α in IRn+1, n ≥ 2 parameterized by its ar-

clength and with linearly independent first n derivatives, the differential

1-form

ωn(t) =

√
∥c′n(t)∥2 − r′n

2(t)

rn(t)
dt,

is the infinitesimal arc-length of the curve γ ⊂ Sn+2
1 , defined by the os-

culating hyperspheres along α. The tangent vector γ′(t) to the curve γ is

lightlike if and only if the point α(t) of the curve α is a vertex.
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Proof: Let α be a curve in IRn+1, we consider the osculating hyperspheres

S(c, r) along it and the orthonormal basis {N0, N1, ..., Nn} of IRn+1, de-

fined by the unit tangent and normal vectors of the curve α. By using

this orthonormal basis and the osculating hyperspheres of the curve, we

define a curve γ = 1
r (ϵ+c+(r2−d2)η), where d2 = g(c, c), in the de Sitter

(n+ 2)-space Sn+2
1 .

By deriving γ ⊂ Sn+2
1 we obtain that the tangent vector of this curve

is given by

γ′ =
−r′

r
u0 +

g(c′, Nn)

r
un+1

By [9], we know that c′ has the direction of Nn, then the norm of γ′ is

∥γ′(t)∥2 = h(γ′(t), γ′(t)) =
∥c′(t)∥2 − r′2(t)

r2(t)

Then, the infinitesimal arc-length of γ is the conformal invariant ωn(t)

∥γ′(t)∥ dt =

√
∥c′(t)∥2 − r′2(t)

r(t)
dt

It follows from corollary 2 that a point α(t0) is a vertex of α if and only

if ∥γ′(t0)∥ = 0, i.e. γ′(t0) ∈ Q.

2

In the particular case of plane curves it can be easily seen that the

curve γ is a lightlike curve. In order to treat this case, R. Langevin and

J. O’Hara have introduced in [5] the following

Defininition 1 ([5]). Let γ be a lightlike curve, the non trivial L
1
2 -measure

of γ is defined by

L
1
2 (γ) = limmax|tj+1−tj |→0

∑
i

√
∥γ(ti+1)− γ(ti)∥.

Proposition 4 ([5]). Let γ be a lightlike curve, then

L
1
2 (γ) = limmax|tj+1−tj |→0

∑
i

√
∥γ(ti+1)− γ(ti)∥ =

4

√
1

12

∫
γ

4
√
| h(γ′′, γ′′) | dt.
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Then they obtain the following result, whose proof is included here for

the sake of completeness.

Theorem 5. Let α be a plane curve parameterized by its arclength and

such that α′ and α′′ are linearly independent along α. Then the curve γ

defined by the osculating circles along α is lightlike and the differential

1-form

ω2(t) =
√

|k′1(t)|dt,

is 4
√
12 times the infinitesimal 1

2 -dimensional length element of γ ⊂ S3
1 .

Proof: Let α be a curve in IR2. By considering the osculating circles

S(c, r) along it, we obtain a curve γ = 1
r (ϵ + c + (r2 − d2)η) in de Sitter

3-space S3
1 .

Now, by deriving the curve γ ⊂ S3
1 we get that the tangent vector of

this curve is given by:

γ′ =
−r′

r
u0 +

g(c′, N)

r
u2.

In this particular case, we know that c = α+rN, where N is the normal

vector to α. By applying the Frenet formulas we obtain that c′ = r′N,

then:

∥γ′(t)∥2 = h(γ′(t), γ′(t)) =
r′2(t)− r′2(t)

r2(t)

and ∥γ′(t)∥ is identically 0, so γ is lightlike.

Now, we calculate the second derivative of γ

γ′′ =

((
−r′

r

)′
+

(
−r′

r

)2
)
u0 − k′1u1 +

((
−r′

r

)′
+

(
−r′

r

)2
)
u2.

Whose norm is:

∥γ′′(t)∥2 = h(γ′′(t), γ′′(t)) = k′1(t)
2
.

Then the differential conformal 1-form ω2(t) is
4
√
12 times the infinites-

imal 1
2 -dimensional length of γ in Q:√

∥γ′′(t)∥ dt = 4
√

| h(γ′′, γ′′) | dt =
√
|k′1(t)| dt.

2
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3.2 Conformally invariant 1-forms on hypersurfaces

Given a hypersurface M, we can define the following curves in de Sitter

space Sn+2
1 :

γi : IR −→ Sn+2
1

t 7−→ 1

ri(t)
(ϵ+ ci(t) + (r2i (t)− d2i (t))η)

where ci(t), ri(t) are the center and radius respectively of the focal hyper-

spheres along the curvature lines φi onM at φi(t) and d2i (t) = g(ci(t), ci(t)),

i = 1, · · · , n.
Then we interpret the above conformal invariants on M as follows:

Theorem 6. Let M be a hypersurface M in IRn+1. The curves γi deter-

mined in Sn+2
1 by the focal hyperspheres along the curvature lines φi(t),

i = 1, · · · , n of M−U(M), are lightlike curves and the differential 1-forms

ωi(t) =
√
| Ki

′(t) | dt, i = 1, · · · , n

are 4
√
12 times the infinitesimal 1

2 -dimensional length elements of γi, i =

1, · · · , n. The tangent vector γ′′i (t) to the curve γ′i is lightlike too if and

only if the point ϕ(x) = φi(t) is a ridge of the hypersurface M.

Proof: Let M be a hypersurface in IRn+1, we consider the focal hyper-

spheres Si(ci, ri) along the curvature lines φi(t), i = 1, · · · , n ofM−U(M).

The orthonormal basis of the affine spaces Wi of IR
n+1 is defined by the

unit principal directions of M and the normal vector of the hypersurface

in ϕ(x) = φi(t) : {X1, X2, ..., Xn, N}. By using this basis and applying

the corollary 1, we define the curves γi =
1
ri
(ϵ + ci + (r2i − d2i )η), where

di
2 = g(ci, ci), i = 1, · · · , n, in the de Sitter (n+2)-space Sn+2

1 .

By deriving the curves γi ⊂ Sn+2
1 along the corresponding curvature

lines φi(t), 1 ≤ i ≤ n, we obtain that the tangent vectors of these curves

are given by:

γ′i =
−r′i
ri

u0 +
g(c′i, N)

ri
un+1
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And its norm is:

∥γ′i(t)∥
2
= h(γ′i(t), γ

′
i(t)) = −

(
−r′i
ri

)2

+

(
g(c′i, N)

ri

)2

.

In this case, we know that ci = ϕ+riN, where N is the normal vector of

the hypersurface M. By applying the Olinde Rodrigues formula we obtain

c′i = r′iN, then ∥γ′i(t)∥
2 = 0 is identically 0, so γi is lightlike.

We calculate the second derivative of γi:

γ′′i =

((
−r′i
ri

)′
+

(
−r′i
ri

)2
)
u0 −K ′

i ui+1 +

((
−r′i
ri

)′
+

(
−r′i
ri

)2
)
un+1.

And their norms are:

∥γ′′i (t)∥
2
= h(γ′′i (t), γ

′′
i (t)) = K ′

i(t)
2
.

Then the differential conformal 1-forms are 4
√
12 times the infinitesimal

1
2 -dimensional arc-lengths of γi in Q :√

∥γ′′i (t)∥dt =
4

√
| h(γ′′i , γ′′i ) | dt =

√
|K ′

i(t)|dt, i = 1, · · · , n.

It follows from corollary 3 that a point ϕ(x0) = φi(t0) of the hypersur-

face M is a ridge if and only if K ′
i(t0) = 0, i.e. γ′′i (t0) ∈ Q.

2

Theorem 7. Suppose that M is a generic surface in the sense that the

subset of umbilics U(M) has zero measure. Then the differential 1-forms

ω̃i,j(t) = (Kj(t)−Ki(t))dt, 1 ≤ j ̸= i ≤ n

correspond to the infinitesimal length element of the curves γi,j ⊂ Sn+2
1

associated to the focal hyperspheres Sj along the curvature lines φi(t),

1 ≤ j ̸= i ≤ n of M − U(M). The tangent vector to the curve γi,j is

lightlike at a point if and only if this point is an umbilic (Ki = Kj) of the

hypersurface M .
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Proof: Let M be a hypersurface in IRn+1, if we consider the focal hy-

perspheres Sj(cj , rj), j ̸= i along the curvature lines φi(t), i = 1, · · · , n of

M − U(M), we define the curves γi,j =
1
rj
(ϵ + cj + (r2j − d2j )η) in the De

Sitter (n+ 2)-space Sn+2
1 .

By deriving the curves γi,j ⊂ Sn+2
1 along the curvature lines φi(t),

1 ≤ j ̸= i ≤ n and by applying the Olinde Rodrigues formula we obtain

that the tangent vectors of these curves are given by:

γ′i,j =
−r′j
rj

u0 +
1

rj

(
1− Ki

Kj

)
uj+1 +

1

rj

(
Kj

′

K2
j

)
un+1

And their norms are:

∥γ′i,j(t)∥
2
= −

(−r′j
rj

)2

+

(
1

rj

(
1− Ki

Kj

))2

+

(
1

rj

(
Kj

′

K2
j

))2

= (Kj−Ki)
2

Then the squared root to the infinitesimal conformal arc-length of γi,j

in Sn+2
1 is the differential conformal 1-form:

√
∥γ′i,j(t)∥

2dt =
√

(Kj −Ki)2dt = (Kj −Ki) dt, 1 ≤ j ̸= i ≤ n.

A point ϕ(x0) = φi(t0) is a umbilic point (Ki = Kj) on the generic

hypersurface M if and only if ∥γi,j ′(x0)∥ = 0 i.e. γi,j
′(t0) ∈ Q.

2
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