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Theorem. (do Carmo and Peng [19, Thm. 1.2]). Let x : M → R3 be

a stable complete minimal immersion of a two-dimensional, orientable,

connected manifold M . Then x(M) ⊂ R3 is a plane.

The same result was independently proved by Fischer-Colbrie and Schoen

as a particular case of their work on stable minimal surfaces in 3-manifolds

with nonnegative scalar curvature [21]. A third proof of the result by do

Carmo and Peng was given by Pogorelov [39]. Later on, another one, us-

ing harmonic vector fields, was given by Palmer [36]. Previous results on

stable minimal surfaces had been obtained by do Carmo and Barbosa [3]

and by do Carmo and Silveira [18].

Complete orientable stable minimal surfaces are a generalization of en-

tire minimal graphs. These are stable by a simple variational argument

involving a suitable coordinate of the unit normal vector field. In this way,

the result by do Carmo and Peng can be considered an extension of the

well-known Bernstein’s Theorem.

Theorem. (Bernstein’s Theorem [8]). The only entire minimal graphs in

R3 are planes.

The second variation formula of the area was later used by Barbosa and

do Carmo [4] and by Barbosa, do Carmo and Eschenburg [5] to charac-

terize the geodesic spheres as the only compact orientable stable constant

mean curvature surfaces in simply-connected space-forms.

All these results popularized a classical tool in Calculus of Variations,

the second variation formula, for the treatment of variational problems

related to the area functional in Riemannian Geometry.

In this paper we will describe recent development concerning the vari-

ational theory of the sub-Riemannian area functional in the Heisenberg

group H1. The theory is quite different from the Riemannian one, and un-

expected phenomena arise. However, we have the same problem of finding

the area-minimizing surfaces and the same basic strategy of characteriz-

ing the critical points of the area functional and computing the second
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variation for such critical points. We have organized the material into two

sections: in the following we gather some basic results on the geometry

of the Heisenberg group H1, variational formulas for the sub-Riemannian

area, and geometric properties and characterization of area-stationary sur-

faces. Most of this material can be found in [42]. In the final section, we

use the second variation formula of the area to characterize the stable

area-stationary surfaces in H1. This is the main result in [31].

1 Area-stationary surfaces in the sub-Rieman-

nian Heisenberg group H1

Indispensable references to understand the geometry and analytical

properties of the sub-Riemannian Heisenberg group H1 include Folland

and Stein [22], Gromov [27], [26], Montgomery [32], and Capogna, Danielli,

Pauls and Tyson [9]. The study of minimal surfaces in sub-Riemannian

geometry was initiated by Garofalo and Nhieu [24]. The theory of finite

perimeter sets in Hn has been developed in [23].

In these notes, all the considered surfaces will be of class C2. While this

is a reasonable hypothesis from the point of view of differential geometry,

it is known that there exists critical points of the sub-Riemannian area,

even global minimizers, with less regularity [12], [40].

1.1. The geometry of H1. The Heisenberg group H1 is the Lie group

(R3, ∗), where the product ∗ is defined, for any pair of points [z, t], [z′, t′] ∈
R3 ≡ C× R, by

[z, t] ∗ [z′, t′] := [z + z′, t+ t′ + Im(zz′)], (z = x+ iy).

For p ∈ H1, the left translation by p is the diffeomorphism Lp(q) = p∗q. A
basis of left invariant vector fields (i.e., invariant by any left translation)
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is given by

X :=
∂

∂x
+ y

∂

∂t
, Y :=

∂

∂y
− x

∂

∂t
, T :=

∂

∂t
.

The horizontal distribution H in H1 is the smooth planar distribution gen-

erated by X and Y . The horizontal projection of a tangent vector U onto

H will be denoted by Uh. A vector field U is horizontal if U = Uh.

We denote by [U, V ] the Lie bracket of two C1 vector fields U and V

on H1. Note that [X,T ] = [Y, T ] = 0, while [X,Y ] = −2T , so that H is a

bracket-generating distribution. Moreover, by Frobenius theorem we have

that H is nonintegrable. The vector fields X and Y generate the kernel

of the (contact) 1-form ω := −y dx+ x dy + dt.

We shall consider on H1 the Riemannian metric g =
〈
· , ·

〉
so that

{X,Y, T} is an orthonormal basis at every point, and denote by D the

Levi-Civita connection in (H1, g). The restriction of g to H coincides with

the usual sub-Riemannian metric in H1. A 90-degree rotation J is defined

on every plane Hp by taking J(Xp) = Yp, J(Yp) = −Xp.

1.2. Carnot-Carathéodory distance and geodesics. Let γ : I → H1

be a piecewise C1 curve defined on a compact interval I ⊂ R. The length

of γ is the usual Riemannian length L(γ) :=
∫
I |γ̇(ε)| dε, where γ̇ is the

tangent vector of γ. A horizontal curve γ in H1 is a C1 curve whose tan-

gent vector always lies in the horizontal distribution. For two given points

in H1 we can find, by Chow’s connectivity theorem [26, Sect. 1.2.B], a

horizontal curve joining these points. The Carnot-Carathéodory distance

dcc between two points in H1 is defined as the infimum of the length

of horizontal curves joining the given points. The topology associated

to dcc coincides with the usual topology in R3, see [7, Cor. 2.6]. Two

given points can be joined by a, non-necessarily unique, sub-Riemannian

geodesic γ : I → H1, which is a C∞ curve and satisfies the equation

Dγ̇ γ̇ + 2λJ(γ̇) = 0,
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for some λ ∈ R called the curvature of the geodesic [33].

1.3. Surfaces in H1. Let Σ be a C1 surface immersed in H1. The singu-

lar set Σ0 consists of those points p ∈ Σ for which the tangent plane TpΣ

coincides with Hp. As Σ0 is closed and has empty interior in Σ, the regular

set Σ − Σ0 of Σ is open and dense in Σ. It was proved in [17, Lem. 1],

see also [2, Thm. 1.2], that, for a C2 surface, the Hausdorff dimension of

Σ0 with respect to the Riemannian distance on H1 is less than or equal

to one. In particular, the Riemannian area of Σ0 vanishes. If N is a unit

vector normal to Σ in (H1, g), then we can describe the singular set as

Σ0 = {p ∈ Σ : Nh(p) = 0}, where Nh = N −
〈
N,T

〉
T . In the regular part

Σ−Σ0, we can define the horizontal Gauss map νh and the characteristic

vector field Z, by

νh :=
Nh

|Nh|
, Z = J(νh). (1.1)

As Z is horizontal and orthogonal to νh, we conclude that Z is tangent to

Σ. Hence Zp generates TpΣ∩Hp. The integral curves of Z in Σ−Σ0 will

be called (oriented ) characteristic curves of Σ. They are both tangent to

Σ and horizontal. If we define

S :=
〈
N,T

〉
νh − |Nh|T, (1.2)

then {Zp, Sp} is an orthonormal basis of TpΣ whenever p ∈ Σ− Σ0.

1.4. Sub-Riemannian area. Given a C1 immersed surface Σ with a

unit normal vector N , we define the (sub-Riemannian) area of Σ by

A(Σ) :=

∫
Σ
|Nh| dΣ, (1.3)

where dΣ is the Riemannian area element on Σ. If Σ is a C2 surface

bounding a set Ω, then A(Σ) coincides with all the notions of perimeter

of Ω and area of Σ introduced by different authors, see [23, Prop. 2.14],

[35, Thm. 5.1] and [23, Cor. 7.7].
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1.5. Mean curvature. The first variation of the sub-Riemannian

area. For a C2 immersed surface Σ with a unit normal vector N , we

denote by B the Riemannian shape operator of Σ with respect to N . It

is defined for any vector W tangent to Σ by B(W ) = −DWN . The Rie-

mannian mean curvature of Σ is −2HR = divΣN , where divΣ denotes the

Riemannian divergence relative to Σ.

Let Σ be a C2 immersed surface in H1 with a unit normal vector N .

We define the (sub-Riemannian) mean curvature of Σ as in [41] and [42],

by the equality

− 2H(p) = (divΣ νh)(p), p ∈ Σ− Σ0, (1.4)

where νh is the horizontal Gauss map defined in (1.1). We say that Σ is

a minimal surface if the mean curvature vanishes on Σ−Σ0. This notion

of mean curvature agrees with the ones introduced by other authors [13],

[37], [11].

Like in the Riemannian case, the sub-Riemannian mean curvature ap-

pears in the computation of the first variation formula of the area (1.3),

but we shall see immediately fundamental differences

Lemma 1.1. ([42, Lem. 4.3]). Let Σ ⊂ H1 be an oriented C2 immersed

surface. Suppose that U is a C2 vector field with compact support on Σ

and normal component u =
〈
U,N

〉
. Then the first derivative at s = 0 of

the area functional A(s) associated to U is given by

A′(0) =

∫
Σ
u
(
divΣ νh

)
dΣ−

∫
Σ
divΣ

(
u (νh)

⊤) dΣ, (1.5)

provided divΣ νh ∈ L1
loc(Σ).

Moreover, if Σ is area-stationary then

A′(0) =

∫
Σ
u (divΣ νh) dΣ.

The second term in formula (1.5) may not vanish if the singular set Σ0

is not empty. The structure of Σ0 for C2 surfaces with a certain condition
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on the sub-Riemannian mean curvature, including the surfaces with H

constant, has been studied by Cheng, Hwang, Malchiodi and Yang [11,

Sect. 3], who have proved that it consists on isolated points and singular

curves, and that the characteristic curves cross the singular curves in a

C1 way. As a consequence of the first variation formula of the area (1.5)

and the results in [11] we obtained

Proposition 1.2. ([42, Thm. 4.8, Thm. 4.17]). Let Σ ⊂ H1 be an ori-

ented C2 immersed surface. Then Σ is area-stationary if and only if Σ

is minimal and the characteristic curves meet orthogonally the singular

curves.

Moreover, the characteristic curves of Σ are horizontal Riemannian

geodesics, i.e., they are horizontal straight lines.

Similar results also hold in other ambient spaces, see [28] and [30]. In

higher dimensional Heisenberg groups, the Hausdorff codimension of the

singular set is high enough to make the second term in (1.5) irrelevant.

Hence area-stationary surfaces in Hn, n ⩾ 2, are just minimal surfaces.

1.6. Examples of area-stationary surfaces and classification re-

sults. The first known examples of minimal surfaces in H1 were described

in the family of t-graphs [37, S 4]. Given a function u ∈ C2(D), where

D ⊂ R2, it is easy to check from (1.4) that the graph t = u(x, y) is a

minimal surface in H1 if and only if

(uy + x)2uxx − 2 (uy + x) (ux − y)uxy + (ux − y)2 uyy = 0, (1.6)

which is a degenerate elliptic and hyperbolic PDE. The Plateau problem

for t-graphs has been studied in [37], [11], [12], [38].

Interesting examples include the Euclidean planes, either the vertical

ones with no singular points and the nonvertical ones with an isolated

singular point, the hyperbolic paraboloid t = xy, the sub-Riemannian

catenoids t2 = λ2 (x2 + y2 − λ2), λ ̸= 0 [37], [41], and the helicoids Hr,
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r > 0, described in [42, Ex. 6.14] as the union of all the horizontal straight

lines orthogonal to the sub-Riemannian geodesic in H1 obtained by the

horizontal lift of the circle in the xy-plane of radius 1/r centered at the

origin. We can parameterize Hr by

Fr(ε, s) = (s sin(rε), s cos(rε), ε/r). (1.7)

The singular set of Hr consists of the helices s = ±1/r. Note that the

family {Hr}r>0 is invariant under the sub-Riemannian dilations δλ defined

by

δλ(x, y, t) := (eλx, eλy, e2λt).

In fact δλ(Hr) = Hµ with µ = e−λr. The surfaces Hr coincide with

the classical left-handed minimal helicoids in R3. In particular, they are

embedded surfaces containing the vertical axis. We remark that the clas-

sical right-handed minimal helicoids in R3 are complete area-stationary

surfaces in H1 with empty singular set.

By using these facts we were able to obtain the following, see [42,

Thm. 6.15].

Proposition 1.3. Let Σ be a C2 complete, oriented, connected, area-

stationary surface immersed H1 with singular set Σ0.

(i) If Σ0 contains an isolated point then Σ coincides with a Euclidean

non-vertical plane.

(ii) If Σ0 contains a singular curve then Σ is either congruent to the

hyperbolic paraboloid t = xy or to one of the helicoidal surfaces Hr

defined above.

There are many examples of complete area-stationary surfaces with

empty singular set, including intrinsic graphs (Riemannian graphs over

vertical planes), as those described by Barone, Serra-Cassano and Vittone

[6]. See also the paper by Cheng and Hwang [10] for a classification of

minimal surfaces in H1.
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1.7. The second variation of the sub-Riemannian area. Second

variation formulas of the area for particular surfaces and variations sup-

ported in the regular set have appeared in several papers. In [11], such

a formula was obtained for C3 surfaces inside a 3-dimensional pseudo-

hermitian manifold. In [6], a second variation formula was proved for

variations by intrinsic graphs of class C2 in H1. In [13], it is computed the

second derivative of the area associated to a C2 variation by Euclidean

straight lines of a C2 surface without singular points in H1. We would

like to stress that the variations we consider in Theorem 1.4 can move the

singular set of the surface.

In the next theorem we compute the second derivative of the area func-

tional for an arbitrary normal variation by Riemannian geodesics of a C2

minimal surface in H1.

Theorem 1.4. ([31, Thm. 3.7]). Let Σ ⊂ H1 be a C2 immersed mini-

mal surface with singular set Σ0. Consider the C1 vector field U = uN ,

where N is a unit normal vector to Σ and u ∈ C1
0 (Σ). Then, the second

derivative of the area for the variation induced by U is given by

A′′(0) =

∫
Σ
|Nh|−1

{
Z(u)2 −

(
|B(Z) + S|2 − 4|Nh|2

)
u2

}
dΣ+

∫
Σ
divΣ(ξZ) dΣ,

provided all the integrals above are finite. Here {Z, S} is the orthonormal

basis defined in (1.1) and (1.2), B is the Riemannian shape operator of

Σ, and

ξ =
〈
N,T

〉
(1−

〈
B(Z), S

〉
)u2.

In particular, if u ∈ C1
0 (Σ− Σ0) then

A′′(0) =

∫
Σ
|Nh|−1

{
Z(u)2 −

(
|B(Z) + S|2 − 4|Nh|2

)
u2

}
dΣ.

By integration by parts [31, S 3.3] we get

Q(u) := A′′(0) = −
∫
Σ
uL(u) dΣ,
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where L is the second order subelliptic operator on Σ given by

L(u) := |Nh|−1
{
Z(Z(u)) + 2 |Nh|−1

〈
N,T

〉 〈
B(Z), S

〉
Z(u)

+ (|B(Z) + S|2 − 4|Nh|2)u
}
.

As in the Euclidean case, we define a stable area-stationary surface in H1

as a C2 area-stationary surface with non-negative second derivative of the

area under compactly supported variations.

2 Stable surfaces in the sub-Riemannian Heisen-

berg group H1

Stable area-stationary surfaces in H1 have been considered in previous

papers in connection with some Bernstein type problems. Let us describe

some related works.

In [11], a classification of all the complete C2 solutions to the minimal

surface equation (1.6) for t-graphs in H1 is given. In [42], this classification

was refined by showing that the only complete area-stationary t-graphs

are Euclidean non-vertical planes or those congruent to the hyperbolic

paraboloid t = xy. By means of a calibration argument it is also proved

in [42] that they are all area-minimizing.

In [14] and [6] the Bernstein problem for intrinsic graphs in H1 was

studied. A C1 intrinsic graph has empty singular set. Examples of C2

complete area-stationary intrinsic graphs different from vertical Euclidean

planes were found in [25] and [14], and they were classified by Barone,

Serra Cassano and Vittone in [6]. A remarkable difference with respect

to the case of the t-graphs is the existence of complete C2 area-stationary

intrinsic graphs which are not area-minimizing, see [14]. The second vari-

ation formula of the area was computed in [6] to establish that the only

complete stable C2 intrinsic graphs are the Euclidean vertical planes. An

interesting calibration argument, also given in [6], yields that the vertical

planes are in fact area-minimizing surfaces in H1.
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In the interesting paper [16], it is proven that C2 complete stable area-

stationary Euclidean graphs with empty singular set must be vertical

planes. This is done by showing that such graphs contain a particular

example of unstable surfaces called strict graphical strips unless the sur-

face is a vertical plane. From the geometrical point of view, a graphical

strip is a C2 surface given by the union of a family of horizontal lines Lt

passing through and filling a vertical segment so that the angle function

of the horizontal projection of Lt is a monotone function. The graphi-

cal strip is strict if the angle function is strictly monotone. If the angle

function is constant we have a piece of a vertical plane. We would like to

remark that there are examples of complete area-stationary surfaces with

empty singular set which do not contain a graphical strip, such as the

sub-Riemannian catenoids t2 = λ2 (x2 + y2 − λ2), λ ̸= 0. Hence the main

result in [16] does not apply to general surfaces.

The authors, in a joint work with Ana Hurtado, have proved the fol-

lowing

Theorem 2.1. ([31, Thm. 6.1]). The only complete, orientable, con-

nected, stable area-stationary surfaces in H1 of class C2 are the Euclidean

planes and the surfaces congruent to the hyperbolic paraboloid t = xy.

After the distribution of the paper [31], we were informed of the re-

lated work [15] by Danielli, Garofalo, Nhieu and Pauls, where the authors

prove that stable embedded minimal surfaces with empty singular set are

vertical planes.

In particular, Theorem 2.1 provides the classification of all the complete

C2 orientable area-minimizing surfaces in H1. In the Heisenberg groups

Hn, with n ⩾ 5, there is no counterpart to Theorem 2.1, as some examples

have been constructed in [6] of complete area-minimizing intrinsic graphs

different from Euclidean vertical hyperplanes. For n = 2, 3, 4 it is still

unknown if similar examples can be obtained. We would like to mention

that examples of area-minimizing surfaces in H1 with low Euclidean reg-

ularity have been obtained in [38], [12], [40] and [34]. Hence our results
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are optimal in the class of C2 area-stationary surfaces. Finally, the tech-

niques used to prove Theorem 2.1 can be employed to prove classification

results for complete stable area-stationary surfaces under a volume con-

straint in the first Heisenberg group [43], and inside the sub-Riemannian

three-sphere [29].

The strategy of the proof is to use the second variation formula with

suitable test functions. We first consider the case of empty singular set.

So let Σ ⊂ H1 be a (complete orientable) stable area-stationary surface.

Then |Nh| does not vanish on Σ. Observe that the function |Nh| is associ-
ated to the variational vector field induced by the surfaces equidistant to

Σ in the Carnot-Carathéodory distance, see [1]. Hence, our construction

of the test function v is somewhat similar to the Euclidean case, where

the equivalent test function is u ≡ 1. Using Fischer-Colbrie’s results [20],

a stable minimal surface is conformally a compact Riemann surface minus

a finite number of points, so that a logarithmic cut-off function v of u ≡ 1

has compact support and yields instability unless the surface is a plane.

We remark that the function |Nh| was already used as a test function in [6]

and [16]. We first observe that, for any function f with compact support

on Σ, we get

Q(f |Nh|) =
∫
Σ
|Nh|

{
Z(f)2 − L(|Nh|) f2

}
dΣ. (2.1)

If Σ were compact then taking f ≡ 1 we would conclude from the following

Proposition 2.2. ([31, Prop. 4.6]). Let Σ ⊂ H1 be a complete immersed

C2 area-stationary surface without singular points. Then L(|Nh|) ⩾ 0.

Moreover

1. L(|Nh|) = 0 if and only if
〈
N,T

〉
= 0,

〈
B(Z), S

〉
= 1.

2. L(|Nh|) ≡ 0 only on vertical planes.

We prove that Σ is a vertical plane. Assume it is not, and consider a

horizontal line L contained in Σ such that L(|Nh|) > 0 on L. This line
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exists by Proposition 2.2. We parameterize a neighborhood in Σ of L by

the map F : I × R → Σ given by

F (ε, s) := Γ(ε) + sZΓ(ε),

where Γ : I → Σ is a small portion of an integral curve of S passing

through a given point of L. For fixed ε, the curve s 7→ F (ε, s) is the hori-

zontal Riemannian geodesic with initial conditions (Γ(ε), ZΓ(ε)). Then we

get

dΣ := |Vε| dε ds,

where Vε is the Riemannian Jacobi field

Vε(s) :=
∂F

∂ε
(ε, s).

Let v := |
〈
V, T

〉
|1/2. Then we get from (2.1)

Q(uv−1|Nh|) =
∫
I×R

(
∂u

∂s

)2

dε ds− 3

4

∫
I×R

L(|Nh|)u2dε ds,

for any function u with compact support in Σ.

Take a non-negative C∞ function ϕ : I → R with ϕ(0) > 0 and compact

support contained inside a bounded interval I ′ ⊆ I. For any k ∈ N define

the function

uk(ε, s) := ϕ(ε)ϕ(s/k).

Then we have

lim sup
k→∞

Q(ukv
−1|Nh|) = −3

4
lim inf
k→∞

∫
I×R

L(|Nh|)u2k dε ds

⩽ −3

4

∫
I×R

L(|Nh|)u2 dε ds,

which is strictly negative since L(|Nh|) is non-negative and strictly positive

on L. This contradiction shows that Σ must be a vertical plane.

Vertical planes are stable area-stationary surfaces since they are area-

minimizing. The proof follows by a calibration argument since the unit
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normal vector to a vertical plane is the restriction of a divergence-free

left-invariant vector field on H1, see [6].

In case Σ has singular points then Σ must be either a Euclidean non-

vertical plane, congruent to a hyperbolic paraboloid, or a helicoidal surface

Hr, r > 0. Both Euclidean non-vertical planes and surfaces congruent to

the hyperbolic paraboloid are stable because they are area-minimizing.

Since Hr = δλ(H2), for λ := log(2/r), it is enough to show that H2 is

unstable. The singular set of H2 is composed of two connected curves

Γ1, Γ2 corresponding to s = ±1/2. For a compactly supported function

u : H2 → R we can write, using (1.7), the second variation formula in the

following way

A′′(0) =

∫
Σ

|Nh|−1Z(u)2 dΣ− 4

∫
Γ1

u2dℓ− 4

∫
Γ2

u2dℓ

=

∫
R2

f(s) + 4s2

|f(s)|

(
∂u

∂s

)2

dε ds− 4

∫
R
u(ε,+1/2)2 dε− 4

∫
R
u(ε,−1/2)2 dε,

where f(s) := (1/2)− 2s2. Observe that for a function u with compact support

in the regular part of the surface we obtain A′′(0) ⩾ 0. Hence the general sec-

ond variation formula of the area, for variations moving the singular set, will be

necessary to prove the instability of H2.

Let ϕ : R → [0, 1] be a C∞ function with ϕ(ε) = 1 if |ε| ⩽ 1 and ϕ(ε) = 0

if |ε| ⩾ 2. For any k > 1/2 and δ > 0, let ϕkδ : R → [0, 1] be the symmetric

function with respect to the origin given, for s ⩾ 0, by

ϕkδ(s) =


1, 0 ⩽ s ⩽ k,

δ−1 (−s+ δ + k), k ⩽ s ⩽ k + δ,

0, s ⩾ k + δ.

Then there is k > 1/2, δ = 2k + 1 such that u(ε, s) := ϕ(ε)ϕkδ(s) satisfy

A′′(0) < 0. (2.2)

By mollification we can find a smooth function such that (2.2) holds. This com-

pletes the proof of Theorem 2.1.
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[7] Belläıche, A., The tangent space in sub-Riemannian geometry, Sub-

Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996,
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aux dérivées partielles du type elliptique., Charikov, Comm. Soc. Math. (2)

15 (1915-1917), 38–45 (French).

[9] Capogna, L.; Danielli,D.; Pauls, S. D.; Tyson, J. T., An introduction to the

Heisenberg group and the sub-Riemannian isoperimetric problem, Progress
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