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Abstract

We give proofs of Alexandrov, Bernstein and Hopf Theorems.

Then, we discuss the developments of the theory of constant mean

curvature surfaces ensuing from them.

1 Introduction

The followings are very impressive theorems in the theory of constant

mean curvature hypersurfaces in Euclidean space.

Alexandrov Theorem. [1] A compact constant mean curvature hyper-

surface embedded in Rn+1 is a round sphere.

Bernstein Theorem. [2], [6], [21], [31], [53], [56] A minimal hyper-

surface in Rn+1, n < 7, which is a complete graph over a hyperplane

Rn ⊂ Rn+1 is a hyperplane.

Do Carmo and Lawson in [23] emphasized that Alexandrov’s and

Bernstein’s Theorems together give a characterization of the (complete)
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totally umbilical hypersurfaces embedded in Rn+1, among those of con-

stant mean curvature (we recall that, at any point of a totally umbilical

hypersurface, all the principal curvatures are equal). Actually, the charac-

terization of totally umbilical hypersurfaces with constant mean curvature

was known previously: all the principal curvatures of an umbilical hyper-

surface with constant mean curvature are equal to a constant, in particular

the hypersurface is isoparametric. Isoparametric hypersurfaces have been

classified in [41], [55], [13] (for the case of R3, Rn with n > 3, space forms,

respectively).

This unified view over Alexandrov’s and Bernstein’s Theorems, leads

Do Carmo and Lawson to prove some results in hyperbolic space Hn+1.

Among their results, the following natural generalization of the Alexan-

drov Theorem sticks out.

Theorem 1.1. (Do Carmo-Lawson). [23] Let S be a complete prop-

erly embedded hypersurface in Hn+1, with constant mean curvature and

exactly one point in the asymptotic boundary. Then S is a horosphere.

The asymptotic boundary will be defined in Section 2.

Later on, this kind of results were pursued by many authors and this

subject is still very fruitful. The aim of this survey is to describe results

in the theory of constant mean curvature surfaces from this point of view.

In order to generalize the Alexandrov Theorem to ambient spaces dif-

ferent from Rn+1, it is worth to make some remarks about rotationally

invariant spheres, geodesic spheres and totally umbilical hypersurfaces.

In space forms, rotationally invariant constant mean curvature hypersur-

faces are totally umbilical. This is not the case in a general homogeneous

manifolds, as for example the simply connected homogeneous 3-manifolds

with isometry group of dimension four: H2×R, S2×R, Heisenberg group

Nil3, the Berger spheres and P̃SL2(R), and with isometry group of di-

mension three: Sol3.

Moreover, while in space forms, geodesic spheres have constant mean

curvature, this is not the case in a general homogeneous manifold. Hence,
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in order to obtain Alexandrov type result in homogeneous simply con-

nected 3-manifold, one has to understand first, which may be the surface

for which one is looking for uniqueness. As we will see later, when the

isometry group of the homogeneous simply connected 3-manifold has di-

mension four, the desired surface is a rotationally invariant sphere with

the same mean curvature, while in Sol3, where no rotation is avaiable, it

is a deformation of the solution of the isoperimetric problem (we will be

more precise in Section 4).

It is worth to introduce the Hopf Theorem as an aspect of the discussion.

Hopf Theorem. [34] A constant mean curvature sphere immersed in

R3 is a round sphere.

Hopf Theorem can be generalized immediately to H3 and S3 with the

same proof as in [34]. Furthermore Hopf Theorem still holds for surfaces in

space forms of dimension higher than three, provided the mean curvature

vector is parallel [65].

In general, a Hopf type theorem is an uniqueness theorem about con-

stant mean curvature immersed topological spheres. In simply connected

homogeneous manifold with isometry group of dimension four, the surface

that will be unique by a Hopf type theorem is a rotationally invariant

sphere. In the case of Sol3, the surface that will be unique by a Hopf type

theorem is a deformation of the solution of the isoperimetric problem (as

in the case of Alexandrov type theorem).

The paper is organized as follows. Each section is devoted to one of the

Theorems by Alexandrov, Bernstein and Hopf: the section contains a proof

of the corresponding theorem and a discussion about its generalizations.

As a general reference for surfaces theory we suggest [24], while for basic

notions about the theory of submanifolds we suggest [25].
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2 Alexandrov Problem

Alexandrov Theorem. [1] A compact constant mean curvature hyper-

surface S embedded in Rn+1 is a round sphere.

We learned the proof of Alexandrov’s result in [34], where Hopf proves

the Alexandrov Theorem for the case n = 3 and S of class C3. We report

a simplified version of that proof. Hopf himself wrote:

...It is my opinion that this proof by Alexandrov, and especially the geo-

metric part, opens important new aspects in differential geometry in the

large...

The following developments of the theory of constant curvature surfaces

show that Hopf’s sentence was very far-sighted. In fact, the geometric part

of the Alexandrov’s proof is what is now known as Alexandrov reflection

method or technique of moving planes and it is a very powerful tool.

We use the following characterization of the sphere in R3.

Lemma 2.1. A compact embedded surface in R3 that has a plane of sym-

metry in every direction, is a round sphere (Lemma 2.2. Chapter VII in

[34]).

Then we need some results from PDE’s theory. Let p be a point of

a surface S of constant mean curvature H. Locally around the point p,

one can write the surface S as a graph of a C2 function u(x, y) over the

tangent plane to S at p. Then, the function u satisfies

(1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy − 2H(1 + u2x + u2y)
3
2 = 0 (1)

Denote by p = ux, q = uy, r = uxx, s = uyy, t = uxy, then equation (1)

writes as

Φ(p, q, r, s, t) = (1 + q2)r − 2pqs+ (1 + p2)t− 2H(1 + p2 + q2)
3
2 = 0

As the quadratic form ∆ = Φrλ
2+Φsλµ+Φtµ

2 = λ2+µ2+(qλ−pµ)2 is

positive definite, Φ = 0 is an elliptic partial differential equation of second

order. Then, we are able to prove the following result.
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Theorem 2.1. Let Φ = 0 be a partial differential equation of second order

elliptic in a neighborhood of (0, 0). Let u1 and u2 be two C2 solutions of

Φ = 0 such that at (0, 0)

u1(0, 0) = u2(0, 0), p1(0, 0) = p2(0, 0), q1(0, 0) = q2(0, 0) (2)

but u1 ̸= u2 in any neighborhood of (0, 0). Then, w = u2 − u1 does not

have a sign in any neighborhood of (0, 0).

The geometric version of the previous theorem is known as the Maxi-

mum Principle and it claims as follows.

Maximum Principle. Let S1 and S2 be two surfaces with the same

constant mean curvature H, that are tangent at a point p ∈ int(S1) ∩
int(S2). Assume that the mean curvature vectors of S1 and S2 at p coincide

and that, around p, S1 lies on one side of S2. Then S1 ≡ S2. When the

intersection point p belongs to the boundary of the surfaces, the result holds

as well, provided further that the two boundary are tangent and both are

local graphs over a common neighborhood in TpS1 = TpS2.

Proof of Theorem 2.1. By the proof of Theorem 10.1 in [32], w satisfies

a linear elliptic partial differential equation of second order whose highest

order terms are of the form ∆+aijDij , where each aij is C
∞ and O(|x|2),

x = (x1, x2) (one must do the computation in the proof of Theorem 10.1 in

[32], keeping in mind that u1(0, 0) = u2(0, 0) and ∇u1(0, 0) = ∇u2(0, 0)).

This allows us to use Theorem 1.1 in [43], to conclude that

w(x) = h(x) +O(|x|n+1)

for some n ≥ 2 and h is a homogeneous harmonic polynomial of degree n.

Let z = x1+ix2. It follows that h = h(z) is the real part of a holomorphic

function. Since h is homogeneous of degree n, we have h(z) = Re(czn),

for some nonzero complex constant c. By rotating the coordinates, if nec-

essary, we may assume that c is real. Hence
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h(z) = h(reiθ) = crn cosnθ

As h changes sign in any neighborhood of (0,0), so does w.

2

We are now ready to prove the Alexandrov Theorem.

Proof of the Alexandrov Theorem. The proof relies on Alexandrov

reflection method. Let Pt, t ∈ R, be the family of parallel planes in

R3 orthogonal to a given direction of R3. Denote by P−
t the halfspace

containing Pt′ with t′ ≤ t and let P+
t = (R3 \P−

t )∪Pt. Denote by S(t)− =

S ∩P−
t , by S(t)+ = S ∩P+

t and by S(t)∗ the reflection of S(t)+ across Pt.

Let W be the compact region of R3 with boundary S. As W is compact,

we can choose a Pt disjoint from W. Move Pt parallel to itself (decreasing

t, say) until t0 such that Pt0 touches S at a first point q. Then continue to

decrease t. At the beginning S(t)+ is a graph of bounded slope over a part

of Pt and int(S(t)∗) is contained in W. Furthermore the mean curvature

vector at any point of S(t)∗ is the reflection of the mean curvature vector

at the corresponding point of S(t)+. Now continue to decrease t till the

first τ where one of the following conditions fails to hold:

(a) int(S(τ)∗) ⊂ W.

(b) S(τ)+ is a graph of bounded slope over a part of Pτ .

If (a) fails first, one applies the Maximum Principle to S(τ)− and S(τ)∗

at the point where they touch to conclude that Pτ is a plane of symmetry

of S. If (b) fails first, then the point p where the tangent space of S(τ)+

becomes orthogonal to Pτ belongs to ∂S(τ)+ = ∂S(τ)− ⊂ Pτ and one

apply the boundary Maximum Principle to S(τ)∗ and S(τ)− to conclude

that Pτ is a plane of symmetry of S.

Thus, for any direction, one finds a plane of symmetry of S orthogonal

to that direction. Hence S has a plane of symmetry in any direction and

one concludes that it is a sphere, by Lemma 2.1.

2

As it is clear from the proof, the key properties for the Alexandrov
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Theorem holding are:

� The surface must satisfy an elliptic equation.

� The ambient space must have ”many” totally geodesic surfaces that

are symmetry submanifolds by an ambient isometry.

It is easy to see that the analogous of the Alexandrov Theorem holds in

Hn+1 and in a hemisphere of Sn+1 with the same proof as in [1]. In the case

of Sn+1, the hypersurface S must be contained in a hemisphere, in order to

start Alexandrov reflection method with a totally geodesic hypersurface

Sn disjoint from S.

Furthermore, one can extend the Alexandrov Theorem to embedded

hypersurfaces of Rn+1 having positive constant scalar curvature, or such

that any other symmetric function of the principal curvatures is a positive

constant [52]. Alexandrov type results where obtained for Weingarten

surfaces [11], [58] and for constant mean curvature surfaces bounded by

convex curves in space forms [12], [59], [60].

The following Theorem is a generalization of Alexandrov’s result to

H2 × R and to a hemisphere of S2 times R.

Theorem 2.2. (Hsiang-Hsiang) [36] A compact embedded constant mean

curvature surface in H2×R or in a hemisphere of S2 times R is a rotational

sphere.

The proof of Theorem 2.2 is similar to the proof of Alexandrov The-

orem. In fact, any reflection about a vertical plane (i.e. a horizontal

geodesic times R) is an isometry of H2 ×R and S2 ×R. In H2 ×R one ap-

plies Alexandrov reflection method with vertical planes in order to prove

that for any horizontal direction, there is a vertical plane of symmetry of

the surface, orthogonal to that direction. This means that the surface is

invariant by rotation about a vertical axis i.e. it is a rotational sphere.

The proof is analogous in S2 ×R. We have only to notice that in order to

start Alexandrov reflection method with vertical planes, one need to find,

for any horizontal direction, a vertical plane orthogonal to that direction,
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non intersecting the surface. In S2 × R, this fact is guaranteed by the

hypothesis that the surface is contained in a hemisphere times R.
Alexandrov’s problem in Nil3, P̃ SL2(R) and in the Berger spheres is

still open, since no reflections are available in these spaces.

In [29], Espinar, Galvez, Rosenberg remarked that in Sol3 there are

two orthogonal foliations by totally geodesic surfaces such that each leaf

of the two orthogonal foliations is a symmetry submanifold by an ambi-

ent isometry and thus the Alexandrov reflection method can be used to

prove that a compact embedded surface with constant mean curvature is a

topological sphere. Then, once a Hopf type theorem is proved in Sol3, an

Alexandrov type result is proved too (see Theorem 4.2 and the discussion

there).

Do Carmo-Lawson extension of Alexandrov Theorem (Theorem 1.1 in

the Introduction) was suggested by the fact that in hyperbolic space, um-

bilical hypersurfaces are somewhat more interesting than in Euclidean

space. We recall that that Hn+1 has a natural compactification Hn+1 =

Hn+1 ∪ Sn(∞) where the points of Sn(∞) can be viewed as classes of

geodesic rays in Hn+1 (two rays are identified if their distance tends to

zero at infinity). If Σ is a submanifold of Hn+1, the asymptotic boundary

of Σ is defined as Σ ∩ Sn(∞) and it is denoted by ∂∞Σ. Umbilical hyper-

surfaces in Hn+1 are of three types, according to the value of the mean

curvature (and their asymptotic boundary):

� 1 < H < ∞ : spheres (compact case).

� H = 1 : horospheres (asymptotic boundary: one point).

� 0 ≤ H < 1 : equidistant spheres, in particular hyperplanes when

H = 0 (asymptotic boundary: a codimension two sphere).

Notice that properly embedded hypersurfaces with compact connected

asymptotic boundary and constant mean curvature H ≥ 1, do not exist

in Hn+1. Furthermore, Anderson [3], proved that any closed submanifold
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Np−1 immersed in Sn(∞) is the asymptotic boundary of a minimal sub-

manifold Mp of Hn+1.

Hardt-Lin [37], [40] discussed the regularity at infinity in the case of

hypersurfaces of Hn+1. Tonegawa extended their results to submanifolds

of different codimension [64].

Hence, it is clear that the asymptotic boundary has a crucial role in

the discussion about constant mean curvature hypersurfaces in hyperbolic

space.

Before stating next result we need to recall the following notion. Let Σ be

a hypersurface in Hn+1 such that ∂∞Σ is a codimension two sphere. Then

∂∞Σ can be assumed to be an equator of Sn(∞). We say that Σ separates

poles if the north pole and the south pole with respect to such equator

are in different component of Hn+1 \ Σ (see [23]).

Theorem 2.3. (Do Carmo-Lawson) [23] Let Σ be a complete constant

mean curvature hypersurface properly emebedded in Hn+1 and let ∂∞Σ be

the asymptotic boundary of Σ.

1. If ∂∞Σ is one point, then Σ is a horosphere.

2. If ∂∞Σ is codimension two sphere and Σ separates poles, then Σ is

a equidistant sphere.

The first part of Theorem 2.3 is Theorem 1.1 stated in the Introduction.

Notice that it is false without the assumption of embeddedness [42].

Proof of Theorem 2.3 Part 1.

The proof is a smart variation of the Alexandrov reflection method. Con-

sider the half-space model for Hn+1, that is

Rn+1
+ = Rn

0 × R = {(x, xn+1) ∈ Rn+1 | xn+1 > 0}

Assume that the asymptotic boundary ∂∞Σ = ∞ i.e. the point at infinity

of Rn+1
+ . Then, Σ separates Hn+1 into two connected components, W+ and

W− such that ∂∞W+ = ∞ and ∂∞W− = Rn
0 . In the half-space model,
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the horospheres whose asymptotic boundary is ∞ are xn+1 = const. The

geodesics orthogonal to this family of horospheres are vertical half-lines,

parameterized as follows: γx = (x, t), t > 0, x ∈ Rn
0 . Each geodesic γx

determines a family of hyperbolic hyperplanes Hγx(t) orthogonal to γx.

Geometrically, each Hγx(t) is a half-sphere centered at x, that is

Hγx(t) = {x ∈ Rn+1
+ | ∥x− (x, 0)∥ = t}.

As ∂∞Σ = ∞, then, for any geodesic γx and t small

Hγx(t) ∩ Σ = ∅.

Recall that any inversion with respect to a halfsphere Hγx(t) orthogonal

to Sn(∞) is a hyperbolic isometry, called the reflection with respect to

Hγx(t).

We apply Alexandrov reflection method with the family of hyperplanes

Hγx(t).

Let Hγx(t)
+ and Hγx(t)

− be the two halfspaces determined by Hγx(t)

Hγx(t)
+ = ∪{Hγx(s) | s ≥ t}, Hγx(t)

− = ∪{Hγx(s) | s ≤ t}

Let Σ(t)+ = Σ ∩ Hγx(t)
+ and Σ(t)− = Σ ∩ Hγx(t)

−. As the asymptotic

boundary of Σ is ∞, for t small, Σ(t)− = ∅. Let Σ(t)∗ be the hyperbolic

reflection of Σ(t)− across Hγx(t). Let t0 > 0 be the smallest t such that

Hγx(t) ∩ Σ ̸= ∅. Then, increase t. At the beginning int(Σ(t)∗) ⊂ W+ and

Σ(t)− is not orthogonal to Hγx(t) along the boundary.

Now continue to increase t till the first τ where one of the following

conditions fails to hold:

(a) int(Σ(τ)∗) ⊂ W+.

(b) Σ(τ)− is not orthogonal to Hγx(τ) along the boundary.

This yields that Σ(τ)∗ and Σ(τ)+ are tangent at an interior or boundary

point p. Furthermore, in a neighborhood of p, Σ(τ)∗ lies on one side of

Σ(τ)+ and the mean curvature vectors coincide. Then, by the maximum
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principle, Σ(τ)∗ and Σ(τ)+ must coincide. This yields that Σ is compact.

Contradiction.

As (a) and (b) hold for every vertical geodesic γx and every t, one can

conclude that the tangent plane to Σ is horizontal at any point, and Σ is

a horosphere.

2

Remark 2.1. In H3, horospheres are unique also in another sense. A

properly embedded, constant mean curvature one, simply connected sur-

face is a horosphere, while the only annulus in such hypothesis is a ro-

tational surface with two point at infinity, known as the catenoid cousin

[16]. The deep reason of this fact is that, in H3, a properly embedded

annular end of a surface with constant mean curvature one has finite total

curvature. On the contrary, the analogous assertion for a minimal surface

in R3 is false: the end of the helicoid is annular, properly embedded but

does not have finite total curvature (see [16] for details).

Remark 2.2. In H2 × R, the constant mean curvature H = 1
2 plays a

role analogous to that of H = 0 in R3 and H = 1 in H3. It is worth to

notice that in H2 × R there exists a complete, non umbilic, rotationally

invariant, vertical graph with constant mean curvature H = 1
2 [44], [48],

[54], [57]. Discussions and conjectures about the uniqueness of complete,

H = 1
2 surfaces in H2 ×R can be found in [33], [45]. Recently Berard and

Sa Earp described rotational hypersurfaces in Hn×R and discussed about

their classification [10].

3 Bernstein Problem

Bernstein Theorem. [2], [6], [21], [31], [53] A minimal hypersurface M

in Rn+1, n < 7, which is a complete graph over a hyperplane Rn ⊂ Rn+1

is a hyperplane.

There are different proofs of Bernstein Theorem, according to the di-

mension. In R3, Bernstein himself [6], Heinz [35] and Osserman [49] proved
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Bernstein’s result. The methods they used are strictly two dimensional.

Simons [53] settled the result for n ≤ 6. Bombieri-De Giorgi-Giusti [9]

proved the existence of complete minimal graphs over Rn, provided n ≥ 7,

hence a Bernstein type result is false for n ≥ 7.

Let us explain the relations between minimal graphs, area minimizing

hypersurfaces and stable hypersurfaces. A minimal hypersurface (H = 0)

is a critical point of the volume with respect to deformations with compact

support. A minimal hypersurface is called stable if the second variation of

the volume is nonnegative for all compactly supported deformations. An

area minimizing hypersurface is a minimum for the volume and of course

an area minimizing hypersurface is stable. Furthermore a minimal graph

M over a domain of Rn is stable. This is a well known fact, but we think

it is worth to give a proof of it. Let |A| be the second fundamental form

of M. A hypersurface M is stable if and only if the first eigenvalue λ of

the Jacobi operator L = ∆− |A|2, acting on C∞
0 (M) is non negative (see

[7]). By contradiction, let D be a domain in M with compact closure,

assume that λ < 0 and let f be the first eigenfunction. Then, Lf = −λf,

f|∂D = 0 and one can assume f|D > 0. Let Φt be the variation of D such

that < dΦt
dt |t=0

, N >= f, where N is the unit normal vector field to M

pointing upward. The first variation of the mean curvature for the normal

variation fN is given by

Ḣ(0)f = Lf = −λf > 0.

Hence, for positive small t, at any interior point of the variation Φt(D),

the mean curvature is greater than zero. Now, translate D upward, such

that D ∩ Φt(D) = ∅. Then, translate D downward: at the first contact

point between the translation of D and Φt(D), the mean curvature of D

(zero) is smaller than the mean curvature of Φt(D), but D is above Φt(D).

This is a contradiction by the maximum principle. Hence a minimal graph

is stable.

The key point in Simons’ proof of the Bernstein Theorem is Simons

inequality.
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Let M be a minimal hypersurface in Rn+1, ∆ the laplacian on M and

|A| the norm of the second fundamental form of M. Simons’ inequality is

the following:

∆|A|2 ≥ −2|A|4 + 2(1 +
2

n
)|∇|A||2

Simons was able to prove that no non trivial n-dimensional stable mini-

mal cones exist in Rn+1 for n ≤ 6. By a result of Fleming [31], the non

existence of non trivial stable minimal cones in Rn+1 implies that the only

area minimizing hypersurfaces in Rn+1 are hyperplanes. Hence any area

minimizing hypersurface in Rn+1, n ≤ 6, is a hyperplane.

By adding some hyphotesis on the growth of the minimal graph, one

obtains Bernstein type result in any dimension. Caffarelli-Nirenberg-

Spruck proved that there are no complete minimal graphs of a function

u : Rn −→ R, such that |Du| = o(|x|
1
2 ) [17]. Ecker-Huisken proved that

there are no complete minimal graphs of a function u : Rn −→ R, such
that u is at most linear [28].

Schoen-Simon-Yau [56] generalized Simons inequality to different ambient

manifolds. Then, they obtain an Lp inequality for the norm of the second

fundamental form of a stable minimal hypersurface. Let us recall the

following theorem from [56].

Theorem 3.1. (Schoen-Simon-Yau)[56] Let Mn be a stable minimal

immersion in a manifold N n+1. Let K1 and K2 be the lower and the

upper bound of the sectional curvatures of N n+1 respectively and let c be

a bound for the norm of the gradient of the curvature tensor. Then, for

each p ∈ [4, 4 +
√

8
n) and for each non-negative smooth function f with

compact support in Mn, one has

∫
M

|A|pfp ≤ β

∫
M
[|∇f |p + (c

2
3 +K1 −K2 +max{−K2, 0})

p
2 fp] (3)

where β is a constant depending only on n and p.
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In [56], using Theorem 3.1, Schoen-Simon-Yau gave a simplified proof

of Bernstein Theorem in the case n < 6. In fact, their proof works for area

minimizing hypersurfaces. We give a sketch of the proof in [56].

Proof of Bernstein Theorem. As we remarked before, if M is a com-

plete minimal graph over Rn, then M is area-minimizing, in particular it is

stable. Define BR = {x ∈ Rn+1∩M | |x| ≤ R}. As M is area-minimizing,

vol(BR) ≤ 1
2vol(SR) where SR is the Euclidean sphere of radius R in Rn+1.

Hence

vol(BR) ≤
(n+ 1)ωn+1

2
Rn, (4)

where ωn+1 is the volume of S1. Let |A| be the norm of the second fun-

damental form of M. Schoen-Simon-Yau deduced from (3) (choosing f as

a distance function) that, for any θ ∈ (0, 1) and p ∈ (0, 4 +
√

8
n), there

exists a constant β depending only on n and p (see [56]) so that∫
BθR

|A|p ≤ β

(1− θ)p
R−pvol(BR). (5)

Replacing (4) in (5), one has∫
BθR

|A|p ≤ β(n+ 1)ωn+1

2(1− θ)p
Rn−p. (6)

If n < 6, there is a p > n satisfying (6). For such p, letting R −→ ∞ in

(6), one has |A| ≡ 0 at any point, that is, M is a hyperplane.

2

As the previous proof depends on inequality (3), it is not hard to see

that one can obtain a Bernstein type result in ambient manifolds whose

sectional curvatures satisfy some conditions [56]. Furthermore, as The-

orem 3.1 holds for stable hypersurfaces, many authors try to extend the

Bernstein Theorem to minimal stable hypersurfaces (parametric Bernstein

Problem).

Conjecture. [46] [47] The only complete minimal stable hypersurfaces

in Rn+1, 3 ≤ n ≤ 7, are hyperplanes.
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Some partial results are contained in [14], [18], [19], [26], [46], [47], [50],

[61].

Let us quote some results that we believe especially interesting. In the

following theorem the condition of being a graph is replaced by stability

added to a condition on the L2 norm of the second fundamental form.

Theorem 3.2. (Do Carmo-Peng) [26] Let M be a stable complete min-

imal hypersurface in Rn+1 such that

lim
R−→∞

∫
BR

|A|2

R2+2q
= 0, q <

√
2

n
, (7)

where BR is the geodesic ball of radius R in M. Then M is a hyperplane.

The proof of Theorem 3.2 is based on a refinement of the technique in

[56].

In the following theorem the condition of being a graph is replaced by

stability and the topological condition of having at least two ends.

Theorem 3.3. (Cao-Shen-Zhu) [18] For any n ≥ 3, if Mn is a com-

plete, stable minimal hypersurface in Rn+1, then Mn has only one end.

The technique of the proof of Theorem 3.3 is different in nature from

those using the generalized Simons’ inequality. It relies on the existence

of a non-trivial bounded harmonic function with finite energy on a stable

minimal hypersurface, provided the hypersurface has at least two ends.

Then, one uses a Liouville type theorem [63], to prove that such function

does not exist.

Many authors try to obtain a Bernstein type theorem for (strongly) stable

constant mean curvature hypersurfaces [15], [22], [27], [30], [38], [62]. For

the definition of (strong) stability for constant mean curvature hypersur-

faces, see [8] and [30].

The following result yields the non existence of complete (strongly)

stable hypersurfaces of constant mean curvature different from zero in

Rn+1, provided n ≤ 4.
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Theorem 3.4. (Elbert-Nelli-Rosenberg) [30] Let N n+1 be a Rieman-

nian manifold with sectional curvatures uniformly bounded from below.

When n = 3, 4, N n+1 has no complete (strongly) stable hypersurfaces

of constant mean curvature H, without boundary, provided |H| is large

enough (with respect to the absolute value of the bound on the sectional

curvatures of N n+1 ). In particular there are no complete (strongly) stable

H-hypersurfaces in Rn+1 without boundary, H ̸= 0.

The proof of Theorem 3.4 relies on the following fact. For |H| large
enough, every point of a complete (strongly) stable hypersurface with con-

stant mean curvature H, must have bounded distance from the boundary

of the hypersurface. Then, fix a point p on the hypersurface in the hy-

pothesis of Theorem 3.4 and choose balls in the hypersurface centered at

the point p, with increasing radius. The distance from p to the boundary

of the ball can be made arbitrarily large. Contradiction.

We notice that, the technique of the proof of Theorem 3.4, can be

applied to many other cases in order to prove non-existence results [44],

[51].

4 Hopf Problem

Hopf Theorem. [34] A constant mean curvature topological sphere im-

mersed in R3 is a round sphere.

Let us recall the definition of Hopf differential on a surface S. Let E,F,G

and e, f, g be the coefficients of the first and the second fundamental form

of S, respectively. Denote by κ1 and κ2 the eigenvalues of the second

fundamental form (i.e. the principal curvatures of the surface S). Let

(u, v) isothermal parameters on S, that is ds2 = E(du2 + dv2). Then, the

Gauss curvature and the mean curvature of S are

K = κ1κ2 =
eg − f2

E2
, H =

1

2
(κ1 + κ2) =

e+ g

2E
, (8)

while Codazzi equations can be written as
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(
e− g

2

)
u

+ fv = EHu,

(
e− g

2

)
v

− fu = −EHv, (9)

and the lines of curvature of S are given by −fdu2+(e−g)dudv+fdv2 = 0.

Introduce the complex parameters w = u+ iv, w = u− iv and let

Φ(w,w) =
e− g

2
− if. (10)

Φ is known as the Hopf fuction of S and Φ(dw)2 as the Hopf differential

of S.

From (8) and (10), it follows that

|Φ|
E

=
|κ1 − κ2|

2
.

As we wrote in the Introduction, if κ1 = κ2 at a point p ∈ S, the point p

is called umbilic. Hence the umbilic points of S are the zeros of Φ.

Isothermal parameters give to S the structure of a Riemann surface

such that the Hopf differential is a complex quadratic differential on S. In

terms of Φ, Codazzi equations write as

Φw = EHw.

If the surface S has constant mean curvature H then Hv = Hu = 0, and

Codazzi equations are equivalent to the real and the imaginary part of Φ

satisfying the Cauchy-Riemann equations. Hence Φ is an analytic function

of w.

We report the proof of the Hopf Theorem as it is in [34]. We use the

following characterization of the sphere in R3.

Lemma 4.1. The spheres are the only close surfaces in R3 for which all

points are umbilics (Lemma 1.2. Chapter V in [34]).

Proof of the Hopf Theorem. The zeros of the Hopf differential are the

umbilic points, hence one should prove that Φ ≡ 0 on a compact Riemann
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surface of genus zero. We cover S by two coordinate neighborhoods: w ∈ C
and z = 1

w , w ̸= 0. Then Φ(dw)2 = Ψ(dz)2 are related by

Φ(w) = Ψ(z)

(
dz

dw

)2

= Ψ(z)w−4 = Ψ(z)z4 (11)

Being Φ an entire function of w and being Ψ regular for z = 0, then Φ = 0

for w = ∞. Hence Φ ≡ 0 by Liouville’s Theorem.

2

As we wrote in the Introduction, the Hopf Theorem can be extended

easily to space forms H3 and S3, because of the fact that Hopf differential

is defined as in R3 and because rotational surfaces are umbilic. On the

contrary, in other homogeneous 3-manifolds one has much more work to

do. Abresch and Rosenberg extended Hopf’s result to simply connected

homogeneous 3-manifolds with isometry group of dimension four.

Theorem 4.1. (Abresch-Rosenberg) [4] [5] A constant mean curva-

ture topological sphere immersed in H2 × R, S2 × R, Nil3, P̃ SL2(R), and
in a Berger sphere is a rotationally invariant constant mean curvature

sphere.

As we have seen, the Hopf Theorem’s proof relies on the existence on

the surface of a holomorphic quadratic differential vanishing at umbilic

points. In the ambient spaces of Theorem 4.1, Abresch and Rosenberg

succeeded in defining a quadratic differential as a linear combination of

the Hopf differential and a term coming from a Killing field of the ambient

space. Such quadratic differential is holomorphic on constant mean curva-

ture surfaces and vanishes on rotationally invariant surfaces. Hence they

proved that any constant mean curvature topological sphere is rotationally

invariant, in such ambient spaces.

We now discuss the extension of Alexandrov and Hopf type result to Sol3,

the only simply connected homogeneous 3-manifold with isometry group

of dimension three.

Theorem 4.2. (Daniel-Mira) [20] Let H > 1√
3
. Then:
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(a) There exists an embedded sphere SH with constant mean curva-

ture H in Sol3.

(b) Any immersed sphere with constant mean curvature H in Sol3

differs from SH at most by a left translation.

(c) Any compact embedded surface with constant mean curvature H

in Sol3 differs from SH at most by a left translation.

Moreover, these canonical spheres SH constitute a real analytic family,

they all have index one and two reflection planes, and their Gauss maps

are global diffeomorphisms into S2.

It is clear that (b) and (c) in Theorem 4.2 are the Hopf type theorem

and the Alexandrov type theorem in Sol3, respectively.

The proof of Theorem 4.2 is quite articulated. We sketch the main ideas

of it.

As we told in Section 2, (c) follows immediately from (b) and the exis-

tence part (a), by using the standard Alexandrov reflection technique with

respect to the two canonical foliations of Sol3 by totally geodesic surfaces.

In Sol3, there are no known explicit constant mean curvature topological

spheres. Hence Daniel and Mira had to find, first, the sphere for which

they were looking for uniqueness.

As there are no rotations in Sol3, one can not reduce the problem of

finding constant mean curvature spheres, to the problem of solving an

ordinary differential equation.

Notice that the solutions of the isoperimetric problem in Sol3 are em-

bedded spheres. Daniel and Mira proved that the Gauss map of an isoperi-

metric sphere (and more generally of an index one constant mean curva-

ture sphere) is a diffeomorsphim. They also proved that a constant mean

curvature sphere, whose Gauss map is a diffeomorphism, is embedded.

Then, they proved that one can deform (by implicit function theorem)

index one constant mean curvature spheres, and that the property of hav-

ing index one is preserved by this deformation. In this way they proved

that there exists an index one sphere SH with constant mean curvature H
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for all H > 1√
3
. This last condition comes from the fact that in order to

deform, they need a bound on the diameter of the spheres. Such diameter

estimate is a consequence of a theorem of Rosenberg [51] holding only for

H > 1√
3
.

Then, they succeed in proving the existence of a quadratic differential

satisfying the Cauchy-Riemann inequality (see [39]) on constant mean cur-

vature spheres whose Gauss map is a diffeomorphism of S2. This quadratic
differential is used to prove uniqueness in (b).

It is worth to notice that Daniel and Mira were able to prove the Hopf

Theorem without knowing a-priori explicitly the sphere for which they

where looking for uniqueness. This approach seems to be suitable for

Hopf type theorems in many other cases.
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Spectrale et Géométrie de l’Inst. Fourier de Grenoble, 19 (2001) 93-

121.

[60] Sa Earp, R,; Toubiana, E., Some Applications of Maximum Principle

to Hypersurfaces in Euclidean and Hyperbolic Space, New Approaches

in Nonlinear Analysis, ed. Th.Rassias Hadronic Press, Florida, U.S.A.

(1999) 183- 203.

[61] Shen, Y. B.; Zhu, X. H., On Stable Complete Minimal Hypersurfaces

in Rn+1, American Jour. of Math. 120 (1998), 103-116.



176 B. Nelli

[62] Shen, Y. B.; Zhu, X.H., On Complete hypersurfaces with constant

mean curvature and finite Lp norm curvature in Rn+1, Acta Math.

Sinica, English series 21, 3 (2005), 631-642.

[63] Schoen, R.; Yau, S.-T., Harmonic maps and the topology of stable hy-

persurfaces and manifolds with nonnegative Ricci curvature, Comm.

Math. Helvetici 51 (1976), 333-341.

[64] Tonegawa, Y., Existence and regularity of Constant Mean Curvature

Hypersurfaces in Hyperbolic Space, Math. Zeit 221, 1 (1996), 591-615.

[65] Yau, S. T., Submanifolds with constant mean curvature I, Amer. J.

Math. 96 (1974), 346-366.
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