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PARABOLIC SUBMANIFOLDS OF

RANK TWO

M. Dajczer P. Morais

An immersed submanifold f : Mn → RN , n ≥ 3, into Euclidean space

with the induced metric is called of rank two if at any point the kernel of

its vector valued second fundamental form has codimension two. Equiv-

alently, we have that the image of the Gauss map in the Grassmannian

of non-oriented n-planes GN
n is a surface. These submanifolds have been

the object of a great deal of work in Riemannian Geometry since long

time ago. For instance, see [2] and references therein. This interest is in

good part motivated by the fact that their curvature tensor is “as flat as

possible” without vanishing altogether.

The subspace spanned by the second fundamental form, usually called

the first normal space and denoted by N1, of a rank two submanifold

satisfies dimN1 ≤ 3 at any point. It turns out that if in substantial

codimension, any rank two submanifold is a hypersurface if dimN1 = 1

at any point. Then f is either a Euclidean surface or the cone over a

spherical surface, up to a Euclidean factor, if dim N1 = 3 everywhere.

Submanifolds in the remaining and much more interesting case, namely,

when dimN1 = 2 everywhere, have been divided in three classes: elliptic,

hyperbolic and parabolic. A complete parametric description of the elliptic

submanifolds was given in [5].

For codimensionN−n = 2, it was shown in [6] that elliptic and nonruled

parabolic submanifolds are genuinely rigid. This means that given any

other isometric immersion f̃ : Mn → Rn+2 there is an open dense subset
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of Mn such that restricted to any connected component f |U and f̃ |U are

either congruent or there are an isometric embedding j : U ↪→ Nn+1 into

a Riemannian manifold Nn+1 and either flat or isometric noncongruent

hypersurfaces F, F̃ : Nn+1 → Rn+2 such that f |U = F ◦ j and f̃ |U =

F̃ ◦ j. Recently, we proved [8] that nonruled parabolic submanifolds in

codimension two are not only genuinely rigid but, in fact, isometrically

rigid.

The goal of this paper is to classify parametrically parabolic subman-

ifolds in any codimension. First, we describe the ones that are ruled

and show that they are the only parabolic submanifolds that admit an

isometric immersion as a hypersurface. Then, we classify the nonruled

ones by two different means. In fact, we provide the polar and bipolar

parametrizations, each of which is associated to a parabolic surface and

a function on the surface which satisfies a parabolic differential equation.

To conclude, we describe the structure of the singular set of the nonruled

parabolic submanifolds.

1 Parabolic submanifolds.

In this section, we introduce the concept of parabolic submanifold and

study in detail the structure of the normal bundle.

We denote by f : Mn → QN
ϵ , ϵ = 0, 1, a connected n-dimensional sub-

manifold of either Euclidean space RN (ϵ = 0) or unit Euclidean sphere

SN (ϵ = 1) with codimension N −n. The kth-normal space Nf
k (x) of f at

x ∈Mn is defined as

Nf
k (x) = span{αk+1

f (X1, . . . , Xk+1) ;X1, . . . , Xk+1 ∈ TxM}.

Here, αℓ
f : TM×· · ·×TM → T⊥

f M , ℓ ≥ 2, is the symmetric tensor known

as the ℓth-fundamental form and given by

αℓ
f (X1, . . . , Xℓ) = πℓ−1

(
∇⊥

Xℓ
. . .∇⊥

X3
αf (X2, X1)

)
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where πℓ stands for the orthogonal projection πℓ : T⊥
f M → (Nf

1 ⊕ . . . ⊕
Nf

ℓ−1)
⊥ and T⊥

f M is endowed with the normal connection ∇⊥ induced by

the metric connection ∇̃ in the ambient space. We agree that α1
f : TM →

TM is α1
f = I and denote α2

f = αf (π1 = I) as usual.

We always assume that f : Mn → QN
ϵ is substantial and has rank 2.

The later condition is denoted as rankf = 2, and means that the relative

nullity subspaces ∆(x) ⊂ TxM defined as

∆(x) = {X ∈ TxM : αf (X,Y ) = 0 ; Y ∈ TxM},

form a tangent subbundle of codimension two. It is a standard fact that

the relative nullity distribution is integrable and that the leaves are totally

geodesic submanifolds of the ambient space QN
ϵ .

The cone Cf : Mn × R+ → RN+1 of a submanifold f : Mn → SN of

rank two has the same rank since the relative nullity leaves of Cf are

the cones of the relative nullity leaves of f . Moreover, one has that

NCf
k = Nf

k , k ≥ 1, up to parallel transport in RN+1. Thus, it suf-

fices to consider the Euclidean case since we had restricted ourselves to

submanifolds of RN and SN .

The condition rankf = 2 and the symmetry of the second fundamental

form imply that the first normal spaces of f satisfy dimNf
1 ≤ 3 at any

point. By Theorem 1 in [9] we have that f is a hypersurface in substan-

tial codimension if dimNf
1 = 1 everywhere. On the other hand, it is not

difficult to show that a submanifold with dimNf
1 = 3 everywhere is either

a Euclidean surface or the cone over a spherical surface up to Euclidean

factor. In the remaining case when dimNf
1 = 2 everywhere, either there

exists a pair of linearly independent “conjugate directions” X1, X2 ∈ ∆⊥

, i.e.,

αf (X1, X1)± αf (X2, X2) = 0, (1)

or f admits an “asymptotic direction” 0 ̸= Z ∈ ∆⊥, i.e., αf (Z,Z) = 0. In

cases (1) the submanifold was called elliptic for the plus sign and hyperbolic

for the minus sign in [5].
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Definition 1.. A submanifold f : Mn → QN
ϵ is called parabolic if we

have:

(i) rankf = 2,

(ii) dimNf
1 = 2,

(iii) There is a nonsingular asymptotic vector field Z ∈ ∆⊥, i.e., αf (Z,Z) =

0.

Notice that cones of parabolic spherical submanifolds are also parabolic.

Let f : Mn → RN be a parabolic submanifold. We always denote by

{X,Z} an orthonormal frame in ∆⊥ where Z is an asymptotic vector field.

Clearly, we can always take an orthonormal smooth frame {η1, η2} in Nf
1

such that the shape operators take the form

Af
η1 |∆⊥ =

[
a b

b 0

]
and Af

η2 |∆⊥ =

[
c 0

0 0

]
(2)

where the functions b, c never vanish. In particular, we see that the asymp-

totic field Z is unique up to sign.

An easy argument given in [5] proves the following fact.

Proposition 2.. Assume that f : Mn → QN
ϵ satisfies dimNf

1 = 2 at any

point. Then, we have that dimNf
k ≤ 2 for all k ≥ 1.

We always admit that the fibers of any Nf
k have constant dimension and

thus form subbundles of the normal bundle. If τ = τ f denotes the index

of the “last” of the normal subbundles of f , then T⊥
f M = Nf

1 ⊕ · · · ⊕Nf
τ

since, by assumption, f is substantial.

We denote

ξk1 = αk+1
f (X, . . . ,X) and ξk2 = αk+1

f (Z,X, . . . ,X).

Since αk+1
f (Z,Z, Y1, . . . , Yk−1) = 0, it is clear that

Nf
k = span{ξk1 , ξk2} for 1 ≤ k ≤ τ f .
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Proposition 3.. For 1 ≤ k ≤ τ f − 1 the following holds:

(i) (∇̃Z ξ
k
1 )Nf

k+1
= (∇̃X ξk2 )Nf

k+1
= ξk+1

2 ,

(ii) (∇̃X ξk1 )Nf
k+1

= ξk+1
1 ,

(iii) (∇̃Z ξ
k
2 )Nf

k+1
= 0.

Proof: From the definition of the k-normal spaces, given η ∈ Nf
l we have

∇⊥
Y η ∈ Nf

l−1 ⊕Nf
l ⊕Nf

l+1 (3)

where Nf
0 = 0 = Nf

τf+1
. Then,

ξk+1
2 = (∇⊥

Z (∇⊥
X . . .∇⊥

Xαf (X,X))
Nf

k
)
Nf

k+1
= (∇̃Z ξ

k
1 )Nf

k+1
,

ξk+1
2 = (∇⊥

X(∇⊥
Z . . .∇⊥

Xαf (X,X))
Nf

k
)
Nf

k+1
= (∇̃X ξk2 )Nf

k+1

and (i) has been proved. The proof of (ii) is similar. For (iii), we have

(∇̃Zξ
k
2 )Nf

k+1
= (∇⊥

Z (∇⊥
X . . .∇⊥

Xαf (X,Z))Nf
k
)
Nf

k+1
= αk+2

f (X, . . . , Z, Z) = 0.

2

The following fact was proved in [5].

Proposition 4.. If f : Mn → RN is a parabolic submanifold, then the

normal subbundles Nf
k , 1 ≤ k ≤ τ f , are parallel in RN along ∆.

Let νk ⊂ Nf
k ×Nf

k , 0 ≤ k ≤ τ f , be the subspace defined as

νk = {(µ1, µ2) ∈ Nf
k ×Nf

k : ⟨µ2, ξk2 ⟩ = 0 and ⟨µ2, ξk1 ⟩ = ⟨µ1, ξk2 ⟩}.

It is easy to see that νk is independent of the base {X,Z} with Z asymp-

totic. Clearly, ξk1 = 0 implies that νk = 0. We also have the following

facts.

Lemma 5.. For 1 ≤ k ≤ τ f the following holds:

(i) dimνk = 2 if and only if dimNf
k = 2,
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(ii) dimνk = 1 if and only if dimNf
k = 1 and ξk2 = 0,

(iii) dimνk = 0 if and only if dimNf
k = 1 and ξk2 ̸= 0.

Proof: If dimνk = 2, we either may choose (µ1, µ2) ∈ νk such that

µ1 ̸= 0 ̸= µ2 or we are done. It is easy to see that µ1 and µ2 must be

linearly independent, and thus dimNf
k = 2. Then, take 0 ̸= v ∈ Nf

k such

that ⟨v, ξk2 ⟩ = 0, and set u = (⟨v, ξk1 ⟩/∥ξk2∥2)ξk2 . Hence, u, v are a base of

Nf
k and (u, v), (u + v, v) ∈ νk are linearly independent. This proves (i).

The proofs of (ii) and (iii) follow easily form the definition of νk.

2

Definition 6.. Given a parabolic submanifold f : Mn → QN
ϵ ⊆ RN+ϵ, we

call an element β ∈ C∞(Mn,RN+ϵ) a k–cross section to f , 1 ≤ k ≤ τ f , if

at any point

β∗ (TM) ⊂ Nf
k ⊕ · · · ⊕Nf

τf
,

up to parallel transport in RN+ϵ.

Lemma 7.. Let Pk : C
∞(Mn,RN+ϵ) → Nf

k × Nf
k , 1 ≤ k ≤ τ f , be the

tensor

Pk(β) = ((β∗X)
Nf

k
, (β∗Z)Nf

k
).

Then Pk(β) ∈ νk for any k–cross section β to f . Moreover, the tensor

Pk|Nf
k+1

: Nf
k+1 → νk, 1 ≤ k ≤ τ f − 1,

is injective.

Proof: We have,

⟨β∗X, ξk2 ⟩ = ⟨∇̃Xβ, ∇̃Z(∇⊥
X . . .∇⊥

Xαf (X,X))⟩

= Z⟨∇̃Xβ,∇⊥
X . . .∇⊥

Xαf (X,X)⟩ − ⟨∇̃Z∇̃Xβ,∇⊥
X . . .∇⊥

Xαf (X,X)⟩

= ⟨∇̃Zβ, ∇̃X(∇⊥
X . . .∇⊥

Xαf (X,X))⟩

= ⟨β∗Z, ξk1 ⟩.

A similarly argument gives

⟨β∗Z, ξk2 ⟩ = ⟨β∗X,αk+1
f (Z,Z,X, . . . ,X)⟩ = 0.



PARABOLIC SUBMANIFOLDS OF RANK TWO 201

To conclude, observe that if η ∈ Nf
k+1 satisfies Pk(η) = 0, then

0 = ⟨η∗X, ξkj ⟩ = ⟨∇̃Xη, ξ
k
j ⟩ = −⟨η, ∇̃Xξ

k
j ⟩ = −⟨η, ξk+1

j ⟩, j = 1, 2.

Hence, η = 0.

2

Proposition 8.. Let f : Mn → RN be a parabolic submanifold. Then,

we have:

(i) ξk1 ̸= 0 for any 1 ≤ k ≤ τ f − 1,

(ii) ξk2 = 0 if and only if dimNf
k = 1,

(iii) If ξk2 = 0, then ξj2 = 0 for j ≥ k.

Proof: To prove (i) suppose that ξk1 = 0. Thus, νk = 0. Then Lemma 7

gives Nf
k+1 = 0, which is not possible. For (ii) suppose that dimNf

k = 1

and ξk2 ̸= 0. We have that νk = 0 from Lemma 5, and by Lemma 7 this is

a contradiction. Finally, to prove (iii) assume ξk2 = 0. Using (3) we have

ξk+1
2 = πk+1(∇⊥

X∇⊥
Z∇⊥

X . . .∇⊥
Xαf (X,X))

= πk+1(∇⊥
X(πk(∇⊥

Z∇⊥
X . . .∇⊥

Xαf (X,X)))

= πk+1(∇⊥
Xξ

k
2 ) = 0.

2

Definition 9.. We say that a parabolic submanifold f : Mn → QN
ϵ has

critical index τ f0 ∈ {1, . . . , τ f−1} if ξ
τf0
2 ̸= 0 and ξk2 = 0 for any k ≥ τ f0 +1.

Corollary 10.. Assume that f possesses critical index. Then:

(i) dimNf
k = 2, 1 ≤ k ≤ τ f0 ,

(ii) dimNf
k = 1, τ f0 + 1 ≤ k ≤ τ f ,

(iii) The tensor, Pk|Nf
k+1

: Nf
k+1 → νk is an isomorphism for k ≤ τ f0 −1.
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2 Intrinsic proprieties

In this section we analyze the metric structure of the parabolic subman-

ifolds.

Proposition 11.. Let f : Mn → RN be a parabolic submanifold. Then,

F = span{Z} ⊕∆

is an integrable distribution and the leaves are flat hypersurfaces.

Proof: We first show that the line bundle L = span{ξ12} is parallel along

the leaves of relative nullity. The unit vector field η ∈ Nf
1 orthogonal to

ξ12 is the only one, up to sign, such that Af
ηZ = 0. Thus Af

η has rank 1.

In view of Proposition 4 it is sufficient to show that η is parallel along ∆.

Recall that the splitting tensor C associates to T ∈ ∆ the endomorphism

CT of ∆⊥ defined as

CTX = − (∇XT )∆⊥ .

It is well-known [7] that the differential equation

∇TA
f
ξ = Af

ξ ◦ CT (4)

is satisfied along ∆⊥ if ξ ∈ T⊥
f M is parallel along ∆.

Let x ∈ Mn and γ a geodesic with γ(0) = x contained in the corre-

sponding leaf of ∆. If δt is the parallel transport of ηx along γ, we have

∇γ′Af
δt
= Af

δt
◦ Cγ′ .

Hence, Af
δt

= Af
ηxe

∫ t
0 Cγ′dτ . Thus Af

δt
has rank 1 and, therefore η = δt is

parallel.

Since the left hand side of

∇TA
f
η = Af

η ◦ CT

is symmetric, we obtain that

Af
ηCTZ = Ct

TA
f
ηZ = 0.
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Thus CTZ ∈ span{Z}, that is, ⟨∇ZT,X⟩ = 0. Then the Codazzi equation

yields

∇⊥
T αf (Z,X)− ⟨∇TZ,X⟩αf (X,X) + ⟨∇ZT,Z⟩αf (Z,X) = 0.

Using that L is parallel along ∆, we obtain that ⟨∇TZ,X⟩ = 0. Hence F
is integrable. Moreover, the second fundamental form of a leaf U is

AU
X =

[
λ 0

0 0

]
where λ = ⟨∇ZZ,X⟩. Thus the leaves of F are flat.

2

Recall that a submanifold f : Mn → QN
ϵ is called ruled whenMn admits

a hypersurface foliation of totally geodesic submanifolds of QN
ϵ .

Example 12.. Ruled Euclidean submanifolds of rank 2 without flat points

and substantial codimension at least 2 are basic examples of parabolic

submanifolds. In fact, it follows from Corollary 4.7 in [3] that dimNf
1 = 2.

From the proof of Proposition 11 we have the following fact.

Corollary 13.. Let f : Mn → RN be a ruled parabolic submanifold. Then

the leaves of F are totally geodesic in Mn.

3 Regularity

A key ingredient in the parametric description of the elliptic submani-

folds given in [5] was the regularity of the k-normal spaces. In fact, any

elliptic submanifold f satisfies dimNf
k = 2, 1 ≤ k ≤ τ f − 1, whereas the

dimension of Nf
τf

is determined by the codimension. In this paper, that

a parabolic submanifold is regular roughly means that the Nf
k ’s behave

as in the elliptic case. The main result in this section is that nonregular

parabolic submanifolds are necessarily ruled.

Definition 14.. We say that a parabolic submanifold f : Mn → RN is

regular if dimNf
k = 2 for any 1 ≤ k ≤ τ f − 1.
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By Corollary 10, the following holds:

f is regular if and only if

 dimNf
τf

= 2 ⇐⇒ ξτ
f

2 ̸= 0, if N − n is even

dimNf
τf−1

= 2⇐⇒ ξτ
f−1

2 ̸= 0, if N − n is odd.

Observe that ruled surfaces with dimN1 = 2 are parabolic. We give next

an example of such a surface that is nonregular.

Example 15.. Let c : I ⊂ R → R6 be a smooth curve parametrized by

arc length with Frenet frame E1, . . . , E6 and constant Frenet curvatures

kj ̸= 0, 1 ≤ j ≤ 5. The map X : R2 → R6 given by

X(s, t) = c(s) + tE2(s)

parametrizes a substantial complete surface that is parabolic for t ̸= 0.

An easy calculation gives ξ22 = 0, that is, τX0 = 1. Hence, dimNX
2 = 1

and therefore X is nonregular.

By a parabolic submanifold being nonruled we understand that none of

the leaves of F is totally geodesic in Mn or, equivalently, in RN .

Theorem 16.. Nonruled parabolic submanifolds f : Mn → RN are regu-

lar.

The proof of Theorem 16 will follow from two results. First, we give a

sufficient condition for a parabolic submanifold in odd codimension to be

ruled.

Proposition 17.. Let f : Mn → RN be a regular parabolic submanifold

satisfying that ξτ
f

2 = 0 at any point. Then f is ruled.

Proof: We claim that f is ruled if and only if L = span{ξ12} is parallel

along F . From the proof of Proposition 11, we know that L is parallel

along ∆. Clearly, that f is ruled is equivalent to ∇ZZ = 0. Take an

orthonormal frame {η1, η2} in Nf
1 as in (2). Since η1 ∈ L, we have to

show that

∇ZZ = 0 if and only if (∇⊥
Zη1)Nf

1
= 0. (5)
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From the Codazzi equation

⟨(∇XA
f
η2)Z − (∇ZA

f
η2)X,Z⟩ = 0,

we get

c⟨∇ZZ,X⟩ = b⟨∇⊥
Zη1, η2⟩.

Being f parabolic we obtain b ̸= 0 ̸= c, and the claim follows.

We first consider the caseN−n = 3. We have, dimNf
1 = 2, dimNf

2 = 1

and ξ22 = 0. It suffices to show that η1 is parallel along Z. By Proposi-

tion 3, the subbundles Nf
1 , N

f
2 are parallel along Z. Thus, the Codazzi

equation gives

Af

∇⊥
Xδ
Z = Af

∇⊥
Z δ
X = 0

where δ ∈ Nf
2 has unit length. Using (2) we obtain(

∇⊥
Xδ

)
Nf

1

∈ span{η2}. (6)

From X⟨η1, δ⟩ = 0 and (6) we have(
∇⊥

Xη1

)
Nf

2

= 0. (7)

The Ricci equation, using (6), (7) and the parallelism of Nf
1 along Z gives

0 = ⟨R⊥(X,Z)η1, δ⟩ = ⟨∇⊥
X∇⊥

Zη1 −∇⊥
Z∇⊥

Xη1 −∇⊥
[X,Z]η1, δ⟩

= ⟨∇⊥
X∇⊥

Zη1, δ⟩ = −⟨∇⊥
Zη1,∇⊥

Xδ⟩

= ⟨∇⊥
Zη1, η2⟩⟨∇⊥

Xη2, δ⟩.

But ⟨∇⊥
Xη2, δ⟩ ≠ 0 since Nf

1 is not parallel. Thus, (∇⊥
Zη1)Nf

1
= 0.

We now consider the general case N − n ≥ 5. Take an orthonormal

basis {ηk1 , ηk2} of Nf
k for any 1 ≤ k ≤ τ f − 1 such that

ξk1 = akη
k
1 + ckη

k
2 and ξk2 = bkη

k
1 .

Proposition 3 gives(
∇⊥

Zη
k
1

)
Nf

k+1

= 0 and ck

(
∇⊥

Zη
k
2

)
Nf

k+1

= bk

(
∇⊥

Xη
k
1

)
Nf

k+1

. (8)
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Since dimNf
k = 2, 1 ≤ k ≤ τ f − 1, it follows from (8) that

Nf
k = span

{(
∇⊥

Xη
k−1
1

)
Nf

k

,
(
∇⊥

Xη
k−1
2

)
Nf

k

}
. (9)

From (8) and ξτ
f

2 = 0, we have

(∇⊥
Zη

τf−1
1 )

Nf

τf
= (∇⊥

Xη
τf−1
1 )

Nf

τf
= (∇⊥

Zη
τf−1
2 )

Nf

τf
= 0. (10)

Thus Nf
1 ⊕ . . . ⊕ Nf

τf−1
and Nf

τf
are both parallel along Z. The Ricci

equation for δ ∈ Nf
τf

and (10) give

0 = ⟨R⊥(X,Z)ητ
f−1

1 , δ⟩ = ⟨∇⊥
X∇⊥

Zη
τf−1
1 , δ⟩ = −⟨∇⊥

Zη
τf−1
1 ,∇⊥

Xδ⟩

= ⟨∇⊥
Zη

τf−1
1 , ητ

f−1
2 ⟩⟨∇⊥

Xη
τf−1
2 , δ⟩.

But ⟨∇⊥
Xη

τf−1
2 , δ⟩ ≠ 0 since f is substantial. Therefore,

(∇⊥
Zη

τf−1
1 )

Nf

τf−1

= 0.

To conclude again that ⟨∇⊥
Zη

1
1, η

1
2⟩ = 0, it suffices to show that if

(∇⊥
Zη

ℓ+1
1 )

Nf
ℓ+1

= 0, 1 ≤ ℓ ≤ τ f − 2, (11)

then

(∇⊥
Zη

ℓ
1)Nf

ℓ
= 0. (12)

Being ηℓ1 collinear with ξℓ2 and ηℓ+1
1 with ξℓ+1

2 , then ηℓ+1
1 and (∇⊥

Xη
ℓ
1)Nf

ℓ+1

are also collinear. From (11), we have

⟨∇⊥
Z (∇⊥

Xη
ℓ
1)Nf

ℓ+1
, ηℓ+1

2 ⟩ = 0. (13)

The Ricci equation using (8) and (13) yields

0 = ⟨R⊥(X,Z)ηℓ1, η
ℓ+1
2 ⟩ = ⟨∇⊥

X∇⊥
Zη

ℓ
1 −∇⊥

Z∇⊥
Xη

ℓ
1 −∇⊥

[X,Z]η
ℓ
1, η

ℓ+1
2 ⟩

= ⟨∇⊥
X⟨∇⊥

Zη
ℓ
1, η

ℓ
2⟩ηℓ2, ηℓ+1

2 ⟩ − ⟨∇⊥
Z (∇⊥

Xη
ℓ
1)Nf

ℓ
, ηℓ+1

2 ⟩ − ⟨∇XZ,X⟩⟨∇⊥
Xη

ℓ
1, η

ℓ+1
2 ⟩

= ⟨⟨∇⊥
Zη

ℓ
1, η

ℓ
2⟩∇⊥

Xη
ℓ
2 − ⟨∇⊥

Xη
ℓ
1η

ℓ
2⟩∇⊥

Zη
ℓ
2,−⟨∇XZ,X⟩∇⊥

Xη
ℓ
1, η

ℓ+1
2 ⟩.



PARABOLIC SUBMANIFOLDS OF RANK TWO 207

Thus,(
⟨∇⊥

Zη
ℓ
1, η

ℓ
2⟩∇⊥

Xη
ℓ
2 − ⟨∇⊥

Xη
ℓ
1, η

ℓ
2⟩∇⊥

Zη
ℓ
2 − ⟨∇XZ,X⟩∇⊥

Xη
ℓ
1

)
Nf

ℓ+1

∈ span{ηℓ+1
1 },

and we obtain (12) from (8) and (9).

2

To conclude that f is ruled, from (11) and (12) in the proof of the

preceding result it is sufficient to show that there exists an index 1 ≤ ℓ ≤
τ f − 2 such that (∇⊥

Zη
ℓ+1
1 )

Nf
ℓ+1

= 0. Thus, this gives the following fact.

Corollary 18.. Let f : Mn → RN be a regular parabolic submanifold. If

there is an index 1 ≤ s ≤ τ f − 1 such that ηs1 = ξs2/∥ξs2∥ ∈ Nf
s satisfies

(∇⊥
Zη

s
1)Nf

s
= 0, then f is ruled.

Our next result deals with nonregular parabolic submanifolds.

Proposition 19.. Let f : Mn → RN be a simply connected parabolic

submanifold. Assume that dimNf
k0−1 = 2 and dimNf

k0
= 1 for some

index 2 ≤ k0 ≤ τ f − 1. Then, there exists a parabolic regular isometric

immersion f̃ : Mn → Rn+2k0−1 such that the subbundles N f̃
s and Nf

s ,

1 ≤ s ≤ k0, endowed with the induced connection, correspond by a parallel

isometry.

Proof: Consider the normal subbundle T = Nf
1 ⊕ . . . ⊕ Nf

k0
with the

induced connection ∇̂⊥
Y η = (∇⊥

Y η)T .We have to show that αf still satisfies

the Gauss, Codazzi and Ricci equations. In fact, the Gauss and Codazzi

equations are trivially satisfied. By Propositions 3 and 8, the subbundles

T and T ⊥ are parallel in the normal connection along Z. Given η ∈ T , a

simple calculation yields

R̂⊥(X,Z)η−R⊥(X,Z)η = −
(
∇⊥

X∇⊥
Zη

)
T ⊥

+∇⊥
Z

(
∇⊥

Xη
)
T ⊥

+
(
∇⊥

[X,Z]η
)
T ⊥

.

Since R⊥(X,Z)η ∈ T by the Ricci equation, the left hand side vanishes

and thus

R̂⊥(X,Z)η = R⊥(X,Z)η.
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Now using Proposition 4 we conclude that the Ricci equation is satisfied.

Since Mn is simply connected, the result follows from the Fundamental

theorem of submanifolds.

2

Finally, we are in condition to prove Theorem 16.

Proof: Assume that f is nonregular. By Proposition 8 there exists k0 ≤
τ f − 1 such that ξk02 = 0. By Proposition 19, there is a regular parabolic

submanifold f̃ : Mn → Rn+2k0−1 with ξτ
f̃

2 = 0. It follows from Proposition

17 that f is ruled.

2

4 Ruled parabolic

The simple structure of ruled parabolic submanifolds allows us to give a

parametric description of these submanifolds. Using this description, we

conclude that this submanifolds are generically regular. Then, we show

that ruled parabolic submanifolds are the only parabolic submanifolds

that admit isometric immersions as hypersurfaces.

Let v : I ⊂ R → RN be a smooth curve parametrized by arc length in

some interval. Set e1 = dv/ds and let e2, . . . , en−1 be orthonormal normal

vector fields along v = v(s) parallel in the normal connection of v in RN .

Thus,
dej
ds

= bje1, 2 ≤ j ≤ n− 1, (14)

where bj ∈ C∞(I). Set ∆ = span{e2, . . . , en−1} and let ∆⊥ be the or-

thogonal complement in the normal bundle. Take e0 ∈ ∆⊥ along v such

that

P = {e0, (de1/ds)∆⊥} ⊂ ∆⊥

satisfy that

dimP = 2 (15)
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and that P is nowhere parallel in ∆⊥ along v, that is,

span{(de0/ds)∆⊥ , (d2e1/ds
2)∆⊥} ̸⊂ P. (16)

We parametrize a ruled submanifold Mn by

f(s, t1, . . . , tn−1) = c(s) +
n−1∑
j=1

tjej(s) (17)

where (t1, . . . , tn−1) ∈ Rn−1 and c(s) satisfies dc/ds = e0. To see that f

is parabolic, first observe that

TM = span{fs} ⊕ span{e1} ⊕∆

where fs = e0 + t1de1/ds+
∑

j≥2 tjbje1. Consider the orthogonal decom-

position (
de1
ds

)
∆⊥

= a1e0 + η. (18)

Thus η(s) ̸= 0 for all s ∈ I from (15). Hence,

TM = span{e0 + t1(a1e0 + η)} ⊕ span{e1} ⊕∆. (19)

Since fstj = bje1 ∈ TM, 2 ≤ j ≤ n− 1, we have that ∆ ⊂ ∆f . It follows

easily from (18), (19) and η(s) ̸= 0 that

fst1 =
de1
ds

̸∈ TM.

It is easy to see that fss ̸∈ span{fst1}⊕TM , i.e., dimNf
1 = 2, is equivalent

to (
de0
ds

)
∆⊥

+ t1

(
d2e1
ds2

)
∆⊥

̸∈ P.

It follows that ∆ = ∆f . Therefore f is parabolic in, at least, an open

dense subset of Mn.

Let f : Mn → RN be a ruled parabolic submanifold and {e2, . . . , en−1}
an orthonormal frame for ∆f along an integral curve c = c(s), s ∈ I, of the
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unit vector field X orthogonal to the rulings. Without loss of generality

(see Lemma 2.2 in [1]) we may assume that

dej
ds

⊥ ∆f , 2 ≤ j ≤ n− 1.

Now parametrize f by (17), where e0 = X and e1 = Z. That fstj ∈ TM

implies
dej
ds

∈ span{e1, fs}, 2 ≤ j ≤ n− 1. (20)

Taking t1 = 0, we obtain that

dej
ds

= aje0 + bje1, 2 ≤ j ≤ n− 1, (21)

where aj , bj ∈ C∞(I). Since dimNf
1 = 2, we have

de1
ds

= a1e0 + (de1/ds)∆ + η (22)

where η ⊥ span{e0, e1} ⊕∆ satisfies η(s) ̸= 0. Thus (20) reduces to

aje0 ∈ span{(1 + t1a1 + . . .+ tn−1an−1)e0 + t1η}, 2 ≤ j ≤ n− 1.

Therefore aj = 0. From (21) we have dej/ds = bje1 for 2 ≤ j ≤ n− 1.

We have proved the following result.

Proposition 20.. Let c : I ⊂ R → RN , N−n ≥ 2, be a smooth curve. Let

{e0 = dc/ds, e1(s), . . . , en−1(s)} be orthonormal fields satisfying (14), (15)

and (16) at any point. Then, the submanifold parametrized by

f(s, t1, . . . , tn−1) = c(s) +
∑
j≥1

tjej(s) (23)

where (t1, . . . , tn−1) ∈ Rn−1, defines a ruled submanifold, that is parabolic

in an open dense subset of Mn. Conversely, any ruled parabolic subman-

ifold can be parametrized as in (23).
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Let f be a ruled parabolic submanifold parametrized by (23). Assume

that f has critical index k − 1 = τ f0 . The condition dimNf
k = 1 is

equivalent to

dke1
dsk

∈ TM ⊕ span

{
dℓ−1e1
dsℓ−1

,
dℓ−1e0
dsℓ−1

+ t1
dℓe1
dsℓ

, 2 ≤ ℓ ≤ k

}
(24)

where TM was given by (19). In particular, for t1 = 0 and using (22) we

have

dk−1(a1e0 + η)

dsk−1
∈ TM⊕span

{
dℓ−2(a1e0 + η)

dsℓ−2
,
dℓ−1e0
dsℓ−1

, 2 ≤ ℓ ≤ k

}
(25)

where now TM = span{e0, e1} ⊕∆.

It is easy to see that (24) and (25) are equivalent. In fact, in (25)

taking ℓ = 2 we obtain that η belongs to the subspace. If (25) is satisfied,

it follows that the subspace in (24) is independent of the parameter t1.

In particular, this shows again that dimNf
k = 1 is equivalent to ξk2 = 0.

Finally, we have that (25) is equivalent to

dk−1η

dsk−1
∈ span

{
e0,

de0
ds

, . . . ,
dk−1e0
dsk−1

, η, . . . ,
dk−2η

dsk−2

}
⊕∆.

It is now clear that (24) will not be satisfied in general. In that sense

and recalling Theorem 16, we can say that the parabolic submanifolds are

generically regular.

Remark 21.. A condition for a ruled regular parabolic submanifold in

odd codimension to satisfies ξτ
f

2 = 0 is the following:

dτ
f−1η

dsτf−1
∈ span

{
e0,

de0
ds

, . . . ,
dτ

f−2e0

dsτf−2
, η, . . . ,

dτ
f−2η

dsτf−2

}
⊕∆.

Next we extend the characterization of ruled parabolic submanifolds in

codimension two given in [6] to arbitrary codimension.

Definition 22.. We say that a submanifold f : Mn → RN is of surface

type if either f(M) ⊂ L2×Rn−2 where L2 ⊂ RN−n+2 or f(M) ⊂ CL2 × Rn−3

where CL2 ⊂ RN−n+3 is a cone over a spherical surface L2 ⊂ SN−n+2.



212 M. Dajczer and P. Morais

Theorem 23.. Let f : Mn → RN be a ruled parabolic submanifold. If

Mn is simply connected then it admits an isometric immersion as a ruled

hypersurface in Rn+1 with the same rulings. Conversely, if Mn admits an

isometric immersion as a hypersurface in Rn+1 and f is not of surface

type in any open subset, then f is ruled.

Proof: To prove the converse, assume that there exists an isometric

immersion g : Mn → Rn+1 with Gauss map N . We first show that

∆g = ∆f . (26)

Let β : TxM×TxM → R⟨η1⟩⊕R⟨N⟩ = R2 be the symmetric bilinear form

β(Y, V ) = (⟨Af
η1Y, V ⟩, ⟨Ag

N Y, V ⟩)

where {η1, η2} is as in (2). By the Gauss equation, β is flat with respect to

the Lorentzian metric in R2 defined as ∥η1∥2 = 1 = −∥N∥2 and ⟨η1, N⟩ =
0, that is,

⟨β(X,Y ), β(V,W )⟩ − ⟨β(X,W ), β(V, Y )⟩ = 0.

If (26) is not satisfied, and since dim ∆g ≤ n− 2, it follows easily that

S(β) = span{β(Y, V ) : Y, V ∈ TxM}

satisfies S(β) = R2. From Corollary 1 in [11] we have dimN(β) = n − 2

where

N(β) = {Y ∈ TxM : β(Y, V ) = 0, V ∈ TxM}.

But since N(β) = ∆g ∩∆f , it follows that (26) holds.

Let

Ag
N |∆⊥ =

[
ā b̄

b̄ c̄

]
.

From (4) we have

CT =

[
m 0

n m

]
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for any T ∈ ∆. On the other hand,

Ag
N ◦ CT =

[
ām+ bn b̄m

b̄m+ c̄n c̄m

]
.

The symmetry of Ag
N ◦ CT allows to conclude that c̄n = 0. Since f is

nowhere of surface type, it follows from Lemma 6 in [4] that n ̸= 0 for

some T ∈ ∆ in an open dense subset of Mn. Thus c̄ = 0 and therefore,

by the Gauss equation, we may assume that b̄ = b.

The Codazzi equation for Af
η1 gives

∇XbX−⟨∇XZ,X⟩(aX+bZ)−∇Z(aX+bZ)+⟨∇ZX,Z⟩bX+⟨∇⊥
Zη1, η2⟩cX = 0.

Taking the Z-component yields

2b⟨∇XX,Z⟩ − a⟨∇ZX,Z⟩ − Z(b) = 0. (27)

The Codazzi equation for Ag
N , that c̄ = 0 and b̄ = b give

∇XbX − ⟨∇XZ,X⟩(āX + bZ)−∇Z(āX + bZ) + ⟨∇ZX,Z⟩bX = 0.

Taking the Z-component yields

2b⟨∇XX,Z⟩ − ā⟨∇ZX,Z⟩ − Z(b) = 0. (28)

Subtracting (27) from (28), gives (a− ā)⟨∇ZZ,X⟩ = 0. If ⟨∇ZZ,X⟩ = 0,

then f is ruled. Thus, we may assume that a = ā. Now taking the

X-component in both Codazzi equations yields

X(b)− a⟨∇XZ,X⟩ − Z(a) + 2b⟨∇ZX,Z⟩+ c⟨∇⊥
Zη1, η2⟩ = 0

and

X(b)− a⟨∇XZ,X⟩ − Z(a) + 2b⟨∇ZX,Z⟩ = 0.

It follows from the last two equations that

⟨∇⊥
Zη1, η2⟩ = 0, (29)

and we conclude from (5) that f is ruled.
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We now prove the direct statement. In view of (2), we consider the

tensor A : TM → TM where KerA = ∆ and

A|∆⊥ =

[
a b

b 0

]
.

Since (29) holds by assumption, it is easy to see that the tensor A satisfies

the Gauss and Codazzi equations as a hypersurface, and this concludes

the proof.

2

Corollary 24.. Let f : Mn → RN be a simply connected parabolic sub-

manifold. Assume that there is 2 ≤ k0 ≤ τ f − 1 such that dimNf
k0

= 1.

Then f is ruled and Mn admits an isometric immersion as a ruled hyper-

surface.

Proof: We know from Proposition 19 that there exists a regular parabolic

isometric immersion f̃ : Mn → Rn+2k0−1 such that ξk02 = 0. It follows

from Theorem 17 that f is ruled. The result follows from Theorem 23.

2

5 Nonruled parabolic submanifolds

In this section we study parabolic surfaces. First we show that they are

associated to parabolic differential equations. Then we give a complete

characterization of their s-cross sections.

Let L2 be a Riemannian manifold endowed with a global system of

coordinates. Then, let f : L2 → QN
ϵ ⊂ RN+ϵ where ϵ = 0, 1 and N ≥ 4, be

a surface of the sphere or the Euclidean space whose coordinate functions

are linearly independent solutions (of length 1 if ϵ = 1) of the parabolic

equation
∂2u

∂z2
+W (u) + ϵλu = 0 (30)

where W ∈ TL and λ ∈ C∞(L2). If ϵ = 0, then (30) is equivalent to

∇̃Zf∗Z + f∗W = 0
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where Z = ∂/∂z. Thus αf (Z,Z) = 0. If ϵ = 1, we have

∇̃Zf∗Z + f∗W + λf = 0

and again αf (Z,Z) = 0. In both situations f is parabolic with Z asymp-

totic.

Conversely, let f : L2 → QN
ϵ be parabolic endowed with the induced

metric and coordinates (x, z) such that ∂/∂z = Z is asymptotic. The

latter means that the coordinate functions of f satisfy (30) with W =

−∇ZZ and λ = ∥Z∥2.

Let g : L2 → QN
ϵ be a parabolic surface and Σ the vector space of classes

of functions u ∈ C∞(L) that satisfy (30), where for ϵ = 0 we identify two

functions when they differ by a constant. Consider L2 with the induced

metric by g. Then (30) takes the form

Hessu(Z,Z) + ϵu = 0 (31)

where Z ∈ TL is an unit asymptotic field.

Given a parabolic submanifold f :Mn → QN
ϵ , we denote

τ f∗ =

 τ if N − n is even

τ − 1 if N − n is odd.

Let Γr, 1 ≤ r ≤ τ g∗ , be the vector space of classes of r–cross sections of

L2 where we identify two sections when, up to a constant, they differ by a

section of Ng
r+1⊕. . .⊕N

g
τg . Take [h ] ∈ Γr with r < τ g∗ and 1 ≤ r < s ≤ τ g∗ .

Then, set Pr(h) = (µ1, µ2) ∈ νr. By Corollary 10, there exists an unique

section γr+1 ∈ Ng
r+1 such that

Pr(h) = Pr(−γr+1).

Thus h̄r+1 = h + γr+1 satisfies that h̄r+1 = h + γr+1 ∈ Γr+1. Using the

above argument, it follows easily that there exist unique sections γj ∈ Ng
j ,

r + 1 ≤ j ≤ s, such that

h̄ = h+ γr+1 + . . .+ γs (32)
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satisfies
[
h̄
]
∈ Γs.

We show next that all the Γr’s are isomorphic to Σ. Given [h ] ∈ Γr,

set

h = ϵφg +W + δ

where W ∈ TL, δ ∈ T⊥L and φ ∈ C∞(L) if ϵ = 1. Given Y ∈ TL, we

have

h∗(Y ) = ϵ((Y (φ)− ⟨Y,W ⟩)g + φY ) +∇YW + αg(Y,W )−Ag
δ(Y ) +∇⊥

Y δ.

Since the TL-component of h∗(Y ) vanishes, we obtain

ϵφY +∇YW = Ag
δY. (33)

In particular, the map (Y,U) 7→ ⟨∇YW,U⟩ is symmetric. Thus, if ϵ =

0 and setting Θ(U) = ⟨W,U⟩, we have dΘ(Y,U) = 0. Thus W =

∇φ, for φ ∈ C∞(L2). If ϵ = 1, that the span{g}-component of h∗(Y )

vanishes gives Y (φ) = ⟨Y,W ⟩, and again W = ∇φ. In both cases, we

obtain from (33) we that

Hessφ + ϵφI = Ag
δ . (34)

Consider the linear map Υ: Γr → Σ defined by Υ([h]) = [φ]. Assume

that Υ([h]) = 0. Then (h)TgL = ∇φ = 0. From (34) we obtain Ag
δ = 0,

which means (h)Ng
1
= 0. Using (iii) in Corollary 10 we obtain h ∈ Ng

r+1⊕
. . .⊕Ng

τg . We conclude from the definition of Γr that Υ is injective.

Take φ ∈ Σ and set

S = {ψ ∈ Lsim(TL, TL) : ⟨ψZ,Z⟩ = 0}.

Let Φ: Ng
1 → S be the injective linear map defined by Φ(υ) = Ag

υ. From

(31) and dimNg
1 = 2, we have that Φ is an isomorphism. It follows that

there exists a unique γ1 ∈ Ng
1 such that

Ag
γ1 = Hessφ + ϵφI.
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We define ĥ = ϵφg +∇φ+ γ1. Then,

ĥ∗X = ϵX(φ)g + ϵφX + ∇̃X∇φ+ ∇̃Xγ1 = αg(X,∇φ) +∇⊥
Xγ1,

and thus [ ĥ ] ∈ Γ1. We conclude from (32) that Υ is an isomorphism. In

this way, we obtain the following recursive procedure for the construction

of the r–cross sections for the parabolic surfaces.

Proposition 25.. Let g : L2 → QN
ϵ be a regular parabolic surface. Then,

any r–cross section, 1 ≤ r ≤ τ g∗ can be written as

hφ = ϵφg + g∗∇φ+ γ0 + γ1 + · · ·+ γr, (35)

where φ satisfies (30) and is unique (up to a constant if ϵ = 0), γ0 is

any section of Ng
r+1 ⊕ . . .⊕Ng

τg , γ1 ∈ Ng
1 is the unique solution of Ag

γ1 =

Hessφ + ϵφI and γj , 2 ≤ j ≤ r, are the unique sections given by (32).

Conversely, any function hφ with the form (35) is a r–cross section to g.

6 The parametrizations

In this section, we provide a parametrically description of all regular

parabolic Euclidean submanifolds. There are two alternative representa-

tion, the polar and bipolar parametrizations, each of which is determined

by a parabolic surface and a solution of a differential equation.

Our starting point, is to show how to construct parabolic submanifolds

using parabolic surface with non vanishing normal vector ξτ2 , in particular,

any nonruled parabolic surface.

Let g : L2 → QN
ϵ a parabolic surface with Z ∈ TL asymptotic and

whose normal vector field ξτ
g

2 does not vanish at any point. Let h be a

s–cross section to g and Λs = Ng
s+1 ⊕ . . . ⊕ Ng

τg for 1 ≤ s ≤ τ g∗ . Let

Ψ: Λs → RN+ϵ be the map

Ψ(δ) = h(x) + δ

where δ ∈ Λs(x).
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Proposition 26.. At regular points, Mn = Ψ(Λs) is a regular parabolic

submanifold. Moreover, Mn is nonruled if g is nonruled.

For the proof we use the following general results.

Lemma 27.. Let f : Mn → RN be a parabolic submanifold. Then, we

have:

(i) If dimNf
k+1 = 2, then there exists η ∈ Nf

k+1 such that the compo-

nents of Pk(η) form a base of Nf
k .

(ii) Suppose that N − n is odd, dimNf
τf−1

= 2 and that ξτ
f

2 never van-

ishes. Then Pτf−1(ξ
τf
2 ) is a base of Nf

τf−1
.

Proof: We prove (i). From Corollary 10 we have that Pk|Nf
k+1

is an

isomorphism and from Lemma 5 that dimNf
k = 2. Since Nf

k has dimen-

sion 2, there exists at least one vector (µ1, µ2) ∈ νk with µ2 ̸= 0. Thus

µ1 and µ2 are linearly independent and form a base of Nf
k .

For the proof of (ii) it is sufficient to show that (∇⊥
Zξ

τf
2 )

Nf

τf−1

̸= 0. If the

vector field vanishes, from the definition of ντf−1 we have ⟨∇⊥
Xξ

τf
2 , ξτ

f−1
2 ⟩ =

0. Thus ξτ
f

2 = 0 from Proposition 3, and this is a contradiction.

2

Lemma 28.. Let β : Mn → RN+ϵ a s–cross section to f , 1 ≤ s ≤ τ f .

Then,

(∇̃Zβ∗(Z))Nf
s−1

= 0.

Proof: For s ≥ 2, we have that ⟨β∗(Z), ξs−1
2 ⟩ = 0. Then,

0 = Z⟨β∗(Z), ξs−1
2 ⟩ = ⟨∇̃Zβ∗(Z), ξ

s−1
2 ⟩+ ⟨β∗(Z), αs+1(Z,Z,X, . . . ,X)⟩

= ⟨∇̃Zβ∗(Z), ξ
s−1
2 ⟩.

Using Lemma 7, is easy to prove by a similar argument that

⟨∇̃Zβ∗(Z), ξ
s−1
1 ⟩ = 0.

For s = 1, since Nf
0 = ∆⊥, ξ01 = X and ξ02 = Z, the proof follows easily.
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2

We now prove Proposition 26.

Proof: Take a coordinate system (x, z) of L2 such that Z = ∂/∂z is

asymptotic and let {η1, . . . , ηk} be an orthonormal frame of Λs. We

parametrize Mn by

Ψ(x, z, t1, . . . , tk) = h(x, z) +
k∑

j=1

tjηj(x, z)

where k = N − 2s and (t1, . . . , tk) ∈ Rk. From Lemma 27, we have

TM = Λs−1 and ∆δ = Λs. We claim that Ψ∗(Z) is asymptotic, that is,

∇̃ZΨ∗(Z) ∈ TM . In view of (3) it is sufficient to show for υ ∈ Ng
s−1 that

⟨∇̃ZΨ∗(Z), υ⟩ = 0. Let X = ∂/∂x ∈ TL. We have that

⟨∇̃ZΨ∗(Z), ξ
s−1
1 ⟩ = ⟨∇̃Zh∗(Z), ξ

s−1
1 ⟩+

k∑
j=1

tj⟨∇̃Z∇̃Zηj , α
s
Ψ(X, . . . ,X)⟩

= ⟨∇̃Zh∗(Z), ξ
s−1
1 ⟩ −

k∑
j=1

tj⟨ηj , ∇̃Zα
s+1
Ψ (Z,X, . . . ,X)⟩

= ⟨∇̃Zh∗(Z), ξ
s−1
1 ⟩.

By a similar argument, we obtain

⟨∇̃ZΨ∗(Z), ξ
s−1
2 ⟩ = ⟨∇̃Zh∗(Z), ξ

s−1
2 ⟩.

Now Lemma 28 and Ng
s−1 = span{ξs−1

1 , ξs−1
2 } give the claim. Observe

that it follows from Lemma 27 that NΨ
k = Ng

s−k. This concludes the first

part of the proof.

Assume that g is nonruled. From Lemma 7 we have that ξs2 and Ψ∗(Z)

are orthogonal. Being ηs ∈ ∆⊥
Ψ = Ng

s a unit asymptotic vector field to

Ψ, we obtain that Ψ is ruled if and only if (∇̃Zηs)Ng
s
= 0. Now the proof

follows from Corollary 18.

2

Our goal now is to show that any parabolic submanifolds with non van-

ishing normal vector field ξτ2 , in particular, all nonruled regular parabolic
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submanifolds, can be locally parametrized by a parabolic surface using

Proposition 26.

Given a parabolic submanifold f : Mn → QN
ϵ , due to the local nature of

our work, we may assume that f is the saturation of a fixed cross section

L2 ⊂ Mn to the relative nullity foliation. From Proposition 4, each Nf
k

can be viewed as a plane bundle along L2.

Definition 29.. Let f : Mn → QN−ϵ
ϵ be a regular parabolic submanifold.

A polar surface to f is an immersion of a cross section L2 as above, defined

as follows:

(i) If N − n− ϵ is odd, then g : L2 → SN−1 is defined by

span{g(x)} = Nf
τf
(x).

(ii) If N − n− ϵ is even, then g : L2 → RN is any surface such that

Tg(x)L = Nf
τf
(x),

up to parallel identification in Rn.

Proposition 30.. Any regular parabolic submanifold f : Mn → QN
ϵ with

non vanishing normal vector field ξτ
f

2 admits a polar surface g locally.

Moreover, g is parabolic and nonruled if f is nonruled and has no Eu-

clidean factor.

We will use the following fact.

Lemma 31.. Assume that f has even codimension. Let η ∈ Nf
τf

and

µ1 = (∇̃Xη)Nf

τf−1

, µ2 = (∇̃Zη)Nf

τf−1

be such that µ2 ̸= 0. Then,

ντf−1 = {(aµ1 + bµ2, aµ2) : a, b ∈ C∞(M)}.
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Proof: Since ⟨(∇̃Zη)Nf

τf−1

, ξτ
f−1

2 ⟩ = ⟨η, ∇̃Zξ
τf−1
2 ⟩ = 0, the definition of

ντf−1 and Lemma 3 yield (µ2, 0) ∈ ντf−1. Since dimNf
τf−1

= 2, we easily

conclude that Nf
τf−1

= span{(µ1, µ2), (µ2, 0)}, and the proof follows.

2

Remark 32.. Notice that η = ξτ
f

2 /∥ξτf2 ∥ ∈ Nf
τf

satisfies (∇̃Zη)Nf

τf−1

̸= 0.

In fact, from Proposition 3 it is easy to see that ⟨∇̃Zη, ξ
τf−1
1 ⟩ ≠ 0.

We now prove Proposition 30.

Proof: In the case of odd codimension, the existence of a polar surface

follows from (ii) of Lemma 27. Assume that dimNf
τf

= 2. Let {η1, η2}
be a base of Nf

τf
constant along ∆. We show that there exist linearly

independent 1−forms, θ1, θ2 so that the differential equation

dg = θ1η1 + θ2η2 (36)

has solution.

Take a non vanishing asymptotic vector field Z ∈ TM and consider

the isomorphism P : ∆⊥ → TL. Let U = P (Z) ∈ TL and (u,w) a co-

ordinate system on L2 such that U = ∂/∂u. Set W = ∂/∂w ∈ TL and

X = P−1(W ) ∈ ∆⊥. Endow L2 with the metric which makes the base

{U,W} orthonormal and positively oriented. Let η1, η2 ∈ Nτf be linearly

independents vector fields constant along ∆. Without loss of generality,

we my assume µ2 = (∇̃Zη1)Nf

τf−1

̸= 0. According to Lemma 31, there are

a, b ∈ C∞(M) with b ̸= 0 such that

Pτf−1(η1) = (µ1, µ2) and Pτf−1(η2) = (aµ1 + bµ2, aµ2). (37)

Consider 1-forms

θ1 = a1du+ a2dw e θ2 = b1du+ b2dw, (38)

where a1, a2, b1, b2 ∈ C∞(L2). We show that we can choose

a1, a2, b1, b2 ∈ C∞(L) such that (36) has solution . The integrability con-
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dition for (36) is

0 = dθ1η1 + dθ2η2 + θ1 ∧ dη1 + θ2 ∧ dη2

= dθ1η1 + dθ2η2 + (a1
∂η1
∂w

− a2
∂η1
∂du

)dV + (b1
∂η2
∂v

− b2
∂η2
∂u

)dV

= dθ1η1 + dθ2η2 + (∇̃a1W−a2U η1 + ∇̃b1W−b2U η2)dV

where dV stands for the volume element of L2. Then, we must have

(∇̃a1W−a2U η1 + ∇̃b1W−b2U η2)Nτf−1
= 0.

From (37) we may rewrite the above equation as a1 + ab1 = 0

a2 − bb1 + ab2 = 0.
(39)

Then, let e, ℓ ∈ C∞(L) be such that

∇̃a1W−a2U η1 + ∇̃b1W−b2U η2 = eη1 + ℓη2.

We claim that there exist a1, a2, b1, b2 ∈ C∞(L) such that θ1, θ2 satisfy(39)

and  dθ1 = e dV

dθ2 = ℓ dV,

or equivalently,  a2u − a1w = e

b2u − b1w = ℓ.
(40)

From (39) and (40) we have

a1 = −ab1

a2 = bb1 − ab2

bub
1 + bb1u − aub

2 − a(b2u − b1w) + awb
1 = e

b2u − b1w = ℓ.
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The two last equations give bub
1 + bb1u − aub

2 + awb
1 = e+ aℓ

b2u − b1w = ℓ.
(41)

We assume au ̸= 0 without loss of generality. The first equation of (41)

yields

b2 = − 1

au
(e+ aℓ− (bu + aw)b

1 + bb1u).

We take b1 to be a solutions of the above linear parabolic equation (see p.

367 of [10]), and now the claim follows easily.

If f has a Euclidean factor, take T a parallel subbundle of the relative

nullity subbundle of f . It is easy to see that under these conditions the

subbundle T ⊕ ∇⊥ ⊕ Ng
1 is a normal parallel subbundle of g. Thus, the

codimension of g can be reduced. The converse is similar.

We claim that g has an asymptotic vector. First observe that Ng
1 =

Nf

τf∗ −1
. Thus, in odd codimension, we have from (36) and (39) that

g∗∂/∂u = a1η1 + b1η2 = −ab1η1 + b1η2. (42)

Therefore, in view of (37) we obtain

(∇̃Zg∗∂/∂u)Nf

τf−1

= −ab1µ2 + ab1µ2 = 0.

For even codimension, the claim follow from Lemma 28. Hence g is

parabolic.

To complete the proof suppose that f is nonruled. We show that g is

also nonruled. If the codimension of f is odd, since ξτ
f

2 ̸= 0, then TL is

spanned by {(∇̃Xξ
τf
2 )

Nf

τ
f
∗

, (∇̃Zξ
τf
2 )

Nf

τ
f
∗

}, being (∇̃Zξ
τf
2 )

Nf

τ
f
∗

an asymptotic

field.

The definition of ν
τf∗

allows us to conclude that the unit asymptotic

field γ is normal to ξτ
f
∗

2 Then, g is ruled if and only if (∇̃Zγ)Nf

τ
f
∗

= 0.

Thus g is nonruled by Corollary 18. In the even codimension case, we

have

Ng
1 = span{(∇̃Zη1)Nf

τf−1

, (∇̃Xη1)Nf

τf−1

}.
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From (37) and (42) it is easy to conclude that

ξ1 g
2 = bµ2 = b(∇̃Zη1)N

τf−1
. (43)

Let λ = ∥b(∇̃Zη1)N
τf−1

∥−1. It follows from (5) that g is ruled if and only

if

(∇̃Uλ(∇̃Zη1)N
τf−1

)
Nf

τf−1

= 0.

From our assumption that η1 is constant along ∆f , it follows that

0 = (∇̃Uλ(∇̃Zη1)Nf

τf−1

)
Nf

τf−1

= U(λ)(∇̃Zη1)Nf

τf−1

+λ(∇̃Z(∇̃Zη1)Nf

τf−1

)
Nf

τf−1

.

Thus,

(∇̃Z(∇̃Zη1)
f
N

τf−1
)
Nf

τf−1

∈ (∇̃Zη1)Nf

τf−1

.

Since (∇̃Zη1)N
τf−1

is normal to ξτ
f−1 f

2 , we obtain

(∇̃Z ξ
τf−1 f
2 /∥ξτ

f−1 f
2 ∥)

Nf

τf−1

= 0,

and conclude from Corollary 18 that f is ruled. This is a contradiction.

2

The following is the polar parametrization.

Theorem 33.. Given a parabolic surface g : L2 → QN
ϵ with non vanishing

normal vector ξτ
g

2 and 1 ≤ s ≤ τ g∗ , consider the smooth map Ψ: Λs → RN

defined by

Ψ(δ) = h(x) + δ (44)

where δ ∈ Λs = Ng
s+1 ⊕ . . . ⊕ Ng

τg and h is any s–cross section to g.

Then, at regular points, Mn = Ψ(Λs) is a regular parabolic submanifold

with polar surface g. Moreover, if g is nonruled, then Mn = Ψ(Λs) is

nonruled.

Conversely, any parabolic submanifold f : Mn → RN without local Eu-

clidean factor and with non vanishing normal vector ξτ
f

2 admits a local

parametrization (44), where g is a polar surface to f .
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Proof: The direct statement follows from Proposition 26. For the con-

verse, take a polar surface g : L2 → QN
ϵ to f . It is easy to see that under

these conditions that ∆f = Λ
τf∗

and TM = Λ
τf∗ −1

along L2. Thus, the

section h = f|L2
is a τ f∗ –cross section to g. 2

Observe that picking a different γ0 in (35) only results in a reparametriza-

tion of Ψ(Λs). Hence, it is convenient to take γ0 = 0 when using the

recursive procedure to generate s–cross sections.

The polar parametrization is very effective for submanifolds in low

codimension since the recursive procedure has few iterations. For in-

stance, in codimension two it suffices to take a 1–cross section of the

form hφ = ∇φ + γ1, where γ1 ∈ Nf
1 is unique satisfying Aγ1 = Hessφ for

a given solution φ of (30).

Definition 34.. We define the bipolar surface to a parabolic submanifold

f to be any polar surface to a polar surface to f .

Proposition 35.. Any nonruled parabolic submanifolds admits locally a

bipolar surface.

Proof: From Proposition 30, f admits locally a nonruled polar surface

g. Then, Proposition 17 gives ξτ
g

2 ̸= 0. The proof now follows from

Proposition 30

2

Definition 36.. Let g : L2 → QN
ϵ be a parabolic surface and 0 ≤ s ≤

τ g∗ − 1. We call dual s–cross section to g any element h ∈ C∞(L2,RN+ϵ)

satisfying

h∗(TL) ⊂ ϵ span{g} ⊕Ng
0 ⊕ . . .⊕Ng

s

at any point.

Notice that a dual 0-section to a parabolic surface in Euclidean space

is just a bipolar surface.
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Proposition 37.. Let g : L2 → QN
ϵ be a regular parabolic surface with

polar surface ĝ. Any dual s-section to g is a ([N/2]− s− 1)-section to ĝ.

Proof: We have τ g∗ = τ ĝ∗ = [N/2]− 1 and Ng
s = N ĝ

τ ĝ∗−s
. The proof follows

easily.

2

The following is the bipolar parametrization.

Theorem 38.. Given a parabolic surface g : L2 → QN
ϵ with non vanishing

normal vector ξτ
g

2 and 0 ≤ s ≤ τ g∗ − 1, consider the smooth map Ψ̃ : Λ̃s →
RN defined by

Ψ̃(δ̃) = h̃(x) + δ̃ (45)

where δ̃ ∈ Λ̃s = ϵ span{g} ⊕ Ng
0 ⊕ . . . ⊕ Ng

s−1 and h̃ is any dual s–cross

section to g. Then, at regular points, Mn = Ψ̃(Λ̃s) is a nonruled parabolic

submanifold with bipolar surface g.

Conversely, any nonruled parabolic submanifold f : Mn → RN without

local Euclidean factor admits a local parametrization (45), where g is a

bipolar surface to f .

Proof: The result follows from Theorem 33 and Propositions 35 and 37.

2

Next, we give a simple way to parametrize parabolic submanifolds.

Let g : L2 → QN
ϵ be a simply connected nonruled parabolic surface

endowed with the metric induced by g and {X,Z} an orthonormal tangent

frame with Z asymptotic. Let J ∈ End (TL) be defined by

J(X) = Z and J(Z) = 0

and let R ∈ End (TL) the reflection defined by

R(X) = X and R(Z) = −Z.

Now consider the linear second order parabolic operator

L(φ) = ZZ(φ)+Γ2X(φ)−Γ1Z(φ)+(X(Γ2)−Z(Γ1)+(Γ1)
2− (Γ2)

2− ϵ)φ



PARABOLIC SUBMANIFOLDS OF RANK TWO 227

where Y = [X,Z] = Γ2Z −Γ1X. Let φ ∈ C∞(L) satisfy L(φ) = 0 and let

ψ be the 1-form such that dψ(X,Z) = −φ.

Lemma 39.. The differential equation

dθ = dφ ◦ J + φY ∗ ◦R+ ϵψ (46)

is integrable.

Proof: From our assumptions, we easily obtain d2θ(X,Z) = −L(φ), and
this concludes the proof.

2

Lemma 40.. The differential equation

dh = ϵψg + dg ◦ (θI + φJ) (47)

is integrable, where θ is a solution of (46).

Proof: An easy computation yields

d2h(X,Z) = ϵ(dψ(X,Z) + φ)g + (dθ(X) + φΓ1 − Z(φ)− ϵψ(X))Z

− (dθ(Z) + φΓ2 − ϵψ(Z))X.

Thus, we conclude that d2h = 0.

2

Theorem 41.. Let g : L2 → QN−ϵ
ϵ a simply connected nonruled parabolic

surface, φ ∈ C∞(L) so that L(φ) = 0 and h : L2 → RN a solution of (47).

Then, the map Ψ: L2 × R2s−ϵ → RN defined by,

Ψ(x, t) = h(x) + ϵ t0g(x) +
s∑

j=1

(
t2j−1

∂jg

∂v∂uj−1
+ t2j

∂jg

∂uj

)
(x)

where 0 ≤ s ≤ [(N − ϵ)/2] − 2 and (u, v) is a coordinate system of L2

such that ∂/∂v is asymptotic, parametrizes, at regular points, a parabolic

submanifold.

Conversely, any nonruled parabolic submanifold without local Euclidean

factor can be locally parametrized in this way.
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Proof: It is clear for 0 ≤ j ≤ τ g∗ that

Ng
j = span

{(
∂j+1g

∂uj∂v

)
Ng

j

,

(
∂j+1g

∂uj+1

)
Ng

j

}
.

In (45) we take h̃ to be a dual 0–cross section to g without loss of generality.

It remains to show that any dual 0-section to g can be written as a solution

of (47).

Given a dual 0-section h̃ to g, we need a 1-form Ψ and S ∈ End (TL)

such that

dh̃ = ϵΨg + dg ◦ S.

An easy computation yields

d2h̃(X,Z) = ϵ(dψ(X,Z)− ⟨X,SZ⟩+ ⟨Z, SX⟩)g + (∇XS)Z + αg(X,SZ)

−(∇ZS)X − αg(Z, SX) + ϵ(ψ(Z)X − ψ(X)Z).

Thus, the integrability conditions reduces to the equations

αg(X,SZ) = αg(Z, SX), (48)

(∇XS)Z − (∇ZS)X = ϵ(ψ(X)Z − ψ(Z)X), (49)

and for ϵ = 1 the additional equation

dψ(X,Z) = ⟨SZ,X⟩ − ⟨SX,Z⟩. (50)

From (48) and since αg(X,X) and αg(X,Z) are linearly independent, we

have

S = θI + φJ

where θ, φ ∈ C∞(L). The left side of (49) gives us

∇XθZ−∇Z(θX+φZ)+Γ1SX−Γ2SZ=(dθ(X)+φΓ1−dφ(Z))Z−(dθ(Z)+φΓ2)X.

Thus (49) is equivalent to{
dθ(X) = −Γ1φ+ dφ(Z) + ϵψ(X)

dθ(Z) = ⟨Y,−Z⟩φ+ ϵψ(Z).
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Hence,

dθ = dφ ◦ J + φY ∗ ◦R+ ϵψ,

and from (50) we easily get dψ(X,Z) = −φ. The result follows from Theorem 38

and Lemma 40.

2

7 The singularities

In this section we show that the nowhere nonruled complete parabolic subman-

ifolds are surface-like, that is, they are isometric to L2 ×Rn−2. We also describe

the singular set of nonruled parabolic submanifolds of dimension at least four.

The complete submanifolds f : Mn → RN with rank ρ ≤ 2, had been studied

in [7]. If Mn does not contain an open set L3 × Rn−3 with L3 unbounded, then

the following holds in the open set M∗ ⊂Mn where ρ = 2.

(i) M∗ is an union of smoothly ruled strips.

(ii) If f is completely ruled on M∗, then it is completely ruled everywhere and

a cylinder on each component of the complement of the closure of M∗.

A ruled submanifold is called completely ruled if each leaf is a complete affine

space. The leaves in each connected component of Mn, called a ruled strip, form

an affine vector bundle over a curve with or without end point [7].

Given a ruled parabolic submanifold f : Mn → RN , let M̃n be the extension of

f(Mn) (with possible singularities) obtained by extending each leaf to a complete

affine Euclidean space Rn−1. We have the following result.

Proposition 42.. Let f : Mn → RN a ruled parabolic submanifold. Then M̃n

is a ruled strip. Moreover, if c is complete and the function a1 defined in (18)

satisfy |a1(s)| ≤ K < +∞, then M̃n is complete.

Proof: Using (23) we parametrize Mn by

f(s, t1, . . . , tn−1) = c(s) +
∑
j≥1

tjej(s)w

where
de1
ds

= a1e0 + δ + η and
dej
ds

= bje1, 2 ≤ j ≤ n− 1,
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δ = (de1/ds)∆ and η ⊥ span{e0, e1}⊕∆ is nonsingular for every s ∈ I. We have,

TM = span{(1 + t1a1)e0 + t1η} ⊕ span{e1, . . . , en−1},

and is now easy to conclude that f is nonsingular. Thus M̃n is a ruled strip.

Next, suppose that c is complete. Notice that

∥fs∥2 ≥ (1 + t1a1(s))
2 + t21∥η(s)∥2.

We claim that M̃n is complete. If |t1| ≤ M < ∞, from our assumption that

|a1(s)| ≤ K < ∞ we obtain ∥fs∥2 ≥ L > 0. On the other hand, it is easy to see

that any divergent curve γ(u) = f(s(u), t1(u), ..., tn−1(u)), u ∈ [0,+∞), in M̃n

with at least one ti, 1 ≤ i ≤ n − 1, unbounded has infinity length. Thus, any

divergent curves in M̃n has infinity length, and the proof follows.

2

Observe that any ruled parabolic submanifold parametrized by (23) with bj = 0, 2 ≤ j ≤ n− 1,

everywhere is a product L2 × Rn−2. On the other hand, if there exist j ∈
{2, . . . , n − 1} such that bj ̸= 0 everywhere then the submanifold does not con-

tain an open set L2 × Rn−2.

Theorem 43. . Let f : Mn → RN , n ≥ 3, be a complete submanifold which

is nonruled in any open set and parabolic in an open dense set O. Then, any

connected component of O is isometric to L2 × Rn−2 and f splits accordingly.

Proof: From Lemma 6 in [7] it is easy to see that either C = 0 or

CT =

[
0 0

n 0

]
(51)

where T ⊥ Ker C. We have a disjoint decomposition O = M0 ∪ M1, where M0

is the closet set where C = 0. We now argue that the open set M1 is empty.

It follows from Lemma 1.8 in [7] that M0 and M1 are saturated, i.e. they are

unions of complete leaves of ∆. We have from Lemma 1.5 in [7] and (51) that

0 = (∇XCT )Z − (∇ZCT )X = n⟨∇XZ,X⟩Z − Z(n)Z − n⟨∇ZZ,X⟩X

where T ⊥ kerC is an unit field. Therefore ⟨∇ZZ,X⟩ = 0, i.e., M1 is ruled. We

conclude that M1 = ∅ and the result follows from Lemma 1.1 in [7].

2

Observe that if f : Mn → RN is a complete, simply connected parabolic sub-

manifold, then Mn is diffeomorphic to Rn since its sectional curvature satisfies
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KM ≤ 0. In the ruled case, we have from Theorem 23 that Mn admits an iso-

metric immersion as a ruled hypersurface with the same rulings. There are many

examples of complete ruled hypersurfaces [7]. A simple example goes as follows:

take c : I ⊂ R → Rn+1 any unit speed curve, and let E0 = dc/ds,E1, . . . , En a

Frenet frame. It is easy to see that the hypersurface

(s, t1, . . . , tn−1) 7→ c(s) +

n−1∑
j=1

tjEj+1

is complete.

Given a nonruled parabolic submanifold f : Mn → RN without Euclidean

factor, let M̃n be the extension of f(Mn) in RN obtained by extending each leaf

of relative nullity of f to a complete affine Euclidean space in Rn−2. Our next and

last result, describes the singular set of nonruled parabolic submanifolds without

Euclidean factor and dimension n ≥ 4.

Proposition 44.. Let f : Mn → RN , n ≥ 4, be a nonruled parabolic submanifold

without Euclidean factor. Then the hypersurface given by

{λ ∈ M̃n : ⟨λ, ξs+1
2 ⟩ = 0}

is the singular set of M̃ .

Proof: Let Ψ(δ) = h(x) + δ, δ ∈ Λs(x), be the parametrization in Theorem 33,

where h is any s–cross section of a polar surface g to f . Without loss of generality,

we assume that h is a τg∗ -section. Being (x, z) a coordinate system of g with

Z = ∂/∂z asymptotic and {η1, . . . , ηk} an orthonormal frame of Λs, we can write

Ψ(x, z, t1, . . . , tk) = h(x, z) +

k∑
j=1

tjηj(x, z)

where k = N − 2s and (t1, . . . , tk) ∈ Rk. Recall that TM = Λs−1 and ∆ = Λs.

Thus, with X = ∂/∂x, we have that Ψ(x, z, t1, . . . , tk) is a singular point if and

only if

t1(∇⊥
Xη1)Ns

+ t2(∇⊥
Xη2)Ns

and t1(∇⊥
Zη1)Ns

+ t2(∇⊥
Zη2)Ns

are linearly independents. By the definition of νs, we have

⟨∇⊥
Zη1, ξ

s
2⟩ = ⟨∇⊥

Zη2, ξ
s
2⟩ = 0.
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Thus t1(∇⊥
Zη1)Ns

+ t2(∇⊥
Zη2)Ns

and ξs2 are normal fields. The above condition

is now equivalent to

⟨t1(∇⊥
Xη1)Ns

+ t2(∇⊥
Xη2)Ns

, ξs2⟩ = 0

and, from Proposition 3, equivalent to

⟨t1η1 + t2η2, ξ
s+1
2 ⟩ = 0.

It follows that λ ∈ M̃n is a singular point if and only if ⟨λ, ξs+1
2 ⟩ = 0.

2
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