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Introduction

In the study of spacelike hypersurfaces in Lorentzian manifolds appears

as an important mark Goddard’s conjecture, posed in 1977 [7]: the only

complete constant mean curvature spacelike hypersurfaces (i. e., the in-

duced metric is Riemannian) in the de Sitter space Sn+1
1 are the umbilical

ones. The first answer to Goddard’s conjecture was given by Dajczer and

Nomizu in 1981 [4], when they exhibited an example of a (flat) complete

surface in the 3-dimensional de Sitter space S31 with constant mean cur-

vature which is not umbilical. A fundamental answer to the mentioned

conjecture was given by Montiel in 1988 [9]. He proved that the only

compact constant mean curvature spacelike hypersurfaces in Sn+1
1 are the

umbilical ones. Moreover, Montiel described all of them. Since then, the

interest on the subject increased, at least in two directions. The first

one is the search of conditions in more general Lorentzian manifolds to
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guarantee that constant mean curvature spacelike hypersurfaces are um-

bilical. In 1999 Montiel [11] proved that in a Lorentzian manifold a closed

conformal vector field determines a foliation by constant mean curvature

umbilical hypersurfaces and he was able to show, with additional hypothe-

ses, that in such a space every constant mean curvature compact spacelike

hypersurface is umbilical. The second direction points to the construction

of examples of non-umbilical complete constant mean curvature spacelike

hypersurfaces in Sn+1
1 , initiated by Dajczer and Nomizu and followed by

Akutagawa [1], Ramanathan [14] and Ki, Kim and Nakagawa [8].

Montiel also constructed examples of non-umbilical complete constant

mean curvature spacelike hypersurfaces in the de Sitter space including the

hyperbolic cylinders ([9] and [10]), so called because they can be generated

by hyperbolas. We observe that all the mentioned non-umbilical examples

are (n−1)-umbilical, that is, they are not umbilical because at every point

(n− 1) principal curvatures are equal and one is distinct from the others

(see Definition 1.1). More precisely, let M̄n+1
1 be a Lorentzian manifold

with semi-Riemannian connection ∇̄ and M an orientable spacelike hy-

persurface with a unit timelike normal vector field N . We say that M is

(n − 1)-umbilical if there is a (n − 1)-dimensional distribution D ⊂ TM ,

as well as a C∞ function ϕ such that

D = { X ∈ TM | ∇̄XN = ϕX }. (1)

Here we construct a family of new examples of (n−1)-umbilical spacelike

hypersurfaces of constant mean curvature in Sn+1
1 . More precisely, we

prove (see Theorem 2.5):

For every real number H there is a 1-parameter family of (n − 1)-

umbilical spacelike hypersurfaces Mn ⊂ Sn+1
1 with constant mean cur-

vature equal to H. If H = 1 or H = 2
√
n− 1/n, this family contains

one cylinder; that is, a non-totally umbilical hypersurface with constant

principal curvatures. If H > 2
√
n− 1/n and H ̸= 1, this family contains

two different cylinders.
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Moreover, for H > 2
√
n− 1/n there is a subfamily of such (n − 1)-

umbilical spacelike hypersurfaces which are complete.

Consideration of the above examples of (n− 1)-umbilical spacelike hy-

persurfaces with constant mean curvature leads to the following question:

Under which conditions a given Lorentzian manifold can be foliated by

(n− 1)-umbilical spacelike hypersurfaces of constant mean curvature?

In Section 3 we introduce the notion of a timelike closed partially con-

formal vector field on a Lorentzian manifold M̄n+1
1 (see Definition 3.1)

and prove that it is the right tool to solve our question. Let M̄n+1
1 be a

Lorentzian manifold with semi-Riemannian connection ∇̄ and K ∈ X(M̄)

a timelike vector field. We say that K is closed partially conformal in M̄

if there is a unit vector field W ∈ X(M̄) everywhere orthogonal to K such

that

∇̄XK = ϕX for ⟨X,W ⟩ = 0 and ∇̄WK = ψW (2)

for some functions ϕ, ψ : M̄ → R. It is said that W is associated to K.

We note that the transformations corresponding to the flow of our par-

tially conformal vector field are partially conformal transformations as

defined by Tanno (see [15] and [16]).

Then we prove the following fact (see Theorem 3.2 and Lemma 3.3):

If M̄n+1
1 is a Lorentzian manifold endowed with a timelike closed par-

tially conformal vector field K, then the distribution K⊥ is involutive and

each leaf of the corresponding foliation is a (n − 1)-umbilical spacelike

hypersurface with n− 1 equal and constant principal curvatures.

HereK⊥ denotes the distribution defined by taking the orthogonal com-

plement of K at each point.

We close this paper with Section 4, where we present examples of time-

like closed partially conformal vector fields and their corresponding (n−1)-

umbilical foliations of open subsets of Lorentzian space forms.
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1 Preliminaries

We will denote by M̄n+1
ν , or simply by M̄ , a (n+ 1)-dimensional semi-

Riemannian manifold, endowed with a metric tensor ⟨ , ⟩ of index ν ≥ 0.

In particular, if ν = 0, M̄ is Riemannian, while if ν = 1, M̄ is Lorentzian.

Also, ∇̄ will denote the semi-Riemannian connection of M̄ .

For example, let Rn+1
ν be the (n + 1)-dimensional vector space with

metric tensor

⟨v, w⟩ = −
ν∑
i=1

viwi +
n+1∑
j=ν+1

vjwj ,

where v = (v1, . . . , vn+1) and w = (w1, . . . , wn+1).

As another example, for n ≥ 1 and c > 0 we define

Sn+1
ν (c) =

{
p ∈ Rn+2

ν

∣∣∣∣ ⟨p, p⟩ = 1

c

}
.

This is a space with constant (positive) curvature c. We call Rn+2
ν the

ambient space of Sn+1
ν (c). If c = 1, we simply denote this space as Sn+1

ν .

To standarize our notation, we set Rn+2
ν as the ambient space of Rn+1

ν ,

that is,

Rn+1
ν = { (x1, . . . , xn+2) ∈ Rn+2

ν | xn+2 = 0 }.

We will denote by Qn+1
1 (c) the standard (n+1)-dimensional Lorentzian

manifold of constant curvature c ≥ 0; that is, for c = 0 we have the

Lorentz-Minkowski space Rn+1
1 and for c > 0 we get the de Sitter space

Sn+1
1 (c).

Given a semi-Riemannian manifold M̄ , a submanifold M ⊆ M̄ is space-

like if the metric induced on M is Riemannian. It is clear that if M is a

spacelike hypersurface (that is, it has codimension 1), then M̄ has to be

Riemannian or Lorentzian.

We define now the class of hypersurfaces we are interested in.

Definition 1.1. Let M̄n+1
ν be a semi-Riemannian manifold and M an

orientable spacelike hypersurface M ⊆ M̄ ; that is, there is a unit timelike

vector field N everywhere orthogonal to M . We say that M is k-umbilical
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if there is a k-dimensional distribution D ⊂ TM , as well as a C∞ function

ϕ such that

D = { X ∈ TM | ∇̄XN = ϕX }. (3)

It turns out that a k-umbilical hypersurface has k equal principal cur-

vatures. (See, for example, [3].)

2 Examples

We recall briefly the known examples of (n− 1)-umbilical spacelike hy-

persurfaces in Sn+1
1 . The first one was given in 1981 by Dajczer and No-

mizu [4] in the 3-dimensional case. For r > 0, let f : R2 → S31, f = f(x, y)

be given by(
r cosh

x

r
, r sinh

x

r
,
√

1 + r2 cos
y√

1 + r2
,
√
1 + r2 sin

y√
1 + r2

)
. (4)

It is proved that f is a flat immersion, with principal curvatures given by

r√
1 + r2

and

√
1 + r2

r
,

which clearly are distinct, so the image of f is a 1-umbilical (hyper)surface.

In [9], Montiel constructed more examples in Sn+1
1 , as follows: Take

ρ > 0, 1 ≤ k ≤ n− 1 and consider

M = { (x1, . . . , xn+2) ∈ Sn+1
1 | − x21 + x22 + · · ·+ x2k+1 = − sinh2 ρ }. (5)

This is a spacelike hypersurface in Sn+1
1 isometric to the Riemannian prod-

uct

Hk(1− coth2 ρ)× Sn−k(1− tanh2 ρ)

of a k-dimensional hyperbolic space and a (n − k)-dimensional sphere of

constant sectional curvatures (1− coth2 ρ) and (1− tanh2 ρ), respectively.

M has k principal curvatures equal to coth ρ and (n− k) principal curva-

tures equal to tanh ρ; thus, M is k-umbilical, as well as (n− k)-umbilical.
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If k = 1, M is called a hyperbolic cylinder. Note also that if n = 2 and

k = 1 we recover the Dajczer-Nomizu example, with r = sinh ρ.

In 1991, Ki, Kim and Nakagawa [8] studied the spacelike hypersurfaces

in Qn+1
1 (c) and gave examples isometric to the products of Riemannian

space forms. In the case of the de Sitter space Sn+1
1 , they considered the

family of spacelike hypersurfaces Hk(c1)× Sn−k(c2) given by{
(x, y) ∈ Sn+1

1 ⊂ Rn+2
1 = Rk+1

1 × Rn−k+1

∣∣∣∣ ⟨x, x⟩ = 1

c1
, ⟨y, y⟩ = 1

c2

}
,

where c1 < 0, c2 > 0, 1/c1 + 1/c2 = 1 and k = 1, . . . , n− 1. The principal

curvatures are
√
1− c1 with multiplicity k and

√
1− c2 with multiplicity

n − k. Thus, for k = 1 we recover Montiel’s hyperbolic cylinders, while

for k = n− 1 we obtain the hypersurfaces Hn−1(c1)× S1(c2).
Note that the examples cited have constant principal curvatures. In the

sequel we will call a (n−1)-umbilical (non-totally umbilical) hypersurface

with constant principal curvatures a cylinder. We shall prove here that

these cylinders in Sn+1
1 belong in fact to a whole family of (n−1)-umbilical

spacelike hypersurfaces; namely, to a family of rotation hypersurfaces.

A general definition of rotation hypersurfaces was given in the Rieman-

nian case by do Carmo and Dajczer in [5], definition which was extended

later to some Lorentzian manifolds (see for example [12]). For the sake

of completeness, we give the definition of these rotation hypersufaces in

Qn+1
1 (c).

Recall from the Preliminaries section that each Qn+1
1 (c) has an ambient

space of the form Rn+2
ν , ν = 1, 2. We say that an orthogonal transfor-

mation of Rn+2
ν is a metric-preserving linear map. By restriction, these

orthogonal transformations induce all isometries of Qn+1
1 (c).

Let P k be a k-dimensional vector subspace of Rn+2
ν . O(P k) will denote

the set of orthogonal transformations of Rn+2
ν with positive determinant

that leave P k pointwise fixed.

Fix a 3-dimensional space P 3, a subspace P 2 ⊂ P 3, and a regular,

spacelike curve C in Qn+1
1 (c) ∩ (P 3 − P 2), parametrized by arc length.

The orbit of C under O(P 2) is called the rotation spacelike hypersurface



FOLIATIONS BY (n− 1)-UMBILICAL HYPERSURFACES 141

M in Qn+1
1 (c) generated by C. M is spherical (hyperbolic, parabolic, resp.)

whenever the ambient metric restricted to P 2 is a Lorentzian (Riemannian,

degenerate, resp.) metric.

After giving the general definition of a rotation hypersurface in the Rie-

mannian context, do Carmo and Dajczer imposed the condition of having

constant mean curvature, studying and classifying these hypersurfaces.

Following similar methods, spherical rotation hypersurfaces in Sn+1
1 with

constant mean curvature were described by the authors in [2]. Thus, in

this paper we will describe in detail the hyperbolic rotation hypersurfaces

in Sn+1
1 and make some comments about the spherical cases. We will

consider here the parabolic rotation case only in Remark 2.3.

Let {e1, e2, . . . , en+2} be the canonical basis of Rn+2
1 , so that

⟨e1, e1⟩ = −1 and ⟨ei, ei⟩ = 1 for i > 1.

Also, let P 2 = span(en+1, en+2) and P
3 = span(e1, en+1, en+2). The pro-

file curve generating the rotation hypersurface is given by

(x1(s), 0, . . . , 0, xn+1(s), xn+2(s)),

where

−x21 + x2n+1 + x2n+2 = 1 and − ẋ21 + ẋ2n+1 + ẋ2n+2 = 1.

Here the dots denote derivative with respect to s.

Now take Φ(t1, . . . , tn−1) = (φ1, . . . , φn) as an orthogonal parametriza-

tion of the unit hyperbolic space Hn−1 ⊂ Rn1 , so that

−φ2
1 + φ2

2 + · · ·+ φ2
n = −1, φ1 > 0.

Thus,

f(t1, . . . , tn−1, s) = (x1(s)Φ(t1, . . . , tn−1), xn+1(s), xn+2(s)) (6)

is the desired parametrization of the spacelike hyperbolic rotation hyper-

surface generated by the curve (x1(s), 0, . . . , 0, xn+1(s), xn+2(s)).
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Differentiating equation (6), we have

Ei =
∂f

∂ti
=

(
x1
∂Φ

∂ti
, 0, 0

)
, i = 1, . . . , n− 1,

and

En =
∂f

∂s
= (ẋ1Φ, ẋn+1, ẋn+2)

so that

⟨Ei, Ej⟩ = x21

〈
∂Φ

∂ti
,
∂Φ

∂tj

〉
for i, j = 1, . . . , n− 1,

while

⟨En, En⟩ = 1 and ⟨Ei, En⟩ = 0 for i = 1, . . . , n− 1.

We choose the timelike unit normal vector N as

(−(ẋn+1xn+2 − xn+1ẋn+2)Φ, (x1ẋn+2 − ẋ1xn+2), (ẋ1xn+1 − x1ẋn+1)).

Now it is easy to prove that

∇̄EiN = − ẋn+1xn+2 − xn+1ẋn+2

x1
Ei, for i = 1, . . . , n− 1. (7)

This fact tells us that the coordinate curves are lines of curvature and

that the principal curvatures along the ti–curves are

κi = − ẋn+1xn+2 − xn+1ẋn+2

x1
. (8)

We use −x21 + x2n+1 + x2n+2 = 1 to write this in terms of x = x1 alone.

Let

xn+1 =
√

1 + x2 cos θ and xn+2 =
√
1 + x2 sin θ, (9)

for an unknown function θ, which may be obtained deriving the above

expressions and using −ẋ2 + ẋ2n+1 + ẋ2n+2 = 1. We have

θ̇2 =
x2 + ẋ2 + 1

x2 + 1
.

We differentiate xn+1 and xn+2 in (9), use the above expression for θ̇

and (8) to express the principal curvatures κi in terms of x as

κi =

√
x2 + ẋ2 + 1

x
.
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The expression for κn is obtained in a similar but longer way, differentiat-

ing ẋn+1 and ẋn+2, using (8), (9) and the expression for θ̇. In the following

Proposition we summarize this analysis; see also [12].

Proposition 2.1. The hyperbolic rotation hypersurface in Sn+1
1 parametrized

by (6) is (n− 1)-umbilical; moreover, it has principal curvatures given by

κi =

√
x2 + ẋ2 + 1

x
and κn =

ẍ+ x√
x2 + ẋ2 + 1

, (10)

where i = 1, . . . , n− 1 and δ = 1,−1, 0.

Using (10), we get that the mean curvature H of M is

nH = (n− 1)

√
x2 + ẋ2 + 1

x
+

ẍ+ x√
x2 + ẋ2 + 1

. (11)

If we suppose that H is constant, this equation has a first integral,

namely,

G(x, ẋ) = xn−1
(√

x2 + ẋ2 + 1−Hx
)
. (12)

We use G to obtain a classification of the spacelike hyperbolic rotation

hypersurfaces with constant mean curvature in Sn+1
1 .

Of particular importance here are the critical points of G of the form

(x, 0), which appear whenever ∂G/∂x and ∂G/∂ẋ vanish. These condi-

tions give the equation

x2 − nHx
√
x2 + 1 + (n− 1)(x2 + 1) = 0.

To solve it, we make the substitution x = sinh ρ and divide by cosh2 ρ to

get

tanh2 ρ− nH tanh ρ+ (n− 1) = 0.

Then

tanh ρ =
nH ±

√
n2H2 − 4(n− 1)

2
.

As | tanh ρ| < 1, it may be seen easily that we have the restriction |H| > 1

and that we must choose the minus sign in the expression above; that is,

tanh ρ =
nH −

√
n2H2 − 4(n− 1)

2
. (13)
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As a consequence, the function G exactly has one critical point (x, 0)

whenever |H| > 1. Each critical point corresponds to a spacelike hyper-

bolic rotation hypersurface in Sn+1
1 with constant principal curvatures.

Remark 2.2. Dajczer and Nomizu’s example given by (4) is a hyperbolic

rotation hypersurface. In (6), set x1(s) = r, Φ(t) = (cosh t/r, sinh t/r)

and

xn+1(s) =
√
1 + r2 cos

s√
1 + r2

and xn+2(s) =
√

1 + r2 sin
s√

1 + r2
.

In fact, this example may be viewed also as an spherical rotation hy-

persurface. We will not give the details here, since the parametrization of

such rotation hypersurfaces is quite similar to (6).

In [2], the authors jointly with A. Brasil Jr. analyzed the spherical

rotation hypersurfaces and showed the existence of two different cylinders

with constant mean curvature if 2
√
n− 1/n ≤ H < 1 and the existence

of one such cylinder if H ≥ 1. As pointed out after equation (13), for

each H > 1 there is also another cylinder given as a hyperbolic rotation

hypersurface.

Remark 2.3. It may be observed that there is a “missing” cylinder in the

case H = 1 and one may be tempted to look for it by analyzing the parabolic

rotation case. Let us show briefly what happens in this situation. It can

be proved that the principal curvatures of a parabolic rotation hypersurface

satisfy

κi =

√
x2 + ẋ2

x
and κn =

ẍ+ x√
x2 + ẋ2

. (14)

If we make an analysis similar to that of the hyperbolic rotation case,

obtaining a function G analogous to that of equation (12), we calculate

∂G

∂x
(x, 0) = (n+ 1)(1−H)xn−1;

this fact means that, for H = 1, every point (x, 0) is a critical point of G.

But then all principal curvatures in (14) are equal and the corresponding

hypersurface is totally umbilical.
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We continue with our analysis of hyperbolic rotation case, studying

the level curves of G near a critical point (x, 0), with x = sinh ρ and ρ

satisfying (13). An elementary analysis shows that this critical point is a

saddle point. A typical configuration is depicted in Figure 1.

Figure 1: Level curves of the function G defined by equation (12). The

level curves ending at the saddle point determine four subregions; the

shaded one is the region I referenced to in the text.

The level curves ending at the saddle point divide the region x > 0 in

four subregions, from which we will analyze the subregion situated to the

right of the saddle point, which we will call region I.

Lemma 2.4. The level curves contained in region I give rise to a family

of complete hyperbolic rotation hypersurfaces.

Proof: Let us rewrite the original mean curvature equation (11) as the

system

u̇ = v,

v̇ = nH
√
u2 + v2 + 1− (n− 1)

u2 + v2 + 1

u
− u,
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thus defining a vector field X = (X1, X2) in the (u, v)-plane (or, the (x, ẋ)-

plane). We have to prove that the trajectories of X passing through points

of the region I are defined for all s ∈ R. By a result in [6], we may prove

equivalently that there is a differentiable proper function h such that |Xh|
is uniformly bounded in the region I. We define

h(u, v) = log
(
u2 + v2 + 1

)
,

which is clearly a differentiable proper function. We will estimate

|Xh| =
∣∣∣∣X1

∂h

∂u
+X2

∂h

∂v

∣∣∣∣ .
After a few calculations, we have

X1
∂h

∂u
+X2

∂h

∂v
=

(
nH
√
u2 + v2 + 1− (n− 1)

u2 + v2 + 1

u

)
2v

u2 + v2 + 1

=
2nHv√

u2 + v2 + 1
− 2(n− 1)

v

u
.

The first term in the last expression is uniformly bounded by, say, 2n|H|.
For the second term, we observe that for each constant C the level curve

G(u, v) = C is a union of two curves v = v(u) given by

v2 =

(
C

un−1
+Hu

)2

− u2 − 1,

so that

lim
u→∞

(v
u

)2
= lim

u→∞

((
C

un
+H

)2

− 1− 1

u2

)
= H2 − 1;

thus, the slopes of all these level curves tend to ±
√
H2 − 1 when u goes

to infinity, which implies that the slopes v/u of the lines passing through

the origin and the points of region I are uniformly bounded. Thus, the

criterion given in [6] is satisfied and the trajectories of the vector field

X are complete, which in turn implies that the corresponding hyperbolic

rotation hypersurfaces are complete.
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The above analysis is completely similar in the spherical rotation case,

thus we may obtain another family of complete hypersurfaces with con-

stant mean curvature. We summarize our results as follows.

Theorem 2.5. For every real number H there is a 1-parameter family of

(n − 1)-umbilical spacelike hypersurfaces Mn ⊂ Sn+1
1 with constant mean

curvature equal to H. If H = 1 or H = 2
√
n− 1/n, this family contains

one cylinder; that is, a non-totally umbilical hypersurface with constant

principal curvatures. If H > 2
√
n− 1/n and H ̸= 1, this family contains

two different cylinders.

Moreover, for H > 2
√
n− 1/n there is a subfamily of such (n − 1)-

umbilical spacelike hypersurfaces which are complete.

To close this section, we state a useful characterization of (n − 1)-

umbilical hypersurfaces. The proof of this Theorem is entirely analogous

to that given in [5] for the Riemannian case and we shall omit it.

Theorem 2.6. Let Mn, n ≥ 3, be a connected (n− 1)-umbilical spacelike

hypersurface in Qn+1
1 (c). Assume that the principal curvatures κ1, . . . , κn

satisfy κ1 = · · · = κn−1 = λ ̸= 0 and κn = µ = µ(λ), where λ ̸= µ. Then

Mn is contained in a rotation hypersurface.

3 Closed partially conformal vector fields

The examples of the previous section show that the de Sitter space Sn+1
1

has plenty of (n−1)-umbilical spacelike hypersurfaces with constant mean

curvature. Moreover, the family of hyperbolic cylinders defined in (5), for

k = n− 1 and ρ > 0,

M = { (x1, . . . , xn+2) ∈ Sn+1
1 | − x21 + x22 + · · ·+ x2n = − sinh2 ρ },

determine a foliation of the open set of Sn+1
1 given by

{ (x1, . . . , xn+2) ∈ Sn+1
1 | − x21 + x22 + · · ·+ x2n < 0 }.

This fact raises the question given in the Introduction, namely,
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Under which conditions a given Lorentzian manifold can be foliated by

(n− 1)-umbilical spacelike hypersurfaces of constant mean curvature?

In our examples, the (n− 1)-umbilical spacelike hypersurfaces satisfied

a special condition given in equation (7). We add a similar condition in

the following definition of some vector fields which will prove to be useful

to answer our above question.

Definition 3.1. Let M̄n+1
1 be a Lorentzian manifold with semi-Riemannian

connection ∇̄. We say that a timelike vector field K ∈ X(M̄) is closed par-

tially conformal in M̄ if there is a unit vector field W ∈ X(M̄) everywhere

orthogonal to K and functions ϕ, ψ : M̄ → R such that

∇̄XK = ϕX for ⟨X,W ⟩ = 0 and ∇̄WK = ψW. (15)

In this context, W is called the vector field associated to K.

This notion is intimately related with that of closed conformal vector

fields analyzed in detail in [11].

As K is timelike, |K| =
√
−⟨K,K⟩ ≠ 0, so we may define the unit

vector field N = K/|K|. It is easy to see from Definition 3.1 that

∇̄XN = ϕ
|K|X if ⟨X,W ⟩ = ⟨X,K⟩ = 0,

∇̄WN = ψ
|K|W,

∇̄NN = 0,

(16)

so that N defines a unit speed geodesic flow. Note that ψ is related to the

normal curvature κ of the integral curves of W , since

κ = ⟨∇̄WW,N⟩ = −⟨W, ∇̄WN⟩ = − ψ

|K|
.

Our next result justifies the introduction of closed partially conformal

vector fields. Here and in the sequel K⊥ denotes the distribution defined

by taking the orthogonal complement of K at each point; the distribution

W⊥ is defined in an analogous way.



FOLIATIONS BY (n− 1)-UMBILICAL HYPERSURFACES 149

Theorem 3.2. Let M̄n+1
1 be a Lorentzian manifold possessing a closed

partially conformal timelike vector field K. Then the distribution K⊥ is

involutive and each leaf of the foliation determined by K⊥ is a (n − 1)-

umbilical hypersurface, thus having n− 1 equal principal curvatures.

Proof: First we will prove that K⊥ is an involutive distribution. Let

X,Y be vector fields in K⊥. Then

⟨[X,Y ],K⟩ = ⟨∇̄XY − ∇̄YX,K⟩ = −⟨Y, ∇̄XK⟩+ ⟨X, ∇̄YK⟩. (17)

Suppose first that ⟨X,W ⟩ = ⟨Y,W ⟩ = 0. The above expression becomes

−⟨Y, ϕX⟩+ ⟨X,ϕY ⟩ = 0,

which shows that [X,Y ] ∈ K⊥. The same conclusion is valid when X,Y

are multiples of W .

On the other hand, if X ∈W⊥ and Y = cW , the corresponding expres-

sion for ⟨[X,Y ],K⟩ is

−⟨Y, ϕX⟩+ ⟨X,ψY ⟩ = c(ψ − ϕ)⟨X,W ⟩,

which vanishes again, because X and W are orthogonal. Thus, we also

have in this case that [X,Y ] ∈ K⊥, and K⊥ is involutive.

Now, let M be a leaf of the foliation determined by K⊥. By (16), we

have

∇̄XN =
ϕ

|K|
X for ⟨X,W ⟩ = ⟨X,K⟩ = 0,

so that the (n− 1)-dimensional distribution K⊥∩W⊥ satisfies (3) and M

is (n− 1)-umbilical, as desired.

The following lemma establishes that in fact, the n− 1 equal principal

curvatures of a leaf are constant.

Lemma 3.3. The functions |K|2, ϕ and each of the (n − 1) equal prin-

cipal curvatures are constant along each connected leaf of the foliation

determined by K⊥.
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Proof: We fix an orthonormal frame E1, . . . , En−1,W,N such that the

vector fields E1, . . . , En−1 span K⊥ ∩W⊥.

First we calculate the coefficients of the gradient of |K|2 = −⟨K,K⟩
with respect to this frame:

⟨grad |K|2, Ei⟩ = −2⟨∇̄EiK,K⟩ = −2⟨ϕEi,K⟩ = 0, i = 1, . . . , n− 1;

⟨grad |K|2,W ⟩ = −2⟨ψW,K⟩ = 0;

⟨grad |K|2, N⟩ = −2⟨ϕN,K⟩ = 2ϕ|K|.

From these equations we obtain that |K|2 is constant along each connected

leaf and

grad|K|2 = 2ϕK.

The Hessian of |K|2 is given by (see [13], p. 86, for example):

Hess|K|2(U, V ) = ⟨∇̄U (grad|K|2), V ⟩

= ⟨∇̄U (2ϕK), V ⟩ = 2⟨(Uϕ)K + ϕ∇̄UK,V ⟩,

so that

Hess|K|2(U, V ) = 2{(Uϕ)⟨K,V ⟩+ ϕ⟨∇̄UK,V ⟩}. (18)

We use this formula and the partial conformality of K to calculate the

matrix of the Hessian with respect to the frame. The coefficients we are

interested in are the following:

1
2Hess|K|2(Ei, N) = (Eiϕ)⟨K,N⟩+ ϕ⟨∇̄EiK,N⟩

= (Eiϕ)⟨K,N⟩+ ϕ2⟨Ei, N⟩
= (Eiϕ)⟨K,N⟩;

1
2Hess|K|2(N,Ei) = (Nϕ)⟨K,Ei⟩+ ϕ⟨∇̄NK,Ei⟩

= (Nϕ)⟨K,Ei⟩+ ϕ2⟨K,Ei⟩ = 0,

for i = 1, . . . , n− 1. As the Hessian is symmetric, we must have Eiϕ = 0.

Similarly, Wϕ = 0, which shows that ϕ is constant along each connected

leaf of the foliation determined by K⊥.
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The conditions (16) over E1, . . . , En−1,W imply that they correspond

to the principal directions on M ; each principal curvature is given by

κi = −⟨∇̄EiN,Ei⟩ = − ϕ
|K| , i = 1, . . . , n− 1,

κn = −⟨∇̄WN,E0⟩ = − ψ
|K| .

(19)

As we have shown, ϕ and |K| are constant along M . Hence the principal

curvatures κ1, . . . , κn−1 are constant as well.

4 Spacelike (n− 1)-umbilical foliations in space

forms

To finish this paper we return to the study of (n−1)-umbilical spacelike

hypersurfaces, now from the point of view of foliations. We will give

examples in the Lorentzian space forms Qn+1
1 (c), c ≥ 0.

In the case of the Lorentz-Minkowski space Rn+1
1 , let K be the vector

field

K(x1, x2, . . . , xn+1) =
1√

x21 − x22
(x1, x2, 0, . . . , 0)

defined in the open set of Rn+1
1 given by x21 − x22 > 0. Note that K is a

timelike unit vector field. If e1, . . . , en+1 denote the canonical basis of the

tangent space to Rn+1
1 at a point of this open set, then

∇̄e3K = · · · = ∇̄en+1K = 0,

but also ∇̄KK = 0. It is straightforward to prove that

∇̄x2e1+x1e2K =
1√

x21 − x22
(x2e1 + x1e2).

These calculations show that K is a closed partially conformal timelike

vector field, with ϕ = 0 and ψ = 1/
√
x21 − x22. Its associated foliation in

the open set x21−x22 > 0 is given by the hypersurfaces H1(c)×Rn−1, c < 0,

defined as

H1(c)× Rn−1 =

{
(x, y) ∈ Rn+1

1 = R2
1 × Rn−1

∣∣∣∣x21 − x22 = −1

c

}
,
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which were already mentioned in [8]. Analogously, we may decompose

Rn+1
1 as Rn1 × R and define the vector field

K(x, y) =
1√
⟨x, x⟩

(x, 0),

which is a closed partially conformal timelike vector field defined in the

open set ⟨x, x⟩ > 0; the associated foliation of this open set is given by

the hypersurfaces

Hn−1(c)× R =

{
(x, y) ∈ Rn1 × R

∣∣∣∣ ⟨x, x⟩ = −1

c

}
.

In the case of the de Sitter space, we recall the definition of a hyperbolic

cylinder given in (5), for k = n− 1 and ρ > 0:

M = { (x1, . . . , xn+2) ∈ Sn+1
1 | − x21 + x22 + · · ·+ x2n = − sinh2 ρ }.

Varying ρ, we get a family of hyperbolic cylinders foliating the open set

{ (x1, . . . , xn+2) ∈ Sn+1
1 | − x21 + x22 + · · ·+ x2n < 0 }.

It was observed by Montiel in [9] that the vector field N given by

N(p) =
1

sinh ρ cosh ρ
(x1, . . . , xn, 0, 0) + (tanh ρ)p

is a unit normal vector field for M and he used it to prove that the

principal curvatures are coth ρ and tanh ρ with multiplicities (n− 1) and

1, respectively. In fact, if we take the canonical basis e1, . . . , en+2 in the

ambient space Rn+2
1 , it is easy to see that the tangent space TpM of M at

p is spanned by the vectors

e1 + e2, e1 + e3, . . . , e1 + en and en+1 − en+2

and we have

∇e1+eiN = (coth ρ)(e1 + ei), for i = 2, . . . , n;

and

∇en+1−en+2N = (tanh ρ)(en+1 − en+2),

which shows that N is a closed partially conformal timelike vector field

defined in the open subset of the de Sitter space here considered.
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