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Abstract

In this paper we describe all rotation H-hypersurfaces in Hn×R and

use them as barriers to prove existence and characterization of cer-

tain vertical H-graphs and to give symmetry and uniqueness results

for compact H-hypersurfaces whose boundary is one or two paral-

lel submanifolds in slices. We also describe examples of translation

H-hypersurfaces in Hn × R. In particular, for H < n−1
n , we obtain

a complete non-entire vertical graph taking infinite boundary value

data.

1 Introduction

Rotation and translation surfaces with constant mean curvature in H2×
R have been studied in details in [8, 7, 9] together with applications. We
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have studied rotation and translation minimal hypersurfaces with appli-

cations in [2].

In this paper, we consider constant non-zero mean curvature hypersur-

faces in Hn × R.

We consider rotation H-hypersurfaces in Section 2.1. For H > n−1
n , we

find the constant mean curvature sphere-like hypersurfaces obtained in

[4] and the Delaunay-like hypersurfaces obtained in [6]. When 0 < H ≤
n−1
n , we obtain complete simply-connected hypersurfaces SH which are

entire vertical graphs above Hn, as well as some complete embedded or

complete immersed cylinders which are bi-graphs (Theorems 2.1 and 2.2).

When H = n−1
n , the asymptotic behaviour of the height function of these

hypersurfaces is exponential, and it only depends on the dimension when

n ≥ 3. In Section 3, we give geometric applications using the simply-

connected rotation H-hypersurfaces SH (0 < H ≤ n−1
n ) mentioned above

as barriers. We give existence and characterization of vertical H-graphs

(0 < H ≤ n−1
n ) over appropriate bounded domains (Proposition 3.2)

as well as symmetry and uniqueness results for compact hypersurfaces

whose boundary is one or two parallel submanifolds in slices (Theorems

3.3 and 3.4). These results generalize the 2-dimensional results obtained

previously in [5].

We treat translation H-hypersurfaces in Section 2.3 (Theorem 2.4).

When n ≥ 3 and H = n−1
n , we in particular find a complete embedded

hypersurface generated by a compact, simple, strictly convex curve.

When 0 < H < n−1
n , we obtain a complete non-entire vertical graph

over the non-mean convex domain bounded by an equidistant hypersurface

Γ. This graph takes infinite boundary value data on Γ and it has infinite

asymptotic boundary value data.



EXAMPLES OF H-HYPERSURFACES IN Hn × R 21

2 Examples of H-hypersurfaces in Hn × R

We consider the ball model for the hyperbolic space Hn,

B := {(x1, . . . , xn) ∈ Rn|x21 + · · ·+ x2n < 1},

with the hyperbolic metric gB,

gB := 4
(
1− (x21 + · · ·+ x2n)

)−2(
dx21 + · · ·+ dx2n

)
,

and the product metric

ĝ = gB + dt2

on Hn × R.

2.1 Rotation H-hypersurfaces in Hn × R

The mean curvature equation for rotation hypersurfaces,

nH(ρ) sinhn−1(ρ) = ∂ρ

(
sinhn−1(ρ)λ̇(ρ)(1 + λ̇2(ρ))−1/2

)

can be established using the flux formula, see Appendix A. We consider

rotation hypersurfaces about {0} × R, where ρ denotes the hyperbolic

distance to the axis and the mean curvature is taken with respect to the

unit normal pointing upwards.

Minimal rotation hypersurfaces in Hn × R have been studied in [8] in

dimension 2 and in [2] in higher dimensions. In this Section we consider

the case in which H is a non-zero constant. We may assume that H is

positive.

Integrating the above differential equation, we obtain the equation for

the generating curves of rotation H-hypersurfaces in Hn × R,
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λ̇(ρ)
(
1 + λ̇2(ρ)

)−1/2
sinhn−1(ρ) = nH

∫ ρ

0
sinhn−1(t) dt+ d (2.1)

for H > 0 and for some constant d.

This equation has been studied in [5, 8] in dimension 2 (with a different

constant d).

Notations. For later purposes we introduce some notations.

� For m ≥ 0, we define the function Im(t) by

Im(t) :=

∫ t

0
sinhm(r) dr. (2.2)

� For H > 0 and d ∈ R, we define the functions,


MH,d(t) := sinhn−1(t)− nHIn−1(t)− d,

PH,d(t) := sinhn−1(t) + nHIn−1(t) + d,

QH,d(t) :=
[
nHIn−1(t) + d

][
MH,d(t)PH,d(t)

]−1/2
,

when the square root exists.

(2.3)

We see from (2.1) that λ̇(t) has the sign of nHIn−1(t) + d. It follows

that λ is given, up to an additive constant, by

λH,d(ρ) =

∫ ρ

ρ0

nHIn−1(t) + d√
sinh2n−2(t)−

(
nHIn−1(t) + d

)2 dt
or, with the above notations,

λH,d(ρ) =

∫ ρ

ρ0

nHIn−1(t) + d√
MH,d(t)PH,d(t)

dt =

∫ ρ

ρ0

QH,d(t) dt (2.4)
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where the integration interval [ρ0, ρ] is contained in the interval in which

the square-root exists. The existence and behaviour of the function λH,d

depend on the signs of the functions nHIn−1(t) + d, MH,d(t) and PH,d(t).

Up to vertical translations, the rotation hypersurfaces about the axis

{0} × R, with constant mean curvature H > 0 with respect to the unit

normal pointing upwards, can be classified according to the sign ofH−n−1
n

and to the sign of d. We state three theorems depending on the value of

H.

Theorem 2.1 (Rotation H-hypersurfaces with H = n−1
n ).

1. When d = 0, the hypersurface Sn−1
n

is a simply-connected entire

vertical graph above Hn × {0}, tangent to the slice at 0, generated

by a strictly convex curve. The height function λ(ρ) on Sn−1
n

grows

exponentially.

2. When d > 0, the hypersurface Cn−1
n

is a complete embedded cylinder,

symmetric with respect to the slice Hn × {0}. The parts C±
n−1
n

:=

Cn−1
n

∩Hn×R± are vertical graphs above the exterior of a ball B(0, a),

for some constant a > 0 depending on d. The height function λ(ρ)

on C±
n−1
n

grows exponentially. When n = 2, the solution exists when

0 < d < 1 only.

3. When d < 0, the hypersurface Dn−1
n

is complete and symmetric

with respect to the slice Hn × {0}. It has self-intersections along

a sphere in Hn × {0}. The parts D±
n−1
n

:= Dn−1
n

∩ Hn × R± are

vertical graphs above the exterior of a ball B(0, a), for some constant

a > 0 depending on d. The height function λ(ρ) on D±
n−1
n

grows

exponentially.

The asymptotic behaviour of the height function when ρ tends to infinity

is as follows.
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
For n = 2, λ(ρ) ∼ eρ/2√

1−d
.

For n = 3, λ(ρ) ∼ 1
2
√
2

∫ ρ et√
t
dt.

For n ≥ 4, λ(ρ) ∼ a(n)eb(n)t, for some positive constants a(n), b(n).

The generating curves are obtained by symmetries from the curves (=)

(standing for H = n−1
n ) which appear in Figures 1-3.

Remark. When n = 2 the asymptotic growth depends on the value of

the integration contant d.

Theorem 2.2 (Rotation H-hypersurfaces with 0 < H < n−1
n ).

1. When d = 0, the hypersurface SH is a simply-connected entire ver-

tical graph above Hn × {0}, tangent to the slice at 0, generated by a

strictly convex curve. The height function λ(ρ) on SH grows linearly.

2. When d > 0, the hypersurface CH is a complete embedded cylinder,

symmetric with respect to the slice Hn × {0}. The parts C±
H :=

CH ∩Hn×R± are vertical graphs above the exterior of a ball B(0, a),

for some constant a > 0 depending on H and d. The height function

λ(ρ) on C±
H grows linearly.

3. When d < 0, the hypersurface DH is complete and symmetric with

respect to the slice Hn×{0}. It has self-intersections along a sphere

in Hn×{0}. The parts D±
H := DH∩Hn×R± are vertical graphs above

the exterior of a ball B(0, a), for some constant a > 0 depending on

H and d. The height function λ(ρ) on D±
H grows linearly.

The asymptotic behaviour of the height function when ρ tends to infinity

is given by

λ(ρ) ∼
nH
n−1√

1− ( nH
n−1)

2
ρ.
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The generating curves are obtained by symmetries from the curves (<)

(standing for H < n−1
n ) which appear in Figures 1-3.

Theorem 2.3 (Rotation H-hypersurfaces with H > n−1
n ).

1. When d = 0, the hypersurface KH is compact and diffeomorphic

to an n-dimensional sphere. It is generated by a compact, simple,

strictly convex curve.

2. When d > 0, the hypersurface UH is complete, embedded and periodic

in the R-direction. It looks like an unduloid and is contained in a

domain of the form B(0, b) \ B(0, a) × R, for some constants 0 <

a < b, depending on H and d.

3. When d < 0, the hypersurface NH is complete and periodic in the

R-direction. It has self-intersections, looks like a nodoid and is con-

tained in a domain of the form B(0, b) \B(0, a)× R, for some con-

stants 0 < a < b depending on H and d.

The generating curves are obtained by symmetries from the curves (>)

(standing for H > n−1
n ) which appear in Figures 1-3.

Remarks

1. Constant mean curvature rotation hypersurfaces with H > n−1
n were

obtained in [4] and [6].

2. The hypersurfaces SH and the upper (lower) halves of the cylinders

CH in Theorems 2.1 and 2.2 are stable (as vertical graphs).
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2.2 Proofs of Theorem 2.1 - 2.3

The proofs follow from an analysis of the asymptotic behaviour of Im(t)

(Formula (2.2)) when t goes to infinity and from an analysis of the signs of

the functions nHIn−1(t) + d, MH,d(t) and PH,d(t) (Formulas (2.3)), using

the tables which appear below.

When d = 0, using (2.1) one can show that λ̈ > 0 and conclude that the

generating curve is strictly convex. When d ≤ 0, the formula for λ̈ also

shows that the curvature extends continuously at the vertical points.

Proof of Theorem 2.1

Assume H = n−1
n .

When d = 0, the functions MH,0 and PH,0 are non-negative and van-

ish at t = 0. Near 0 we have QH,0(t) ∼ Ht and hence λH,0(ρ) =∫ ρ
0 QH,0(t) dt ∼ H

2 ρ
2.

When d > 0, the function QH,d exists on an interval ]aH,d,∞[ for some

constant aH,d > 0 and the integral
∫ ρ
aH,d

QH,d(t) dt converges at aH,d.

When d < 0, the function QH,d exists on an interval ]αH,d,∞[ for some

constant αH,d > 0, changes sign from negative to positive, the integral∫ ρ
αH,d

QH,d(t) dt converges at αH,d and the curve has a vertical tangent

at this point. The generating curve can be extended by symmetry to a

complete curve with one self-intersection.

Using the recurrence relations for the functions Im(t) one can determine

their asymptotic behaviour at infinity and deduce the precise exponential

growth of the height function λ(ρ).

Proof of Theorem 2.2

Assume 0 < H < n−1
n .
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When d = 0, the functions MH,0 and PH,0 are non-negative and van-

ish at t = 0. Near 0 we have QH,0(t) ∼ Ht and hence λH,0(ρ) =∫ ρ
0 QH,0(t) dt ∼ H

2 ρ
2.

When d > 0, the function QH,d exists on an interval ]aH,d,∞[ for some

constant aH,d > 0 and the integral
∫ ρ
aH,d

QH,d(t) dt converges at aH,d.

When d < 0, the function QH,d changes sign from negative to positive,

exists on an interval ]αH,d,∞[ for some constant αH,d > 0, the integral∫ ρ
αH,d

QH,d(t) dt converges at αH,d and the generating curve has a vertical

tangent at this point. The generating curve can be extended by symmetry

to a complete curve with one self-intersection.

Using the recurrence relations for the functions Im(t) one can determine

their asymptotic behaviour at infinity and deduce the precise linear growth

of the height function λ(ρ).

Proof of Theorem 2.3

Assume H > n−1
n .

When d = 0, QH,0(t) exists on some interval ]0, aH,0[ for some positive

aH,0 and the integral λH,0(ρ) =
∫ ρ
0 QH,0(t) dt converges at 0 and at aH,0.

The generating curve has a horizontal tangent at 0 and a vertical tangent

at aH . It can be extended by symmetries to a closed embedded convex

curve.

When d > 0, the function QH,d(t) exists on an interval ]bH,d, cH,d[ for

some constants 0 < bH,d < cH,d and the integral converges at the limits of

this interval. The generating curve at these points is vertical. It can be

extended by symmetry to a complete embedded periodic curve (unduloid).

When d < 0, the function QH,d(t) exists on an interval ]βH,d, γH,d[ for

some constants 0 < βH,d < γH,d, changes sign from negative to positive
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and the integral converges at the limits of this interval. The generating

curve at these points is vertical. The generating curve can extended by

symmetries to a complete periodic curve with self-intersections (nodoid).

Remark. We note that the integrand QH,d(t) in (2.4) is an increasing

function of H for t and d fixed. This fact provides the relative positions

of the curves λH,d(ρ) when ρ and d are fixed. The curve corresponding

to H > n−1
n is above the curve corresponding to H = n−1

n which is above

the curve corresponding to H < n−1
n . See Figures 1 to 3.

The above sketches of proof can be completed using the details below.

� We have the following relations for the functions Im,



m = 0 I0(t) = t,

m = 1 I1(t) = cosh(t)− 1,

m = 2 2I2(t) = sinh(t) cosh(t)− t,

m = 3 3I3(t) = sinh2(t) cosh(t)− 2(cosh(t)− 1),

m ≥ 2 mIm(t) = sinhm−1(t) cosh(t)− (m− 1)Im−2(t).

(2.5)

For m ≥ 5, the asymptotic behavior of Im(t) near infinity is given

by,

{
mIm(t) = sinhm−3(t) cosh(t)

(
sinh2(t)− m−1

m−2

)
+O(e(m−4)t),

mIm(t) = sinhm−1(t) cosh(t)
(
1 +O(e−2t)

)
.

(2.6)

The same holds for m = 4 with remainder term O(t) in the first

relation.
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� The derivative of PH,d is positive for t positive. The behaviour of

the function PH,d(t) is summarized in the following table.

n ≥ 2 0 < H

t 0 ∞
∂tPH,d +

PH,d(t) d ↗ ∞

� The derivative ofMH,d is given by ∂tMH,d(t) = (n−1) sinhn−1(t)
(
coth(t)−

nH
n−1

)
. For H > n−1

n , we denote by CH the number such that

coth(CH) = nH
n−1 . The behaviour of the function MH,d(t) is sum-

marized in the following tables.

n = 2 0 < H ≤ 1
2 H > 1

2

t 0 ∞ 0 CH ∞
∂tMH,d + + 0 −

MH,d(t) −d ↗

 ∞, H < 1
2

1− d, H = 1
2

−d ↗ fH(d) ↘ −∞

n ≥ 3 0 < H ≤ n−1
n H > n−1

n

t 0 ∞ 0 CH ∞
∂tMH,d + + 0 −
MH,d(t) −d ↗ ∞ −d ↗ fH(d) ↘ −∞

where fH(d) := MH,d(CH) = sinhn−1(CH)− nHIn−1(CH)− d.

The signs and zeroes of the functions MH,d(t) and PH,d(t) when d ̸= 0

are summarized in the following charts, together with the existence domain

of the function QH,d.
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When d > 0, we have

n = 2
0 < H < 1

2 ,

H = 1
2 ,

0 < d

0 < d < 1,

n ≥ 3
0 < H ≤ n−1

n

0 < d

t 0 aH,d ∞
MH,d − 0 +

PH,d + + +

QH,d ̸ ∃ +∞ ∃

n ≥ 2
H > n−1

n

0 < d < DH

t 0 bH,d CH cH,d ∞
MH,d − 0 + 0 −
PH,d + + +

QH,d ̸ ∃ +∞ ∃ +∞ ̸ ∃

where DH := sinhn−1(CH)− nHIn−1(CH).

Figure 1: Case d = 0 Figure 2: Case d > 0 Figure 3: Case d < 0
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When d < 0, we have the following tables.

n ≥ 2
0 < H ≤ n−1

n

d < 0

t 0 αH,d ∞
MH,d + +

PH,d − 0 +

QH,d ̸ ∃ −∞ ∃

Note that the function QH,d changes sign from negative to positive when

t goes from αH,d to infinity.

n ≥ 2
H > n−1

n

d < 0

t 0 γH,d βH,d ∞
MH,d + + + 0 −
PH,d − 0 + + +

QH,d ̸ ∃ −∞ ∃ +∞ ̸ ∃

Note that the function QH,d changes sign from negative to positive when

t goes from γH,d to βH,d.

2.3 Translation invariant H-hypersurfaces in Hn × R

2.3.1 Translation hypersurfaces

� Definitions and Notations. We consider γ a geodesic through

0 in Hn and the totally geodesic vertical plane V = γ × R =

{(γ(ρ), t)|(ρ, t) ∈ R × R} where ρ is the signed hyperbolic distance

to 0 on γ.
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Take P a totally geodesic hyperplane in Hn, orthogonal to γ at 0. We

consider the hyperbolic translations with respect to the geodesics δ

through 0 in P. We shall refer to these translations as translations

with respect to P. These isometries of Hn extend “slice-wise” to

isometries of Hn × R.

In the vertical plane V, we consider the curve c(ρ) :=
(
tanh(ρ/2), µ(ρ)

)
.

In Hn×{µ(ρ)}, we translate the point c(ρ) by the translations with

respect to P × {µ(ρ)} and we get the equidistant hypersurface Pρ

passing through c(ρ), at distance ρ from P × {µ(ρ)}. The curve c

then generates a translation hypersurface M = ∪ρPρ in Hn × R.

� Principal curvatures. The principal directions of curvature of

M are the tangent to the curve c in V and the directions tangent to

Pρ. The corresponding principal curvatures with respect to the unit

normal pointing upwards are given by

{
kV = µ̈(ρ)

(
1 + µ̇2(ρ)

)−3/2
,

kP = µ̇(ρ)
(
1 + µ̇2(ρ)

)−1/2
tanh(ρ).

The first equality comes from the fact that V is totally geodesic and

flat. The second equality follows from the fact that Pρ is totally

umbilic and at distance ρ from P× {µ(ρ)} in Hn × {µ(ρ)}.

� Mean curvature. The mean curvature of the translation hyper-

surface M associated with µ is given by

nH(ρ) coshn−1(ρ) = ∂ρ

(
coshn−1(ρ)µ̇(ρ)

(
1 + µ̇2(ρ)

)−1/2
)
. (2.7)
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2.3.2 Constant mean curvature translation hypersurfaces

We may assume that H ≥ 0. The generating curves of translation

hypersurfaces with constant mean curvatureH are given by the differential

equation

µ̇(ρ)
(
1 + µ̇2(ρ)

)−1/2
coshn−1(ρ) = nH

∫ ρ

0
coshn−1(t) dt+ d (2.8)

for some integration constant d.

Minimal translation hypersurfaces have been studied in [7, 9] in dimen-

sion 2 and in [2] in higher dimensions. Constant mean curvature (H ̸= 0)

translation hypersurfaces have been treated in [7] in dimension 2. The

purpose of the present section is to investigate the higher dimensional

translation H-hypersurfaces.

Notations. For later purposes, we introduce some notations.

� For m ≥ 0, we define the functions

Jm(r) :=

∫ r

0
coshm(t) dt. (2.9)

� For H > 0 and d ∈ R, we introduce the functions,
RH,d(t) = coshn−1(t)− nHJn−1(t)− d,

SH,d(t) = coshn−1(t) + nHJn−1(t) + d,

TH,d(t) =
[
nHJn−1(t) + d

][
RH,d(t)SH,d(t)

]−1/2
.

(2.10)

We note from (2.8) that µ̇(t) has the sign of nHJn−1(t) + d. It follows

that µ is given (up to an additive contant) by
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µH,d(ρ) =

∫ ρ

ρ0

[
nHJn−1(t) + d

][
cosh2n−2(t)−

(
nHJn−1(t) + d

)2]−1/2
dt

or, using the above notations,

µH,d(ρ) =

∫ ρ

ρ0

[
nHJn−1(t) + d

][
RH,d(t) SH,d(t)

]−1/2
dt =

∫ ρ

ρ0

TH,d(t) dt ,

(2.11)

where the integration interval [ρ0, ρ] is contained in the interval in which

the square root exists. The existence and behaviour of the function µH,d

depend on the signs of the functions nHJn−1(t) + d, RH,d(t) and SH,d(t).

For H = n−1
n , we give a complete description of the corresponding

translation H-hypersurfaces. For 0 < H < n−1
n , we prove the existence of

a complete non-entire H-graph with infinite boundary data and infinite

asymptotic behaviour. The other cases can be treated similarly using the

tables below.

Theorem 2.4 (Translation H-hypersurfaces, with n ≥ 3 and H = n−1
n ).

1. When d = 0, T0 is a complete embedded smooth hypersurface gener-

ated by a compact, simple, strictly convex curve. The hypersurface

is symmetric with respect to a horizontal hyperplane and the parts

above and below this hyperplane are vertical graphs. The hypersur-

face also admits a vertical symmetry. The asymptotic boundary of

T0 is topologically a cylinder.

2. When 0 < d < 1, the hypersurface Td is similar to T0 except that it

is not smooth.

3. When d ≤ −1, Td is a smooth complete immersed hypersurface with

self-intersections and horizontal symmetries. The asymptotic bound-

ary of Td is topologically a cylinder.
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4. When −1 < d < 0, the hypersurface Td looks like T−1 except that it

is not smooth.

Remark. When d ≥ 1, the differential equation (2.8) does not have

solutions.

Theorem 2.5 (Complete H-graph with infinite boundary data).

There exists a complete translation hypersurface TH , with 0 < H < n−1
n ,

such that

1. TH is a complete monotone vertical H-graph over the non mean con-

vex side of an equidistant hypersurface Γ ⊂ Hn with mean curvature
nH
n−1 ,

2. TH takes infinite boundary value data on Γ and infinite asymptotic

boundary data.

Figure 4: n ≥ 3, H =
n−1
n , d = 0

Figure 5: n ≥ 3, H =
n−1
n , d < −1

Figure 6: n ≥ 3, H =
n−1
n , d = −1

Remark. The situation when n = 2 is similar although the generating

curves are defined on infinite intervals (see Figures 10 to 14). The corre-

sponding surfaces have height functions tending to infinity when ρ tends

to infinity. In particular, the surface T0 is a complete smooth entire graph

above H2.
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Figure 7: n ≥ 3, H =
n−1
n , 0 < d < 1

Figure 8: n ≥ 3, H =
n−1
n ,−1 < d < 0

Figure 9: n ≥ 2, H <
n−1
n

Figure 10: n =

2, H = 1
2 , d = 0

Figure 11: n =

2, H = 1
2 , d < −1

Figure 12: n =

2, H = 1
2 , d = −1

2.4 Proof of Theorem 2.4

The proof of Theorem 2.4 follows from an analysis of the asymptotic

behaviour of the functions Jm(t) (Formula (2.9)) when t goes to infinity

and from an analysis of the signs of the functions RH,d and SH,d (Formulas

(2.10)) depending on the signs of H − n−1
n and d.

� We have the relations
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Figure 13: n =

2, H = 1
2 , 0 < d < 1

Figure 14: n =

2, H = 1
2 ,−1 < d <

0



J0(t) = t,

J1(t) = sinh(t),

2J2(t) = sinh(t) cosh(t) + t,

3J3(t) = sinh(t) cosh2(t) + 2J1(t),

mJm(t) = sinh(t) coshm−1(t) + (m− 1)Jm−2(t), for m ≥ 3.

(2.12)

These relations give us the asymptotic behaviour of the functions

Jm(t) when t tends to infinity. In particular,

mJm(t) = sinh(t) coshm−1(t)+
m− 1

m− 2
sinh(t) coshm−3(t)+O(e(m−4)t), for m ≥ 5

with the remainder term replaced by O(t) when m = 4.

� The function SH,d(t)

For all H > 0, the function SH,d increases from 1+d to +∞. Its behaviour

is summarized in the following table.
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Case 0 < H d ≥ −1

t 0 +∞
SH,d(t) 1 + d ≥ 0 ↗ +∞

Case 0 < H d < −1

t 0 αH,d +∞
SH,d(t) 1 + d < 0 ↗ 0 ↗ +∞

(2.13)

� The function RH,d(t)

The derivative ofRH,d(t) is given by ∂tRH,d(t) = (n−1) coshn−1(t)[tanh(t)−
nH
n−1 ]. For 0 < H < n−1

n , let tH be the value such that tanh(tH) = nH
n−1 .

When H ̸= n−1
n ,

RH,d(t) ∼
1

2
(1− nH

n− 1
) coshn−2(t)et near t = +∞. (2.14)

When H = n−1
n and when t tends to +∞, RH,d(t) tends to −∞ for n ≥ 3

and to −d for n = 2.

The behaviour of the function RH,d(t) is summarized in the following

table.
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Case 0 < H < n−1
n

t 0 tH +∞
RH,d(t) 1− d ↘ RH,d(tH) ↗ +∞

Case H = n−1
n

t 0 +∞

RH,d(t) 1− d ↘

{
−∞, n ≥ 3

−d, n = 2

Case H > n−1
n

t 0 +∞
RH,d(t) 1− d ↘ −∞

(2.15)

Proof of Theorem 2.4, continued

We now investigate the behaviour of the solution µ to Equation (2.8)

when n ≥ 3 and H = n−1
n (for n = 2, see [7]).

According to Table (2.13), the function SH,d increases from 1 + d to +∞
and we have to consider two cases, (i) d ≥ −1, in which case SH,d is always

non-negative and (ii) d < −1, in which case SH,d has one zero αH,d such

that

coshn−1(αH,d) + nHJn−1(αH,d) + d = 0.

According to Table (2.15), the function RH,d decreases from 1 − d to{
−∞, n ≥ 3

−d, n = 2
, depending on the value of n. It follows that we have two cases,

(i) d ≥ 1, in which case the function RH,d is always non-positive and (ii) d < 1,

in which case it has one zero cH,d for n ≥ 3. When it exists, the zero cH,d satisfies

coshn−1(cH,d)− nHJn−1(cH,d)− d = 0.

Looking at the equations defining αH,d and cH,d we see that αH,d < cH,d when

they both exist.
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The behaviour of the function µ is described in the following tables, see also

Figures 4 to 8.

Case 1 H = n−1
n d < −1 n ≥ 3

t 0 αH,d cH,d +∞
RH,d + + + 0 −
SH,d − 0 + + +

TH,d ̸ ∃ −∞ ∃ +∞ ̸ ∃

(2.16)

The function µ is given by

µ(ρ) =

∫ ρ

ρ0

TH,d(t) dt

for ρ0, ρ ∈ [αH,d, cH,d] and the integral exists at both limits. Note that the

integrand is negative near the lower limit while it is positive near the upper

limit.

When d = 0, using (2.8) one can show that µ̈ > 0 and conclude that the gen-

erating curve is strictly convex. The formula for µ̈ also shows that the curvature

extends continuously at the vertical points.

The generating curve can be extended by symmetry and periodicity to give

rise to a complete immersed hypersurface with self-intersections.

Case 2 H = n−1
n −1 ≤ d < 1 n ≥ 3

t 0 cH,d +∞
RH,d + 0 −
SH,d + + +

TH,d ∃ +∞ ̸ ∃

(2.17)

The function µ is given by

µ(ρ) =

∫ ρ

0

TH,d(t) dt
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for ρ0, ρ ∈ [0, cH,d] and the integral exists at both ends. Note that the integrand

has the sign of d near 0, with µ̇(0) = d/
√
1− d2 ; it is positive near the upper

bound with µ̇(cH,d) = +∞.

When d = −1, the original curve has a vertical tangent at 0. It can be extended

by symmetry and periodicity to give rise to a complete immersed hypersurface

with self-intersections.

When d = 0, the curve has a horizontal tangent and is strictly convex (use

(2.8)). It can be extended by symmetry as a topological circle and gives rise to

a complete embedded surface.

When d ≥ 1, Equation (2.8) has no solution.

2.5 Proof of Theorem 2.5

Given n and H, such that 0 < H < n−1
n , consider the function RH,d(t) and

choose dH such that RH,dH
(tH) = 0, where tH is defined by tanh(tH) = nH

n−1 ,

i.e.dH := coshn−1(tH)− nHJn−1(tH).

It follows that RH,dH
(t) > 0 for t > tH and hence the quantity nHJn−1(t)+dH

does not change sign for t > tH and the same is true for TH,dH
(t).

Taking (2.10) into account, we choose ρ0 > tH and define the generating curve

by Formula (2.11).

We conclude that µ(ρ) is well-defined and strictly increasing for ρ > tH . More-

over, µ(ρ) goes to −∞, if ρ → t+H . Notice that the mean curvature of the equidis-

tant hypersurface at distance tH to P is tanh(tH) = nH
n−1 , by the choice of tH .

Now recall that if 0 < H < n−1
n , then RH,d(t) ∼ 1

2 (1 −
nH
n−1 ) cosh

n−2(t)et, as

t → ∞. From this it follows that TH,d(t) = O(1), as t → ∞. Thus µ(ρ) → +∞,

if ρ → ∞.
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3 Applications, embedded minimal hypersurfaces

with boundary contained in a slice

In this section we give some results in which we use the H-hypersurfaces con-

structed in Section 2 as barriers.

Recall from Section 2 that for 0 < H ≤ n−1
n and for d = 0, there exist

simply-connected rotation H-hypersurfaces SH which are entire vertical graphs

going to infinity at infinity. The unit normal of SH points upwards. We call

ŠH the symmetric of SH with respect to the slice Hn × {0}. Its unit normal

points downwards. We call C(SH) the mean convex side of SH (i.e.the connected

component of the complement of SH into which the unit normal points). We

consider the set R of hypersurfaces obtained from SH and ŠH by vertical or

horizontal translations in Hn ×R. We denote by C(S) the mean convex side of a

hypersurface S ∈ R.

The following Proposition generalizes to higher dimensions the convex hull

lemma given in [5], Lemma 2.1.

Proposition 3.1 (Convex hull lemma). Given K a compact subset in Hn×R,
let FH

K denote the subset of domains B in Hn×R which contain K and such that

B = C(S) for some S ∈ R. Let M be a compact connected immersed hypersurface

in Hn × R with mean curvature H.

1. If H is a constant in ]0, n−1
n ], then M ⊂ FH

∂M .

2. If 0 < H(x) ≤ n−1
n for all x ∈ M , then M ⊂ F (n−1)/n

∂M .

Proof. Because M is compact, taking into account the asymptotic behaviour

of SH (see Theorems 2.1-2.2), there exists some vertical translation τ such that

M ⊂ C(τ(SH)) so that the set of hypersurfaces in R such that M ⊂ C(S) is non
empty. Take any S ∈ R such that M ⊂ C(S) and translate S horizontally along

some geodesic until it touches M at some point p. We claim that p cannot be an

interior point. Indeed, assume that p is an interior point and let p0 denote the

projection of p onto Hn. Both hypersurfaces S and M would be vertical graphs

near p0, corresponding respectively to functions u, v such that u(p0) = v(p0) and

u ≤ v in a neighborhood of p0. By the maximum principle, this would imply

that M = S a contradiction. The Proposition follows.
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In the applications below, we consider a hypersurface Γ in Hn with the follow-

ing properties.
Γ is smooth, compact, connected, embedded,

Γ = ∂Ω, Ω a bounded domain in Hn,

Γ has all its principal curvatures > 1,

(3.1)

where the principal curvatures are taken with respect to the unit normal to ∂Ω

pointing inwards.

Given a hypersurface Γ satisfying Properties (3.1), there exists some radius R

such that for any point p, the ball Bp,R ⊂ Hn with radius R is tangent to p at Γ

and Γ ⊂ Bp,R. We denote by

Sp,+ and Sp,− (3.2)

the two hypersurfaces in R passing through the sphere ∂Bp,R and symmetric

with respect to the slice Hn × {0}.

We first prove an existence result for a Dirichlet problem.

Proposition 3.2. Let Ω ⊂ Hn×{0} be a bounded domain with smooth boundary

Γ satisfying (3.1). Then, for any H, 0 < H ≤ n−1
n , there exists a vertical graph

MΓ over Ω in Hn×R, with constant mean curvature H with respect to the upward

pointing normal. This means that there exists a function u : Ω → R, smooth up to

the boundary, such that u|Γ = 0, and whose graph {(x, u(x))|x ∈ Ω} has constant

mean curvature H with respect to the unit normal pointing upwards.

Remark. The graph MΓ having positive mean curvature with respect to the

upward pointing normal, must lie below the slice Hn × {0}. The symmetric M̌Γ

with respect to the slice lies above the slice and has positive mean curvature with

respect to the normal pointing downwards.

Proof of Proposition 3.2
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� We first consider the case H = n−1
n .

By our assumption on Γ, using the hypersurfaces (3.2) and the Convex

hull lemma, Proposition 3.1, any solution to our Dirichlet problem must

be contained in C(Sp,−) ∩ C(Sp,+). This provides a priori height estimates

and boundary gradient estimates on the solution.

We could use [10] and classical elliptic theory [3], to get existence for our

Dirichlet problem when H = n−1
n . We shall instead apply [10] directly.

Indeed, in our case, the mean curvature HΓ of Γ satisfies HΓ > 1 = H n
n−1 ,

and the Ricci curvature of Hn satisfies Ric = −(n− 1) ≥ − n2

n−1H
2. Theo-

rem 1.4 in [10] states that under theses assumptions there exists a vertical

graph over Ω with boundary Γ and constant mean curvature H = n−1
n .

� We now consider the case 0 < H ≤ n−1
n .

We use the graphs constructed previously as barriers to obtain a priori height

estimates and apply the interior and global gradient estimates of [10] to conclude.

We consider the Dirichlet problem (Pt) for 0 ≤ t ≤ 1, div
(∇u

W

)
= t (n− 1) in Ω

u = 0 on Γ

where u ∈ C2(Ω) is the height function, ∇u its gradient and W = (1+ |∇u|2)1/2,
and where the gradient and the divergence are taken with respect to the metric

on Hn. This is the equation for vertical H-graphs in Hn × R. It is elliptic of

divergence type.

By the first step, we have obtained the solution u1 for the Dirichlet problem

(P1). The solution for (P0) is the trivial solution u0 = 0. By the maximum

principle, using the fact that vertical translations are positive isometries for the

product metric, and the existence of the solutions u1 and u0, we have that any

C1(Ω) solution ut of the Dirichlet problem (Pt) stays above u1 and below u0. This

yields a priori height and boundary gradient estimates, independently of t and

ut. Global gradient estimates follow Theorem 1.1 and Theorem 3.1 in [10]. We
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have therefore C1(Ω) a priori estimates independently of t and ut. The existence

of the solution ut for 0 < t < 1 now follows from classical elliptic theory, see [3]

or Theorem A.7 in [1].

This completes the proof of Proposition 3.2.

We now generalize to higher dimensions results obtained in [5].

Theorem 3.3. Let M be an embedded compact connected H-hypersurface in

Hn × R, with
0 < H ≤ n−1

n . Assume that the boundary Γ is an (n−1)-submanifold in Hn×{0}
satisfying (3.1).

1. The hypersurface M is either the graph MΓ given by Proposition 3.2 or its

symmetric M̌Γ.

2. Assume furthermore that Γ is symmetric with respect to some hyperbolic

hyperplane P in Hn×{0} and that each connected component of Γ\P is a

graph above P . Then M is symmetric with respect to the vertical hyperplane

P ×R and each connected component of M \ P ×R is a horizontal graph.

In particular, if Γ is an (n − 1)-sphere, the hypersurface M is part of the

rotation surface given by Theorem 2.1.

Proof of Theorem 3.3.

Let Ω be the bounded domain such that Γ = ∂Ω and let C = Ω×R be the vertical

cylinder above Ω. We claim that M ⊂ C and that M ∩ C = Γ. Indeed, at each

p ∈ Γ, we have the hypersurfaces Sp,+ and Sp,− given by (3.2). It follows from

the Convex hull lemma, Proposition 3.1, that M is in the convex hull of such

hypersurfaces and hence that M ⊂ C and M ∩ C = Γ.

By Proposition 3.2, we have two vertical graphs above Ω, M+ ⊂ Hn × R+ with

constant mean curvature H with respect to the normal pointing downwards and

M− ⊂ Hn × R− with constant mean curvature H with respect to the normal

pointing upwards.

We claim that M is a vertical graph contained either in Hn ×R+ or in Hn ×R−.

If not, making reflexions with respect to slices Hn × {t} starting from t+ the
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highest height on M we would obtain a contradiction by the maximum principle.

If M were not contained in one of the half-spaces, we would have highest and

lowest interior points at which the normal would point downwards, resp.upwards

by the maximum principle.

We claim that M = M+ or M = M−. Assume that M ⊂ Hn × R+ (the proof

is similar if M is contained in the lower half-space). Translating M+ vertically

upwards very far and then coming down, we see that τ(M+) cannot touch M

before the boundaries coincide (maximum principle). It follows that M must be

below M+. Doing the same thing with M , we see that M must be above M+. It

follows finally that M = M+.

Assume now that Γ is symmetric with respect to a hyperbolic hyperplane P and

assume that each connected component of Γ \ P is a horizontal graph. We can

then use Alexandrov Reflection Principle in vertical hyperplanes Pt×R in ambient

space, obtained by applying horizontal translations along geodesics orthogonal

to P , to the vertical hyperplane P × R of symmetry of Γ, and conclude that M

is symmetric with respect to P × R. Moreover, Alexandrov Reflection Principle

ensures that each connected component of M \ P × R is a horizontal graph.

When Γ is an (n− 1)-sphere, we can apply the preceding result to prove that

M is rotationally symmetric.

Recall from [2] that the height of the family of minimal catenoids in Hn × R
is π

n−1 .

Theorem 3.4. Let Γ satisfy (3.1). Consider two copies of Γ in different slices

Γ+ = Γ×{a} and Γ− = Γ×{−a} for some a > 0. Let M be a compact connected

embedded H-hypersurface such that ∂M = Γ+ ∪Γ−, with 0 < H ≤ n−1
n . Assume

that 2a ≥ π
n−1 .

1. Assume that Γ is symmetric with respect to a hyperbolic hyperplane P and

that each connected component of Γ \ P is a graph above P . Then M is

symmetric with respect to the vertical hyperplane P×R and each connected

component of M \ P × R is a horizontal graph.

2. Assume that Γ is an (n − 1)-sphere. Then M is part of the complete em-

bedded rotation hypersurface given by Theorem 2.1 and 2.2 and containing

Γ. It follows that M is symmetric with respect to the slice Hn × {0} and

the parts of M above and below the slice of symmetry are vertical graphs.
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Proof of Theorem 3.4.

Let Ω+ = Ω×{a} and Ω− = Ω×{−a}. By the Convex hull Lemma, Proposition

3.1, using the hypersurfaces given by (3.2) we have that M ∩ ext(Ω+) = Γ+ and

M ∩ ext(Ω−) = Γ−.

We claim thatM∩(Ω×R) = Γ+∩Γ−. LetMΓ,a be the graph above Ω+ contained

in Hn × [a,∞[ and MΓ,−a be the graph below Ω− contained in Hn×] − ∞, a],

given by Theorem 3.3.

Consider M̃ = MΓ,a ∩ M ∩ MΓ,−a oriented by the mean curvature vector of

M by continuity. Take the family of (minimal) catenoids symmetric with respect

to Hn × {0} with rotation axis some {•} × R. Coming from infinity with such

catenoids, using the assumption that 2a ≥ π
n−1 and the fact that the catenoids

have height < π
n−1 , we see that one catenoid will eventually touch M̃ at some

interior point in M . This implies that the normal to M at this point is the same

as the normal to the catenoid at the same point (maximum principle) and hence

that the normal to M points inside M̃ .

Assume that M ∩ (Ω × {a}) ̸= ∅ (resp.that M ∩ (Ω × {−a}) ̸= ∅). Then at

the highest point of M the normal would be pointing upwards (resp.downwards)

and we would get a contradiction with the maximum principle by considering the

horizontal slice (a minimal hypersurface) at this point.

Finally, M∩(Ω×R) = Γ+∩Γ− and the normal toM points insideM∪Ω+∪Ω−.

To conclude, we use Alexandrov Reflection Principle in vertical hyperplanes Pt×R
in ambient space, obtained by applying horizontal translations along the horizon-

tal geodesic orthogonal to P, to the hyperplane P × R of symmetry of Γ. We

conclude that M is symmetric about P ×R and that each connected component

of M \P ×R is a horizontal graph. This complete the proof of the first statement

in the theorem.

If Γ is spherical then M is a rotation hypersurface. As the mean curvature

vector points into the region of ambient space that contains the axes, by the

geometric classification of the rotation H-hypersurfaces with constant mean cur-

vature H ≤ (n − 1)/n given by Theorems 2.1 and 2.2, it follows that M is part

of a complete embedded rotation hypersurface M . It follows that M has a slice
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of symmetry at Hn × {0} and each connected component of M above and below

t = 0 is a complete vertical graph over the exterior of a round ball in t = 0.

A Vertical flux formula in Hn × R

Let f : M ↬ M̂ := Hn × R be an isometric immersion. Let h denote the

function h : M̂ → R, such that h(x, t) = t and let hM = h|M be the restriction

of the function h to the hypersurface M , i.e.the height function of M . We let ĝ

be the (product) metric on M̂ and ∆M be the (non-positive) Laplacian on M ,

for the induced metric g := f∗ĝ.

Proposition A.1. With the above notations we have

∆MhM = nĝ(
−→
H, ∂t)

where
−→
H is the (normalized) mean curvature vector of the immersion and ∂t the

vertical vector-field along R.

Remark. When f admits a unit normal field NM the above formula boils down

to ∆MhM = nHvM where H is the (normalized) mean curvature in the direction

NM and vM the vertical component of NM , vM := ĝ(NM , ∂t).

Proof. Take a local orthonormal frame {Ei}ni=1 for M near a point m ∈ M and

extend it locally in a neighborhood of m in M̂ . Then

∆MhM =

n∑
i=1

{(
Ei · (Ei · hM )

)
− (DEi

Ei) · hM

}
=

n∑
i=1

{
Ei ·

(
dhM (Ei)

)
− dhM (DEi

Ei)
}

=

n∑
i=1

{
Ei ·

(
dh(Ei)

)
− dh(DEi

Ei)
}

=

n∑
i=1

{
(D̂Ei

dh)(Ei) + dh(D̂Ei
Ei)− dh(DEi

Ei)
}
.
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In the product space M̂ = Hn × R, we have D̂Edh = 0 for all E ∈ X (M̂). It

follows that

∆MhM =

n∑
i=1

dh(D̂Ei
Ei −DEi

Ei) =

n∑
i=1

dh(A(Ei, Ei))

where A is the second fundamental form of the immersion. Finally,

∆MhM = dh(Tr(A)) = ndh(
−→
H )

which is the formula in the Theorem.

Corollary A.2. Let Ω be a compact domain on M with unit inner normal ν∂Ω

to ∂Ω in Ω. Then∫
Ω

∆MhM dµM = −
∫
∂Ω

dhM (ν∂Ω) dσ∂Ω = n

∫
Ω

ĝ(
−→
H, ∂t) dµM .

Proof. Divergence Theorem.

Applications to rotation H-hypersurfaces

Let us consider a rotation hypersurface M given by the parametrization

X(ρ, ξ) =
(
tanh(ρ/2)ξ, λ(ρ)

)
with ρ > 0 and ξ ∈ Sn−1 and choose the unit normal pointing upwards.

Consider the domain

Ω(ρ0, ρ) := X([ρ0, ρ]× Sn−1) ⊂ M.

We have

Xρ(ρ, ξ)
( ξ

2 cosh2(ρ/2)
, λ̇(ρ)

)
,

vM (ρ, ξ) = (1 + λ̇2(ρ))−1/2,

dµM = (1 + λ̇2(ρ))1/2 sinhn−1(ρ) dρ dµS ,
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ν∂Ω(ρ0,ρ)(X(ρ,ξ)) = (1 + λ̇2(ρ))−1/2Xρ(ρ, ξ),

dσX({ρ}×Sn−1) = sinhn−1(ρ) dµS .

The above Corollary applied to Ω(ρ0, ρ) gives

−Vol(Sn−1) sinhn−1(t)λ̇(t)(1+λ̇2(t))−1/2
∣∣∣ρ
ρ0

= −nVol(Sn−1)

∫ ρ

ρ0

H(t) sinhn−1(t) dt.

Looking for rotation surfaces with constant mean curvature H we find

sinhn−1(ρ)λ̇(ρ)(1 + λ̇2(ρ))−1/2 = nH

∫ ρ

ρ0

sinhn−1(t) dt+ F (ρ0)

where the constant F (ρ0) := sinhn−1(ρ0)λ̇(ρ0)(1 + λ̇2(ρ0))
−1/2 is the flux

through X({ρ0} × Sn−1).
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