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Abstract

LetM3 be a complete minimal hypersurface immersed in the unit

sphere S4. In this paper, starting from hypotheses on the Gauss-

Kronecker curvature we obtain estimates for the scalar curvature of

M3.

1 Introduction

Denote by SN the N-dimensional unit sphere in RN+1. Let Mn be an

n-dimensional submanifold minimally immersed in Sn+p. Denote by R the

scalar curvature of Mn and by S the square of the length of the second

fundamental form of Mn. In his celebrated paper, J. Simons [6] obtained

the following inequality for the Laplacian of S

1

2
∆S ≥ S

(
n−

(
2− 1

p

)
S

)
. (1.1)
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As an application of (1.1), Simons proved that if Mn is closed then either

Mn is totally geodesic, or S =
n

2− 1/p
, or supS >

n

2− 1/p
. In this paper

we prove an inequality similar to that of Simons given above for complete

minimal hypersurfaces in S4.
Theorem 1.1. Let M3 be a complete minimal hypersurface in S4. Let

K be the Gauss-Kronecker curvature of M3. If S is bounded and |K| is
bounded away from zero, then inf S ≤ 3 ≤ supS.

The inequality supS ≥ 3 is a particular case of one stablished by Cheng

in [1] that extended Simons’ result, for complete submanifolds. We point

out that, although for p = 1 the sharp estimate S ≥ n was due to Simons,

the characterization of the hypersurfaces satisfying S = n was obtained

independently by Chern, Do Carmo and Kobayashi [2] and Lawson [3].

Up to now, it is not known if there exist complete minimal hypersur-

faces satisfying supS = n and that are not congruent to the Clifford tori

Sk
(√

k
n

)
× Sn−k

(√
n−k
n

)
.

By the fact that R = 6 − S, in case n = 3, see (2.4), we immediately

obtain the following consequence of Theorem 1.1.

Corollary 1.1. Let M3 be a complete minimal hypersurface in S4. If R

is bounded and |K| is bounded away from zero, then inf R ≤ 3 ≤ supR.

Remark 1.1. By using similar arguments to the ones used in this paper,

the authors already obtained a classification of complete minimal hyper-

surfaces with constant Gauss-Kronecker curvature in a four dimensional

space form. The results will appear in a forthcoming paper.

2 Preliminaries and Notations

Let M3 be a 3-dimensional hypersurface in a unit sphere S4. We choose

a local orthonormal frame field {e1, . . . , e4} in S4, so that, restricted to

M3, e1, e2, e3 are tangent to M3. Let {ω1, . . . , ω4} denote the dual co-

frame field in S4. We use the following convention for the range of the

indices: A,B,C,D range from 1 to 4 and i, j, k range from 1 to 3. The

structure equations of S4 are given by
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dωA = −
∑
B

ωAB ∧ ωB, ωAB + ωBA = 0,

dωAB = −
∑
C

ωAC ∧ ωCB + 1
2

∑
C,D

KABCD ωC ∧ ωD,

where KABCD = δACδBD − δADδBC is the curvature tensor of S4. Since

ω4 = 0 on M3, by Cartan′s Lemma we have

ω4i =
∑
j

hijωj , hij = hji . (2.1)

We call h =
∑

i,j hijωiωj , the eigenvalues λi of the matrix (hij), H =∑
i hii =

∑
i λi and K = det(hij) =

∏
i λi, respectively, the second funda-

mental form, the principal curvatures, the mean curvature and the Gauss-

Kronecker curvature of M3.

The structure equations of M3 are given by

dωi = −
∑
j

ωij ∧ ωj , ωij + ωji = 0,

dωij = −
∑
k

ωik ∧ ωkj +
1

2

∑
k,ℓ

Rijkℓωk ∧ ωℓ.

Using the formulas above we obtain the Gauss equation

Rijkℓ = Kijkℓ + hikhjℓ − hiℓhjk. (2.2)

We recall that M3 is a minimal hypersurface if its mean curvature

is identically zero. From now on, we assume that M3 is minimal. In

this situation, its Ricci curvature tensor and scalar curvature are given,

respectively, by

Rij = 2δij −
∑
k

hikhjk, (2.3)

R = 6− S, where S =
∑
i,j

h2ij is the squared norm of h. (2.4)

It follows from (2.4) that R is constant if and only if S is constant.
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The covariant derivative ∇h of the second fundamental form h of M3

with components hijk is given by∑
k

hijkωk = dhij +
∑
k

hjkωik +
∑
k

hikωjk.

Then the exterior derivative of (2.1) together with the structure equations

yields the Codazzi equation

hijk = hikj = hjik. (2.5)

Hence hijk is symmetric on the indices i, j, k.

Similarly, we have the second covariant derivative ∇2h of h with com-

ponents hijkℓ as follows∑
ℓ

hijkℓωℓ = dhijk +
∑
ℓ

hℓjkωiℓ +
∑
ℓ

hiℓkωjℓ +
∑
ℓ

hijℓωkℓ.

For any fixed point p on M3, we can choose a local orthonormal frame

field {e1, e2, e3} such that

hij = λiδij .

The following formulas can be found in Peng and Terng [5].

hijij − hjiji = (λi − λj)(1 + λiλj). (2.6)

∆hij = (3− S)hij . (2.7)

1

2
∆S =

∑
i,j,k

h2ijk + (3− S)S. (2.8)

The proof of our results relies heavily on the well known Generalized

Maximum Principle due to H. Omori [4].

Lemma 2.1. Let Mn be an n-dimensional complete Riemannian manifold

whose sectional curvature is bounded from below and f : Mn → R be a

smooth function which is bounded from above on Mn. Then there is a

sequence of points {pk} in Mn such that

lim
k→∞

f(pk) = sup f ; lim
k→∞

|∇f(pk)| = 0 and

lim sup
k→∞

max{(Hessf (pk))(X,X) : |X| = 1} ≤ 0,
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where Hessf denotes the Hessian of f .

3 Proof of Theorem 1.1

The inequality supS ≥ 3 is a particular case of the one stablished by

Cheng in [1]. For reader’s convenience we shall prove it here. Let us

assume on the contrary that supS < 3. As S is bounded from (2.2) we

see that the sectional curvatures are bounded from below. So, by using

Lemma 2.1 we obtain a sequence {pk} of points in M3 such that

lim
k→∞

S(pk) = supS; lim
k→∞

|∇S(pk)| = 0

and lim sup
k→∞

(Sii(pk)) ≤ 0.
(3.1)

By evaluating (2.8) at pk and taking the limit for k → ∞, from (3.1)

we arrive to

supS(3− supS) ≤ lim sup
k→∞

1

2
∆S(pk) ≤

1

2

∑
i

lim sup
k→∞

Sii(pk) ≤ 0. (3.2)

This implies that supS = 0, i.e, M3 is totally geodesic which contradicts

our hypothesis that |K| is bounded away from zero. Hence, we have

supS ≥ 3.

Now let us prove the inequality inf S ≤ 3. As K does not vanish,

the function F = log | det(hij)| is globally defined on M3 and is smooth.

For any fixed point p ∈ M3 we can take a local orthonormal frame field

{e1, e2, e3} such that hij = λiδij at p. According to Peng-Terng (see [5]

pp 15) the Laplacian of F is given by

∆F = −
∑
ijk

1

λiλj
h2ijk +

∑
ik

1

λi
hiikk. (3.3)

Since M3 is minimal, we have
∑
k

hkkii = Hii = 0, for all i. Together

with (2.6) this gives∑
ik

1

λi
hiikk =

∑
ik

1

λi
[hkkii + (λi − λk)(1 + λiλk)] =∑

ik

1

λi
(λi − λk)(1 + λiλk) = 3(3− S) = −3(S − 3).

(3.4)
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Notice that Codazzi equation (2.5) yields

1

λiλj
h2ijk =

1

λjλi
h2jik.

Then the coefficient of h2123 in
∑
ijk

1

λiλj
h2ijk can be given by

2

(
1

λ1λ2
+

1

λ1λ3
+

1

λ2λ3

)
=

2H

K
= 0

and we may write

∑
ijk

1

λiλj
h2ijk =

∑
i

∑
j ̸=i,k ̸=i,j<k

[
1

λ2
i

h2iii +

(
1

λ2
j

+
2

λiλj

)
h2jji+(

1

λ2
k

+
2

λiλk

)
h2kki

]
.

(3.5)

Let i, j, k be pairwise distinct indices. Bearing in mind that M3 is

minimal, we have λi + λj = −λk, λi + λk = −λj and hiii = −(hjji + hkki)

which implies

1

λ2
i

h2iii +

(
1

λ2
j

+
2

λiλj

)
h2jji +

(
1

λ2
k

+
2

λiλk

)
h2kki =

1

λ2
i

(hjji + hkki)
2 +

(
1

λ2
j

+
2

λiλj

)
h2jji +

(
1

λ2
k

+
2

λiλk

)
h2kki =(

1

λ2
i

+
2

λiλj
+

1

λ2
j

)
h2jji +

(
1

λ2
i

+
2

λiλk
+

1

λ2
k

)
h2kki+

2

λ2
i

hjjihkki =

(
1

λi
+

1

λj

)2

h2jji +

(
1

λi
+

1

λk

)2

h2kki +
2

λ2
i

hjjihkki =

λ2
k

λ2
iλ

2
j

h2jji +
λ2
j

λ2
iλ

2
k

h2kki +
2

λ2
i

hjjihkki =
1

K2

(
λ2
khjji + λ2

jhkki
)2

.

(3.6)

Inserting (3.6) into (3.5) we obtain
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∑
ijk

1

λiλj
h2ijk =

1

K2

[(
λ2
3h221 + λ2

2h331
)2

+
(
λ2
3h112 + λ2

1h332
)2

+

(
λ2
2h113 + λ2

1h223
)2]

.

(3.7)

It follows from (3.3), (3.4) and (3.7) that

∆F = − 1

K2

[(
λ2
3h221 + λ2

2h331
)2

+
(
λ2
3h112 + λ2

1h332
)2

+(
λ2
2h113 + λ2

1h223
)2]− 3(S − 3).

(3.8)

As S is bounded, we have already seen that the sectional curvatures

of M3 are bounded from below. Further, since |K| is bounded away

from zero, F = log |det(hij)| is bounded from below, so we may apply

the Generalized Maximum Principle due to Omori to the function F to

obtain a sequence {pk} of points in M3 such that

lim
k→∞

F (pk) = inf F ; lim
k→∞

|∇F (pk)| = 0

and lim inf
k→∞

(Fii(pk)) ≥ 0.
(3.9)

In view of (3.8) we get the inequality

∆F ≤ −3(S − 3). (3.10)

Evaluating (3.10) at {pk} and making k → ∞, from (3.9) we obtain

0 ≤
∑
i

lim inf
k→∞

Fii(pk) ≤ ∆F ≤ lim inf
k→∞

3(3− S(pk)). (3.11)

From (3.11) we deduce that inf S ≤ 3, which completes our proof. 2

Remark 3.1. We would like to emphasize that the hypothesis that |K| is
bounded away from zero cannot be dropped, as shows the following example.
Example 3.1. The hypersurface M3 in S4 defined by the equation

2x35 + 3(x21 + x22)x5 − 6(x23 + x24)x5 + 3
√
3(x21 − x22)x4 + 6

√
3x1x2x3=2

was investigated by E. Cartan, who proved that this space is a homogeneous

Riemannian manifold SO(3)/(Z2 × Z2) and that its principal curvatures

are −
√
3, 0,

√
3. Therefore, M3 has inf S = S = 6.
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