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Abstract

Three-component links in the 3-dimensional sphere were classi-

fied up to link homotopy by John Milnor in his senior thesis, pub-

lished in 1954. A complete set of invariants is given by the pairwise

linking numbers p, q and r of the components, and by the residue

class of one further integer µ, the “triple linking number” of the ti-

tle, which is well-defined modulo the greatest common divisor of p,

q and r.

To each such link L we associate a geometrically natural charac-

teristic map gL from the 3-torus to the 2-sphere in such a way that

link homotopies of L become homotopies of gL. Maps of the 3-torus

to the 2-sphere were classified up to homotopy by Lev Pontryagin in

1941. A complete set of invariants is given by the degrees p, q and

r of their restrictions to the 2-dimensional coordinate subtori, and

by the residue class of one further integer ν, an “ambiguous Hopf

invariant” which is well-defined modulo twice the greatest common

divisor of p, q and r.
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We show that the pairwise linking numbers p, q and r of the

components of L are equal to the degrees of its characteristic map

gL restricted to the 2-dimensional subtori, and that twice Milnor’s

µ-invariant for L is equal to Pontryagin’s ν-invariant for gL. We

view this as a natural extension of the familiar fact that the linking

number of a 2-component link is the degree of an associated map of

the 2-torus to the 2-sphere.

When p, q and r are all zero, the µ- and ν-invariants are ordinary

integers. In this case we use J.H.C. Whitehead’s integral formula

for the Hopf invariant, adapted to maps of the 3-torus to the 2-

sphere, together with a formula for the fundamental solution of the

scalar Laplacian on the 3-torus as a Fourier series in three variables,

to provide an explicit integral formula for ν, and hence for µ. The

integrand in this formula is geometrically natural in the sense that

it is invariant under orientation-preserving rigid motions of the 3-

sphere.

The Borromean rings: p = q = r = 0, µ = ±1

We give here only sketches of the proofs of the main results, with

full details to appear elsewhere.
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1 Statement of results

Consider the configuration space

Conf3S
3 ⊂ S3 × S3 × S3

of ordered triples (x, y, z) of distinct points in the unit 3-sphere S3 in R4.

Since x, y and z are distinct, they span a 2-plane in R4. Orient this plane

so that the vectors from x to y and from x to z form a positive basis, and

then move it parallel to itself until it passes through the origin. The result

is an element G(x, y, z) of the Grassmann manifold G2R4 of all oriented

2-planes through the origin in R4. This defines the Grassmann map

G : Conf3S
3 −→ G2R4.

It is equivariant with respect to the diagonal O(4) action on S3×S3×S3

and the usual O(4) action on G2R4.

Figure 1: The Grassmann map

The Grassmann manifold G2R4 is isometric (up to scale) to the product

S2 × S2 of two unit 2-spheres. Let π : G2R4 → S2 denote orthogonal

projection to either factor.

Given any ordered oriented link L in S3 with three parametrized com-

ponents

X = {x(s) | s ∈ S1} , Y = {y(t) | t ∈ S1} and Z = {z(u) | u ∈ S1},
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where S1 is the unit circle in R2, we define the characteristic map of L

gL : T
3 = S1 × S1 × S1 −→ S2

by gL(s, t, u) = π(G(x(s), y(t), z(u))). In Section 3 we give an explicit

formula for this map as the unit normalization of a vector field on T 3

whose components are quadratic polynomials in the components of x(s),

y(t) and z(u).

The homotopy class of gL is unchanged under any link homotopy of

L, meaning a deformation during which each component may cross itself,

but different components may not intersect.

Theorem A. The pairwise linking numbers p, q and r of the link L are

equal to the degrees of its characteristic map gL on the 2-dimensional

coordinate subtori of T 3, while twice Milnor’s µ-invariant for L is equal

to Pontryagin’s ν-invariant for gL.

Remark 1. Milnor’s µ-invariant, typically denoted µ123, is descriptive of

a single three-component link. In contrast, Pontryagin’s ν-invariant is the

cohomology class of a difference cocycle comparing two maps from T 3 to

S2 that are homotopic on the 2-skeleton of T 3. In particular, it assigns to

any pair g, g′ of such maps whose degrees on the coordinate 2-tori are p,

q and r, an integer ν(g, g′) that is well-defined modulo 2 gcd(p, q, r). With

this understanding, the last statement in Theorem A asserts that

2(µ(L)− µ(L′)) ≡ ν(gL, gL′) mod 2 gcd(p, q, r),

for any two links L and L′ with the same pairwise linking numbers p, q

and r.

We will sketch here two quite different proofs of Theorem A, a topologi-

cal one in Section 4 using framed cobordism of framed links in the 3-torus,

and an algebraic one in Section 5 using the group of link homotopy classes

of three-component string links and the fundamental groups of spaces of

maps of the 2-torus to the 2-sphere.
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To state the integral formula for Milnor’s µ-invariant when the pairwise

linking numbers are zero, let ω denote the Euclidean area 2-form on S2,

normalized so that the total area is 1 instead of 4π. Then ω pulls back

under the characteristic map gL to a closed 2-form on T 3, which can

be converted to a divergence-free vector field VL on T 3 via the formula

(g∗Lω)(X,Y ) = (X × Y ) �VL. In Section 6 we give explicit formulas for

VL, and also for the fundamental solution φ of the scalar Laplacian on the

3-torus as a Fourier series in three variables. These are the key ingredients

in the integral formula below.

Theorem B. If the pairwise linking numbers p, q and r of the three

components of L are all zero, then Milnor’s µ-invariant of L is given by

the formula

µ(L) =
1

2

∫
T 3×T 3

VL(σ)× VL(τ) � ∇σφ (σ − τ) dσ dτ.

Here ∇σ indicates the gradient with respect to σ, the difference σ − τ

is taken in the abelian group structure of the torus, and dσ and dτ are

volume elements. The integrand is invariant under the action of the group

SO(4) of orientation-preserving rigid motions of S3 on the link L, attesting

to the naturality of the formula. We will see in the next section that the

integral above expresses the “helicity” of the vector field VL on T 3.

2 Background and motivation

Let L be an ordered oriented link in R3 with two parametrized compo-

nents

X = {x(s) | s ∈ S1} and Y = {y(t) | t ∈ S1}.

The classical linking number Lk(X,Y ) is the degree of the Gauss map

S1 × S1 → S2 sending (s, t) to (y(t) − x(s))/∥y(t) − x(s)∥, and can be
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expressed by the famous integral formula of Gauss [1833],

Lk(X,Y ) =
1

4π

∫
S1×S1

x′(s)× y′(t) �

x(s)− y(t)

∥x(s)− y(t)∥3
ds dt

=

∫
S1×S1

x′(s)× y′(t) � ∇x φ (∥x(s)− y(t)∥) ds dt,

where φ(r) = −1/(4πr) is the fundamental solution of the scalar Laplacian

in R3. The integrand is invariant under the group of orientation-preserving

rigid motions of R3, acting on the link L. Corresponding formulas in S3

appear in DeTurck and Gluck [2008] and in Kuperberg [2008].

Theorems A and B above give a similar formulation of Milnor’s triple

linking number in S3. We emphasize that these two theorems are set

specifically in S3, and that so far we have been unable to find correspond-

ing formulas in Euclidean space R3 which are equivariant (for Theorem A)

and invariant (for Theorem B) under the noncompact group of orientation-

preserving rigid motions of R3.

For some background on higher order linking invariants, see Milnor

[1957] and, for example, Massey [1969], Casson [1975], Turaev [1976],

Porter [1980], Fenn [1983], Orr [1989], Cochran [1990], and Koschorke [1997,

2004].

The helicity of a vector field V defined on a bounded domain Ω in R3

is given by the formula

Hel(V ) =

∫
Ω×Ω

V (x)× V (y) �

x− y

∥x− y∥3
dx dy

=

∫
Ω×Ω

V (x)× V (y) � ∇xφ (∥x− y∥) dx dy

where, as above, φ is the fundamental solution of the scalar Laplacian on

R3.

Woltjer [1958] introduced this notion during his study of the magnetic

field in the Crab Nebula, and showed that the helicity of a magnetic

field remains constant as the field evolves according to the equations of

ideal magnetohydrodynamics, and that it provides a lower bound for the



TRIPLE LINKING NUMBERS AND INTEGRAL FORMULAS 257

field energy during such evolution. The term “helicity” was coined by

Moffatt [1969], who also derived the above formula.

There is no mistaking the analogy with Gauss’s linking integral, and

no surprise that helicity is a measure of the extent to which the orbits of

V wrap and coil around one another. Since its introduction, helicity has

played an important role in astrophysics and solar physics, and in plasma

physics here on earth.

Looking back at Theorem B, we see that the integral in our formula for

Milnor’s µ-invariant of a three-component link L in the 3-sphere expresses

the helicity of the associated vector field VL on the 3-torus.

Our study was motivated by a problem proposed by Arnol′d and

Khesin [1998] regarding the search for “higher helicities” for divergence-

free vector fields. In their own words:

The dream is to define such a hierarchy of invariants for generic

vector fields such that, whereas all the invariants of order ≤ k have

zero value for a given field and there exists a nonzero invariant of

order k + 1, this nonzero invariant provides a lower bound for the

field energy.

Many others have been motivated by this problem, and have contributed

to its understanding; see, for example, Berger and Field [1984],

Berger [1990, 1991], Evans and Berger [1992],

Akhmetiev and Ruzmaiken [1994, 1995], Akhmetiev [1998], Laurence and

Stredulinsky [2000], Hornig and Mayer [2002], Rivière [2002], Khesin [2003],

Bodecker and Hornig [2004], and Auckly and Kapitanski [2005].

The formulation in Theorems A and B has led to partial results that

address the case of vector fields on invariant domains such as flux tubes

modeled on the Borromean rings; see Komendarczyk [2009].
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3 Explicit formula for the characteristic map gL

View R4 as the space of quaternions, with 1, i, j, k as basis, and consider

the map F : Conf3S
3 → R3 − {0} defined by

F (x, y, z) =

 ix � y + iy � z + iz �x

jx � y + jy � z + jz �x

kx � y + ky � z + kz �x

 .

Here � denotes the dot product in R4. The components of F (x, y, z) are

quadratic polynomials in the components of x, y and z in R4, and the

norm ∥F (x, y, z)∥ is twice the area of the triangle in R4 with vertices at

x, y and z. This is a consequence of the fact that in R4, the area of a

parallelogram with edges a and b is given by[
(ia � b)2 + (ja � b)2 + (ka � b)2

]1/2
.

Now let L be a three-component link in S3 with parametrized compo-

nents

X = {x(s) | s ∈ S1} , Y = {y(t) | t ∈ S1} and Z = {z(u) | u ∈ S1}.

This defines an embedding eL : T 3 ↪→ Conf3S
3 given by

eL(s, t, u) = (x(s), y(t), z(u)). We compute that the characteristic map

gL : T
3 → S2 is the unit normalization of the composition F ◦ eL, that is,

gL(s, t, u) =
F (x(s), y(t), z(u))

∥F (x(s), y(t), z(u))∥
.

The derivation of this formula is based on the model of the Grassmann

manifold G2R4 as the set of unit decomposable 2-vectors in the exterior

product space
∧2R4 ∼= R6, as presented in Gluck and Warner [1983].

Note that the map gL is “symmetric” in the sense that it transforms

under any permutation of the components of L by precomposing with the

corresponding permutation automorphism of T 3, and then multiplying by

the sign of the permutation.
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3.1 An asymmetric version of the characteristic map

Continuing to view S3 ⊂ R4, let ℘x denote stereographic projection of

S3 − {x} onto the 3-space R3
x through the origin in R4 that is orthogonal

to the vector x, as shown in Figure 2.

Figure 2: Stereographic projection

For any (x, y, z) ∈ Conf3S
3, consider the points ℘xy and ℘xz in R3

x.

Translation in R3
x moves ℘xz to the origin, and then dilation in R3

x makes

the translated ℘xy into a unit vector. Composing with ℘−1
x , we see that x

has been kept fixed, y has moved to the point (℘xy−℘xz)/∥℘xy−℘xz∥ on

the equatorial 2-sphere S2
x = S3∩R3

x, and z has moved to −x, as indicated

in the figure.

This procedure defines a deformation retraction

r(x, y, z) = (x , (℘xy − ℘xz)/∥℘xy − ℘xz∥ , −x)

of Conf3S
3 onto the subspace {(x,w,−x) | x �w = 0}, which is a copy

of the unit tangent bundle US3 of the 3-sphere via the correspondence

(x,w,−x) ↔ (x,w). Let π : US3 → S2 denote the projection onto the

fiber, sending (x,w) to wx−1.

Now define the asymmetric characteristic map g̃L : T 3 −→ S2

of a link L, as above, to be the composition π ◦ r ◦ eL. Noting that
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(℘xv)x
−1 = ℘1(vx

−1), we have explicitly

g̃L(s, t, u) =
℘1(yx

−1)− ℘1(zx
−1)

∥℘1(yx−1)− ℘1(zx−1)∥

where x = x(s), y = y(t) and z = z(u) parametrize the components of

L. This map is easily seen to be homotopic to the characteristic map gL

defined above.

The restriction of g̃L to ∗×S1×S1 is the negative of the Gauss map for

the link ℘1((Y ∪ Z)x−1), and so, noting that ℘1 is orientation reversing

(with the usual sign conventions), its degree is the linking number of Y

with Z. Since gL is homotopic to g̃L, the same is true for gL. But then

it follows from the symmetry of gL that its degree on S1 × ∗ × S1 is the

linking number of X with Z, and its degree on S1 × S1 × ∗ is the linking

number of X with Y . This proves the first statement in Theorem A.

This version g̃L of the characteristic map will also facilitate the topo-

logical proof of the rest of Theorem A, to be given next.

4 Sketch of the topological proof of Theorem A

Starting with a link in the 3-sphere, consider the delta move shown in

Figure 3, which may be thought of as a higher order variant of a crossing

change. It takes place within a 3-ball, outside of which the link is left

fixed. This move was introduced by Matveev [1987].

Figure 3: The delta move L → L′
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It was shown by Murakami and Nakanishi [1989] that an appropriate

sequence of such moves can transform any link into any other link with

the same number of components, provided the two links have the same

pairwise linking numbers.

The key organizational idea for this proof of Theorem A is to show that

the delta move, when applied to the three components X, Y and Z of the

link L, as shown in Figure 3, increases its Milnor µ-invariant by 1, while

increasing the Pontryagin ν-invariant of its characteristic map gL by 2.

The fact that the delta move increases µ by 1 is well known to ex-

perts; our proof relies on the geometric formula for µ due to Mellor and

Melvin [2003] in terms of how each link component pierces the Seifert

surfaces of the other two components, plus a count of the triple point in-

tersections of these surfaces. In particular, one can use a family of Seifert

surfaces that differ only near the delta move, as shown in Figure 4.

Figure 4: Seifert surfaces for L and L′

To see how the delta move affects the ν-invariant, we will view ν as

a relative Euler class, following Gompf [1998] and Cencelj, Repovš and

Skopenkov [2007].

To that end let L and L′ be two three-component links in S3 with the

same pairwise linking numbers p, q and r, and let L and L′ be the framed

links in the 3-torus1 that are the preimages of a common regular value

1For the reader’s convenience, all subsets of T 3 in this section are written in black-

board bold to distinguish them from subsets of S3.
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of their characteristic maps gL and gL′ . Orient L and L′ so that, when

combined with the pullback of the orientation on S2 to a tangent 2-plane

transverse to these links, we get the given orientation on T 3. Since L

and L′ have the same pairwise linking numbers, their characteristic maps

gL and gL′ have the same degrees on the coordinate 2-tori in T 3 (by the

first part of Theorem A, proved in Section 3), and so the framed links L
and L′ have the same intersection numbers with these 2-tori. By Poincaré

duality, it follows that L and L′ are homologous in T 3, and then by a

standard argument that L × 0 and L′ × 1 together bound an embedded

surface F in T 3 × [0, 1].

The relative normal Euler class e(F) is the intersection number of F
with a generic perturbation of itself that is directed by the given framings

along L × 0 and L′ × 1, but is otherwise arbitrary. Then, according to

Gompf and Cencelj–Repovš–Skopenkov,

ν(gL′ , gL) ≡ e(F) mod 2 gcd(p, q, r).

The key step in seeing how the delta move affects the ν-invariant is to

adjust L and L′ by link homotopies so that up to isotopy

L′ = L ∪ L∗

where L∗ is a two-component link bounding an annulus A ⊂ T 3 − L with

relative normal Euler class 2. Then the surface F=(L×[0, 1])∪(A×1), with

∂F = L′×1−L×0, has e(F) = 2, since e(L× [0, 1]) = 0. Thus ν(gL′ , gL) ≡
e(F) = 2, showing that the delta move increases the ν-invariant of L by

2. Explaining how this step is carried out will complete our sketch of the

topological proof of Theorem A.

We begin with the delta move as shown above and change it by an

isotopy so that it now appears as pictured in Figure 5.

From this picture, we see that the delta move can be regarded as a pair of

crossing changes of opposite sign which introduce a pair of small “clasps”

.

We may assume that the move takes place inside the large ball B in S3

of radius π/2 centered at −1. If we think of 1 and −1 as the north and
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Figure 5: A different view of the delta move

south poles of S3, then B is just the southern hemisphere. Figure 5 shows

that inside B, the portions of X and X ′ lie along the great circle through

1 and i (so in fact X and X ′ coincide) while the portions of Y , Z, Y ′ and

Z ′ lie close to the great circle C through j and k, shown in orange.

Outside B, the links L and L′ coincide and, maintaining this coinci-

dence, we move them into a more favorable position as follows. First

unknot X = X ′ by a link homotopy, and move it to the rest of the great

circle through 1 and i. Then by an isotopy move Y and Z into a small

neighborhood of the great circle C, and position them so that their or-

thogonal projections to C are Morse functions with just one critical point

per critical value. As intended, Y ′ and Z ′ move likewise outside B. Note

that each of the aforementioned clasps contributes two critical values to

these projections, and we may assume that no other critical values fall

between these two.

Now we use the asymmetric versions g̃L and g̃L′ of the characteristic

maps T 3 → S2, identifying the target S2 with the unit 2-sphere in the

purely imaginary ijk-subspace of the quaternions. We interpret Figure 5

as showing the image of S3 − {1} under the stereographic projection ℘1,

and view i as the north pole of S2.

It is straightforward to check that, under the genericity conditions im-

posed above, the point i ∈ S2 is a common regular value for g̃L and g̃L′ ,

and that the framed links L and L′ in T 3 that are the inverse images of
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i under these maps are for the most part the same. In fact we will show

that, up to isotopy L′ = L ∪ L∗ where L∗ consists of a pair of oppositely

oriented spiral perturbations of S1 × pt× pt, coming from the two clasps

shown in Figure 5, and that these two spirals bound an annulus A in

T 3 −L whose relative normal Euler class e(A) is 2. The argument will be

given as we explain Figures 6–8.

The discussion is independent of what the links L and L′ look like

outside the ball B shown in Figure 5. The simplest case occurs when L

is the three-component unlink, and L′ = X ′ ∪ Y ′ ∪ Z ′ is the Borromean

rings, whose stereographic image is shown in Figure 6.

Figure 6: Borromean Rings

We have, as before, that X ′ is the great circle through 1 and i, with image

the blue vertical axis, while Y ′ and Z ′ lie in a small tubular neigborhood

of the great circle C through j and k, with images shown in red and green.

In this circumstance, the general formula L′ = L ∪ L∗ has L empty, and

hence L′ = L∗.

Figure 7 shows enlargements of the two clasps between red Y ′ and green

Z ′, with points on their segments labeled by numbers on Y ′ and by letters

on Z ′, ordered consistently with their orientations.

Our job is to find the preimage L′ in S1 × S1 × S1 of the regular value

i of the map g̃L′ , which means we must find the points where the vector

from the green ℘1(zx
−1) to the red ℘1(yx

−1) points straight up.

We pause to see the effect of right multiplication by x−1. Let x travel
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Figure 7: The two clasps

along X = X ′ from 1 to −i to −1 to i and back to 1, which is the

direction in which this component is oriented. Then right multiplication

by x−1 gradually rotates this component in the opposite direction. In the

image 3-space, it looks like the vertical axis is moving downwards. At the

same time, the great circle C through j and k is gradually rotated in the

direction from j towards −k. A small tubular neighborhood of C follows

this rotation and twists as it goes, dragged by the downward motion of

the vertical axis.

Now focusing on the left clasp, and starting with x = 1, we see that the

arrow f⃗2 from green f to red 2 points up. As x moves around X ′ from 1

towards −i (up on the blue vertical axis) a loop of upward pointing vectors

is traced out, passing successively through e⃗1, d⃗2, e⃗3, and finally back to

f⃗2. In Figure 8, the 3-torus is depicted as a cube, in which this loop is

shown near the front left corner of the bottom red-green square, traced

in a counterclockwise direction. When the progression of x(s) values is

taken into account, we get the orange spiral curve shown above this loop.

This is one component of L′, and is oriented according to the convention

for framed links.

Focusing on the right clasp and repeating the above procedure, we

get the orange spiral curve shown at the right rear, lying over the loop

a⃗5 b⃗6 c⃗5 b⃗4. This is the other component of L′, and is also oriented accord-

ing to convention.2

2In fact, one need not go through the careful analysis to determine the orientations

of the spirals. All that is important is that they are oppositely oriented, which follows

from the fact that the pairwise linking numbers for the Borromean rings are zero.
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Figure 8: Computing e(A) = 2

Together, the components of L′ bound the orange annulus A shown in

the cube. This annulus is constructed as follows. Each point on the left

spiral loop is joined to the point on the right spiral loop at the same height

s by a straight line segment in the 2-torus s× S1 × S1. The t-coordinate

moves steadily so that y(t) travels along the arc of Y ′ which lies in the

ball B and the u-coordinate moves steadily so that z(u) travels along the

arc of Z ′ which lies in B. It is easy to see that this annulus A is embedded

in the 3-torus and that, even in the general case where L is not empty, it

would still be disjoint from L.
Now since A lies in T 3, its relative normal Euler class e(A) (when viewed

as a surface in T 3 × [0, 1]) can be computed as the intersection number of

A with the inverse image of any other regular value of g̃L′ . In particular,

the point −i is also a regular value, and its inverse image L̂′ is calculated

from an analysis of the clasps, just as we did for the inverse image of i.

It consists of two spirals, which can be obtained from the spirals in L′ by

moving them half-way along in the vertical (blue) direction. We show L̂′

in Figure 8 as a pair of purple spirals, which are oriented the same way as

the orange spirals.

It is seen in this figure that the purple spirals pierce the orange annulus
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twice in the positive direction, confirming that

e(A) = A � L̂′ = 2,

and completing the sketch of the topological proof of Theorem A.

5 Sketch of the algebraic proof of Theorem A

This proof is organized around the following key diagram:

The left half represents the geometric-topological problem we are trying

to solve, and is devoid of algebraic structure. The right half represents the

algebraic structures that we impose on the left half via the two horizontal

maps in order to solve the problem.

In the upper left corner of (∗) we have the set of link-homotopy classes

of three-component links in the 3-sphere S3, and in the lower left corner

the set of homotopy classes of maps of the 3-torus to the 2-sphere. The

vertical map g between them assigns to the link-homotopy class of L the

homotopy class of its characteristic map gL. Theorem A describes g and

asserts that it is one-to-one.

In the upper right corner of (∗) we have the groupH(3) of link-homotopy

classes of three-component string links. A k-component string link con-

sists of k oriented intervals embedded disjointly in a cube, with their tails

on the bottom face, their tips on the top face directly above their tails,

and their interiors in the interior of the cube. The terminology was coined

by Habegger and Lin [1990]. The product of two k-component string links

with endpoints in a common position is given by stacking the second one

on top of the first. When a string link moves by a link homotopy, each
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strand is allowed to cross itself, while different strands must remain dis-

joint, just as for links. Then the above product induces a group structure

on the set H(k) of link homotopy classes of k-component string links.

Figure 9: Generators for H(3)

Following Habegger and Lin, we derive the following presentation for

H(3):

H(3) = ⟨P,Q,R,B | [P,Q] = [Q,R] = [R,P ] = B,

[P,B] = [Q,B] = [R,B] = 1⟩
The string links P , Q, R and B are those shown in Figure 9.

Using this presentation, elements of H(3) can be written uniquely in

the form

P pQqRrBµ , for p, q, r, µ ∈ Z.

Two elements P pQqRrBµ and P p∗Qq∗Rr∗Bµ∗
are conjugate if and only if

p = p∗, q = q∗, r = r∗ and µ ≡ µ∗ mod gcd(p, q, r).

A string link S can be closed up to a link Ŝ by joining the tops of the

strands to their bottoms outside the cube, without introducing any more

crossings. For example, the closure of the three-component string link B

is the Borromean rings, as shown in Figure 10.

Thus the Borromean rings, a “primitive example” in the world of links,

is the closure of a string link which is itself a commutator of simpler string

links.
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Figure 10: The string link B closes up to the Borromean rings B̂

The closing-up operation descends to link homotopy classes and pro-

vides the upper horizontal map in (∗). That the closure of the string link

P pQqRrBµ has pairwise linking numbers p, q and r is apparent for the

generators P , Q and R depicted in Figure 9, and then follows in general

because pairwise linking numbers of the closure are additive under compo-

sition of string links. That the Milnor invariant of the closure is congruent

to µ mod gcd(p, q, r) follows from the formula for this invariant given in

Mellor and Melvin [2003] which we referred to in the previous section.

It then follows from Milnor’s theorem that the closing-up map is onto.

Furthermore, its point inverse images are the conjugacy classes in H(3), a

special circumstance for links with three components which fails for four

or more components.

In the lower right corner of (*) we have the union of the fundamen-

tal groups of the components of the space of continuous maps of the

2-torus to the 2-sphere, with one group π1Mapsp(S
1 × S1, S2) for each

choice of degree p of these maps. The work of Fox [1948] on torus ho-

motopy groups (the case p = 0) can be generalized to provide explicit

presentations for these groups:

π1Mapsp(S
1 × S1, S2) = ⟨Up, Vp,Wp | [Up, Vp] = W 2

p , W 2p
p = 1,

[Up,Wp] = [Vp,Wp] = 1⟩.

These presentation also follow as a special case of a more general result

of Larmore and Thomas [1980] on the fundamental groups of the con-

nected components of the space of sections of certain 3-plane bundles over
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surfaces, which is proved using Postnikov invariants.

Using this presentation, elements of π1Mapsp(S
1×S1, S2) can be written

uniquely in the form

U q
p V

r
p W ν

p , for q, r, ν ∈ Z with 0 ≤ ν < 2|p|.

Two elements U q
p V r

p W ν
p and U q∗

p V r∗
p W ν∗

p are conjugate if and only if

q = q∗, r = r∗ and ν ≡ ν∗ mod 2 gcd(p, q, r).

A direct argument using framed links shows how the generators Up,

Vp and Wp of π1Mapsp(S
1 × S1, S2) can be represented by specific maps

S1 × S1 × S1 → S2, all agreeing with some fixed map of degree p on

∗ × S1 × S1. In addition to this common feature, the representatives for

Up, Vp, Wp have degrees q = 1, 0, 0 on S1 × ∗ × S1, degrees r = 0, 1, 0 on

S1 × S1 × ∗, and Pontryagin invariants ν = 0, 0, 1 relative to the chosen

basepoint for π1Mapsp(S
1 × S1, S2).

The lower horizontal map in the key diagram takes a homotopy class of

based loops in the space Maps(S1 × S1, S2), ignores basepoints, identifies

S1×S1 with ∗×S1×S1, and then regards this class as a homotopy class

of maps of S1×S1×S1 → S2. Given a loop λ : S1 → Maps(S1×S1, S2),

the map f : S1 × S1 × S1 → S2 is defined by f(s, t, u) = λ(s)(t, u). In

particular, the element U q
p V r

p W ν
p of π1Mapsp(S

1 × S1, S2) is taken to a

map with degrees p, q and r on the 2-dimensional coordinate subtori, and –

this is the key observation – with Pontryagin invariant ν mod 2 gcd(p, q, r)

relative to the image of the basepoint map. This lower horizontal map is

onto, and point inverse images are conjugacy classes in π1Mapsp(S
1 ×

S1, S2).

The final step will be to define the vertical map G on the right side of

the key diagram to make the whole diagram commutative, and to be a

group homomorphism, insofar as possible. The hedge “insofar as possible”

refers to the fact that we have a group H(3) in the upper right corner of

the diagram, but only a union of groups π1Mapsp(S
1×S1, S2) in the lower

right corner. We deal with this disparity by demoting H(3) to a union of

groups as follows.
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Let H0(3) denote the subgroup of H(3) consisting of string links with

the second and third strands unlinked, and with presentation:

H0(3) = ⟨Q,R,B | [Q,R] = B , [Q,B] = [R,B] = 1⟩.

Consider the left cosets Hp(3) = P pH0(3) of H0(3), and convert each

of them into a subgroup isomorphic to H0(3) by using left translation

to transfer the group structure from subgroup to coset. Adopting the

notations Qp = P pQ, Rp = P pR and Bp = P pB for the generators of

Hp(3) in this borrowed group structure, we get the presentation

Hp(3) = ⟨Qp, Rp, Bp | [Qp, Rp] = Bp , [Qp, Bp] = [Rp, Bp] = 1⟩.

We are now ready to define the vertical map G on the right side of

(∗) so as to make the whole diagram commutative, and at the same time

to be a union of homomorphisms from the groups Hp(3) to the groups

π1Mapsp(S
1 × S1, S2).

To do this, we start with specific string links to represent the elements

of Hp(3). For purposes of illustration, we choose p = 2, and show in

Figure 11 the string links 12 = P 2, Q2 = P 2Q and R2 = P 2R, and under

them the three-component links we get by closing them up.

The 3-component links 12, Q2 and R2 shown in Figure 11 differ only

in their first (blue) component, and even these have the same “bottom

point”. Thus the corresponding characteristic maps from S1×S1×S1 →
S2 all restrict to the same map of degree 2 on ∗×S1×S1, and therefore all

three represent elements of the fundamental group π1Maps2(S
1 × S1, S2)

based at this map. We denote these three images by G2(P
2), G2(P

2Q) and

G2(P
2R), with the intent of forcing commutativity in the key diagram. In

fact, we can do this for all the string links P 2QqRrBµ, and a simple

geometric argument shows that composition in the group H2(3) carries

over in this way to multiplication in the group π1Maps2(S
1 × S1, S2).

Furthermore, a direct argument using framed links shows that the el-

ements G2(P
2Q) and G2(P

2R) may serve as the elements U2 and V2 in

the above presentation for π1Maps2(S
1×S1, S2), so that G2 takes P 2Q to



272 DETURC, GLUCK, KOMENDARCZYK, MELVIN et al

Figure 11: Closing up the generators of H2(3)

U2 and P 2R to V2. It then follows that G2 maps P 2B = [P 2Q,P 2R] to

[U2, V2] = W 2
2 .

The value p = 2 used above was just for purposes of illustration, and

the corresponding results are true for all values of p. Thus we have defined

the vertical map G on the right side of our key diagram to be a union of

homomorphisms Gp : Hp(3) → π1Mapsp(S
1 × S1, S2) making the whole

diagram commutative.

Now let L be any three-component link in S3 with pairwise linking num-

bers p, q and r and Milnor invariant µ. Then L is link homotopic to the clo-

sure of P pQqRrBµ. By commutativity of the key diagram, the homotopy

class of the characteristic map gL is the image under the lower horizontal

map of the element Gp(P
pQqRrBµ) = U q

p V r
p W 2µ

p of π1Mapsp(S
1×S1, S2),

and therefore has Pontryagin invariant 2µ, as desired.

This completes our sketch of the algebraic proof of Theorem A.
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6 Sketch of the proof of Theorem B

Let L be a 3-component link in S3 with pairwise linking numbers p, q

and r all zero. We saw in Theorem A that these numbers are the degrees

of the characteristic map gL : T 3 → S2 on the 2-dimensional coordinate

subtori. Thus gL is homotopic to a map which collapses the 2-skeleton of

T 3, and so is in effect a map of S3 → S2. The Hopf invariant of this map,

which we will regard as the Hopf invariant of gL, is equal to Pontryagin’s

ν-invariant comparing gL to the constant map, and we will denote this by

ν(gL).

To calculate this Hopf invariant, we adapt J.H.C. Whitehead’s integral

formula for the Hopf invariant of a map from S3 → S2 to the case of a

map from T 3 → S2, and show how to make the calculation explicit.

Using Hopf’s definition of his invariant of a map f : S3 → S2 as the

linking number between the inverse images of two regular values, White-

head [1947] expressed this as follows. Let ω be the area 2-form on S2,

normalized so that
∫
S2 ω = 1. Then its pullback f∗ω is a closed 2-form

on S3 which is exact because H2(S3;R) = 0. Hence f∗ω = dα for some

1-form α on S3, and Whitehead showed that

Hopf(f) =

∫
S3

α ∧ f∗ω,

the integral being independent of the choice of α.

We recast Whitehead’s formula in terms of vector fields by letting Vf

be the vector field on S3 corresponding in the usual way to the 2-form

f∗ω. Then Vf is divergence-free, since f∗ω is closed, and is in fact in the

image of curl since f∗ω is exact. Thus Vf = ∇×W for some vector field

W on S3, and the integral formula for the Hopf invariant becomes

Hopf(f) =

∫
S3

W � Vf d(vol),

independent of the choice of W .

To make Whitehead’s formula more explicit, one needs a way to produce

a vector field W whose curl is Vf . On R3 this can be done by viewing Vf as
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a flow of electric current and then calculating the corresponding magnetic

field BS(Vf ) using the classical formula of Biot and Savart [1820]:

BS(Vf ) = −∇×Gr(Vf ),

where Gr is the Green’s operator that inverts the vector Laplacian. Then

∇× BS(Vf ) = Vf

by Ampere’s Law. The justification for these statements, and a nice ex-

planation, can be found in Chapter 5 –Magnetostatics in Griffiths [1989].

The explicit formula for the Green’s operator on R3 is given by con-

volution with the fundamental solution φ(r) = −1/(4πr) of the scalar

Laplacian, and hence

BS(Vf )(y) =

∫
R3

Vf (x)×∇yφ (∥y − x∥) dx,

assuming that V is compactly supported, to guarantee that the integral

converges. The corresponding formula on S3 was given by DeTurck and

Gluck [2008] and by Kuperberg [2008].

We can summarize the calculation of the Hopf invariant in the single

formula

Hopf(f) =

∫
S3

BS(Vf ) � Vf d(vol)

which was Woltjer’s original expression for the helicity of the vector field

Vf .

A routine check shows that the above formula, with the integration over

T 3 instead of S3, yields the value of the Hopf invariant of the characteristic

map gL : T 3 → S2. This provides a formula for Pontryagin’s ν-invariant,

and portrays it as the helicity of the associated vector field VgL , which for

simplicity we denote by VL:

ν(gL) = Hopf(gL) = Hel(VL) =

∫
T 3

BS(VL) � VL d(vol). (‡)

A straightforward calculation shows that

VL =
Ft × Fu � F

4π∥F∥3
∂/∂s+

Fu × Fs � F

4π∥F∥3
∂/∂t+

Fs × Ft � F

4π∥F∥3
∂/∂u,
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where F : T 3 → R3 − {0} is the map defined in Section 3, and where

subscripts denote partial derivatives.

Therefore, to make the integral formula (‡) explicit, it remains to obtain

an explicit formula for the Biot-Savart operator on the 3-torus. As in the

case of R3, this depends on having an explicit formula for the fundamental

solution of the scalar Laplacian.

6.1 The fundamental solution of the Laplacian on the

3-torus

Proposition 1. The fundamental solution of the scalar Laplacian on the

3-torus T 3 = S1 × S1 × S1 is given by the formula

φ(x, y, z) = − 1

8π3

∞∑
m,n,p=−∞

m2+n2+p2 ̸=0

ei(mx+ny+pz)

m2 + n2 + p2
.

Even though we have expressed φ in terms of complex exponentials, the

value of φ is real for real values of x, y and z because of the symmetry

of the coefficients, and can therefore also be expressed as a Fourier cosine

series.

Figure 12 shows the graph of the corresponding fundamental solution

of the scalar Laplacian on the 2-torus S1 × S1, displayed over the range

−3π ≤ x, y ≤ 3π. If we think of the 2-torus as obtained from a square by

identifying opposite sides, then this shows the function φ to have a nega-

tive infinite minimum at the single vertex, two saddle points in the middle

of the two edges, and a maximum in the middle of the square. Presum-

ably the fundamental solution φ on the 3-torus displays a corresponding

distribution of critical points.

To see why the proposition is true, begin with functions u and v in

C∞(T 3), with Fourier series

u =
∑

umnpe
i(mx+ny+pz) and v =

∑
vmnpe

i(mx+ny+pz),

where the sums are over all (m,n, p) ∈ Z3. The following observations

result from elementary calculations (ignoring convergence issues):
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Figure 12: Fundamental solution of the scalar Laplacian on S1 × S1

� ∆u = −
∑

(m2 + n2 + p2)umnpe
i(mx+ny+pz), so v is in the image of

the Laplacian if and only if the Fourier coefficient v000 = 0, i.e., iff

v has average value 0.

� The Fourier series of the convolution u∗v is given by coefficient-wise

multiplication, i.e.,

u ∗ v = 8π3
∑

umnpvmnpe
i(mx+ny+pz).

Thus, if v has average value zero, we have that ∆(φ ∗ v) = v, and so

φ is the fundamental solution of ∆.

The theory of Sobolev spaces provides the analytical justification of these

formal observations in order to prove the proposition.

6.2 Completing the proof of Theorem B

Now we have an explicit formula for the fundamental solution φ of the

scalar Laplacian on the 3-torus T 3, and just as in R3, both the scalar and
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vector Green’s operators act by convolution with φ. In particular, if V is

a smooth vector field on T 3, then Gr(V ) = V ∗ φ, that is,

Gr(V )(τ) =

∫
T 3

V (σ)φ(τ − σ) dσ.

To obtain the formula for the magnetic field BS(V ), we take the negative

curl of the above formula and get

BS(V )(τ) = −∇τ ×Gr(V )(τ) = −
∫
T 3

∇τ × (V (σ)φ(τ − σ)) dσ

=

∫
T 3

V (σ)×∇τφ(τ − σ) dσ.

Then the helicity of V is given by

Hel(V ) =

∫
T 3

V (τ) � BS(V )(τ) dτ

=

∫
T 3×T 3

V (σ)× V (τ) � ∇σφ(σ − τ) dσ dτ.

Applying this to the vector field VL associated with our 3-component

link L, we get the desired formula for the Pontryagin invariant ν of gL:

ν(gL) = Hopf(gL) = Hel(VL) =

∫
T 3

BS(VL) � VL d(vol)

=

∫
T 3×T 3

VL(σ)× VL(τ) � ∇σφ(σ − τ) dσ dτ.

Hence by Theorem A, Milnor’s µ-invariant of the 3-component link L

is given by

µ(L) =
1

2
ν(gL) =

1

2

∫
T 3×T 3

VL(σ)× VL(τ) � ∇σφ(σ − τ) dσ dτ,

completing the proof of Theorem B.
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[2007] Cencelj, M.; Repovš, D.; Skopenkov, M. B., Classification of framed

links in 3-manifolds, Proc. Indian Acad. Sci. Math. Sci. 117, no. 3,

301-306. arXiv:0705.4166v2 [math.GT].
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