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Abstract

In this paper we introduce a local approach for the study of

maximal surfaces immersed into a Lorentzian product space of the

form M2 × R1, where M
2 is a connected Riemannian surface and

M2×R1 is endowed with the product Lorentzian metric. Specifically,

we establish a local integral inequality for the squared norm of the

second fundamental form of the surface, which allows us to derive

an alternative proof of our Calabi-Bernstein theorem given in [1].
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1 Introduction

Maximal surfaces in 3-dimensional Lorentzian manifolds, that is, space-

like surfaces with zero mean curvature, have become a research field of

increasing interest in recent years, both from mathematical and physical

points of view. In fact, one of the most relevant global results for max-

imal surfaces in Lorentzian geometry is the well-known Calabi-Bernstein

theorem, which states that the only complete maximal surfaces in the

3-dimensional Lorentz-Minkowski space R3
1 are the spacelike planes.

This result was firstly proved by Calabi [4] and extended later to ar-

bitrary dimension by Cheng and Yau [5]. After that, several extensions

and generalizations of the Calabi-Bernstein theorem have been given, and

several alternatives proofs have been provided. In particular, in [3] the sec-

ond author jointly with Palmer introduced a new approach to the Calabi-

Bernstein theorem in the Lorentz-Minkowski space R3
1 based on a local

integral inequality for the Gaussian curvature of a maximal surface in R3
1

which involved the local geometry of the surface and the image of its Gauss

map. As an application of it, they provided a new proof of the Calabi-

Bernstein theorem in R3
1. In this paper, we generalize this local approach

to the case of maximal surfaces in a product spaceM2×R, whereM2 is a

connected Riemannian surface and M2 × R is endowed with the product

Lorentzian metric

⟨, ⟩ = π∗M (⟨, ⟩M )− π∗R(dt
2).

Here πM and πR stand for the projections from M2 × R onto each factor

and ⟨, ⟩M is the Riemannian metric on M . For simplicity, we will simply

write

⟨, ⟩ = ⟨, ⟩M − dt2,

and we will denote by M2 × R1 the 3-dimensional Lorentzian product

manifold obtained in that way. Specifically, we will prove the following

extension of [3, Theorem 1].

Theorem 1. LetM2 be an analytic Riemannian surface with non-negative

Gaussian curvature, KM ≥ 0, and let f : Σ2→M2 × R1 be a maximal sur-
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face inM2 × R1. Let p be a point of Σ and R > 0 be a positive real number

such that the geodesic disc of radius R about p satisfies D(p,R) ⊂⊂ Σ.

Then for all 0 < r < R it holds that

0 ≤
∫
D(p,r)

∥A∥2dΣ ≤ cr
L(r)

r log (R/r)
, (1)

where L(r) denotes the length of the geodesic circle of radius r about p,

and

cr =
π2(1 + α2

r)
2

4αr arctanαr
> 0.

Here

αr = sup
D(p,r)

cosh θ ≥ 1,

where θ denotes the hyperbolic angle between N and ∂t along Σ.

In particular, when Σ is complete then the local integral inequality (1)

provides an alternative proof of the following parametric version of the

Calabi-Bernstein type result for complete maximal surfaces in Lorentzian

product spaces given by the authors in [1, Theorem 3.3].

Corollary 2. Let M2 be a (necessarily complete) analytic Riemannian

surface with non-negative Gaussian curvature, KM ≥ 0. Then any com-

plete maximal surface Σ2 in M2 × R1 is totally geodesic. In addition, if

KM > 0 at some point on M , then Σ is a slice M × {t0}, t0 ∈ R.

As another application of Theorem 1, at points of a maximal surface

where the second fundamental form does not vanish, we are able to esti-

mate the maximum possible geodesic radius in terms of a local positive

constant.

Corollary 3. LetM2 be an analytic Riemannian surface with non-negative

Gaussian curvature and let f : Σ2→M2 × R1 be a maximal surface in

M2 × R1 which is not totally geodesic. Assume that p ∈ Σ is a point

with ∥A∥(p) ̸= 0 and let r > 0 be a positive real number such that

Dr = D(p, r) ⊂⊂ Σ. Then

R ≤ reCr
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for every R > r with D(p,R) ⊂⊂ Σ, where

Cr =
crL(r)

r
∫
Dr

∥A∥2
> 0

is a local positive constant depending only on the geometry of f |D(p,r).

A similar estimate for stable minimal surfaces in 3-dimensional Rieman-

nian surfaces with non-negative Ricci curvature was given by Schoen in [6].

See also [2] for another similar estimate given by the second author and

Palmer for the case of non-flat spacelike surfaces with non-negative Gaus-

sian curvature and zero mean curvature in a flat 4-dimensional Lorentzian

space.

2 Preliminaries

A smooth immersion f : Σ2→M2 × R1 of a connected surface Σ2 is said

to be a spacelike surface if the induced metric via f is a Riemannian metric

on Σ, which as usual is also denoted by ⟨, ⟩. Observe that

∂t = (∂/∂t)(x,t), x ∈M, t ∈ R,

is a unitary timelike vector field globally defined on the ambient spacetime

M2 × R1. This allows us to consider the unique unitary timelike normal

field N globally defined on Σ which is in the same time-orientation as ∂t,

so that

⟨N, ∂t⟩ ≤ −1 < 0 on Σ.

We will refer to N as the future-pointing Gauss map of Σ, and we will

denote by Θ : Σ→(−∞,−1] the smooth function on Σ given by Θ =

⟨N, ∂t⟩. Observe that the function Θ measures the hyperbolic angle θ

between the timelike future-pointing vector fields N and ∂t along Σ, since

cosh θ = −Θ.

Let ∇ and ∇ denote the Levi-Civita connections in M2 × R1 and Σ,

respectively, and let A : TΣ→TΣ stands for the shape operator (or second
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fundamental form) of Σ with respect to its future-pointing Gauss map N .

It is well known that the Gauss and Weingarten formulae for the spacelike

surface f : Σ2→M2 × R1 are given by

∇XY = ∇XY − ⟨AX,Y ⟩N (2)

and

AX = −∇XN, (3)

for any tangent vector fields X,Y ∈ TΣ. The mean curvature of a

spacelike surface f : Σ2→M2 × R1 is defined by H = −(1/2)trA, and

f : Σ2→M2 × R1 is said to be a maximal surface when H vanishes on Σ.

The Gauss equation of a spacelike surface Σ describes its Gaussian

curvature K in terms of the shape operator and the curvature of the

ambient space and it is given by

K = K − detA, (4)

where K denotes the sectional curvature in M2 ×R1 of the plane tangent

to Σ. On the other hand, if R stands for the curvature tensor of the

Lorentzian productM2 × R1, then the Codazzi equation of Σ describes the

tangent component of R(X,Y )N , for any tangent vector fieldsX,Y ∈ TΣ,

in terms of the derivative of the shape operator. Specifically, it is given

by

(R(X,Y )N)⊤ = (∇XA)Y − (∇YA)X, (5)

where ∇XA denotes the covariant derivative of A, that is,

(∇XA)Y = ∇X(AY )−A(∇XY ).

In the particular case where f : Σ2→M2 × R1 is a maximal surface, it

is not difficult to see that the Gauss (4) and Codazzi (5) equations for Σ

become

K = κMΘ2 +
1

2
∥A∥2 (6)

and

(∇XA)Y = (∇YA)X + κMΘ(⟨X, ∂⊤t ⟩Y − ⟨Y, ∂⊤t ⟩X), (7)
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for any tangent vector fields X,Y ∈ TΣ, respectively. Here ∥A∥2 = tr(A2)

and κM stands for the Gaussian curvature of M along the surface Σ, that

is, κM = KM ◦ Π ∈ C∞(Σ) where KM is the Gaussian curvature of M

and Π = πM ◦ f : Σ→M denotes the projection of Σ onto M . Here and

in what follows, Z⊤ ∈ TΣ denotes the tangential component of a vector

field Z along the immersion f : Σ2→M2 × R1, that is

Z = Z⊤ − ⟨N,Z⟩N.

Thus, in particular,

∂⊤t = ∂t +ΘN, (8)

(for the details see [1]). Taking norms in the last expression we get

∥∂⊤t ∥2 = Θ2 − 1. (9)

It is well known that a spacelike surface f : Σ2→M2 × R1 is locally a

spacelike graph over M (see for instance [1, Lemma 3.1]), that is, for any

given point p ∈ Σ, there exists an open subset Ω on M containing Π(p),

Π(p) ∈ Ω ⊂M , and a function u ∈ C∞(Ω) such that the surface Σ is locally

given in a neighborhood of p by Σ(u) = {(x, u(x)) : x ∈ Ω} ⊂ M2 × R1.

Therefore, the metric induced on Σ(u) from the Lorentzian metric on the

ambient space is given by

⟨, ⟩ = ⟨, ⟩M − du2. (10)

The condition that Σ(u) is spacelike becomes |Du|2 < 1 on Ω ⊂M , where

Du denotes the gradient of u in M and |Du| denotes its norm. Finally, it

is not difficult to see that the mean curvature function H of Σ(u) is given

by

2H = Div

(
Du√

1− |Du|2

)
,

on Ω, where Div stands for the divergence operator on M with respect to

the metric ⟨, ⟩M . In particular, a spacelike immersion f : Σ2→M2 × R1
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is a maximal surface if and only if it is locally given as the graph of a

function u satisfying the following partial differential equation,

Div

(
Du√

1− |Du|2

)
= 0, |Du|2 < 1. (11)

3 Proof of the results

The proof of Theorem 1 is inspired by the ideas in [3], and it is an

application of the following intrinsic property.

Lemma 4. [3, Lemma 3] Let Σ be an analytic Riemannian surface with

non-negative Gaussian curvature K ≥ 0. Let ψ be a smooth function on

Σ which satisfies

ψ∆ψ ≥ 0

on Σ. Then for 0 < r < R∫
Dr

ψ∆ψ ≤ 2L(r)

r log (R/r)
sup
DR

ψ2,

where Dr denotes the geodesic disc of radius r about a fixed point in Σ,

Dr ⊂ DR ⊂⊂ Σ, and L(r) denotes the length of ∂Dr, the geodesic circle

of radius r.

Proof of Theorem 1. Observe that since M is analytic and Σ is locally

given by the maximal surface equation (11), then Σ, endowed with the

induced metric, is also an analytic Riemannian surface. Besides, from (6)

we also know that the Gaussian curvature of Σ is non-negative, K ≥ 0.

Therefore, we may apply Lemma 4 to an appropriate smooth function ψ.

Let us consider ψ = arctanΘ.

Since ∂t is parallel on M
2 × R1 we have that

∇X∂t = 0 (12)

for any tangent vector field X ∈ TΣ. Thus,

X(Θ) = ⟨∇XN, ∂t⟩ = −⟨AX, ∂⊤t ⟩ = −⟨X,A∂⊤t ⟩



8 A. L. Albujer and L. J. Aĺıas

for every X ∈ TΣ, and then the gradient of Θ on Σ is given by

∇Θ = −A∂⊤t . (13)

Therefore, from (13) and (9) we obtain

∥∇Θ∥2 = 1

2
∥A∥2(Θ2 − 1), (14)

since for a maximal surface it holds A2 = (1/2)∥A∥2I.
On the other hand, taking into account (8), and using Gauss (2) and

Weingarten (3) formulae, (12) also yields

∇X∂
⊤
t = −ΘAX (15)

for every X ∈ TΣ. Therefore, using Codazzi equation (7) and equations

(9) and (15) we get

∇X∇Θ = −(∇XA)(∂
⊤
t )−A(∇X∂

⊤
t )

= −(∇∂⊤
t
A)(X)− κMΘ

(
⟨X, ∂⊤t ⟩∂⊤t − ∥∂⊤t ∥2X

)
+ΘA2X

= −(∇∂⊤
t
A)(X) + κMΘ

(
(Θ2 − 1)X − ⟨X, ∂⊤t ⟩∂⊤t

)
+ΘA2X,

for every X ∈ TΣ. Thus, the Laplacian of Θ is given by

∆Θ = Θ(κM (Θ2 − 1) + ∥A∥2), (16)

since

tr(∇∂⊤
t
A) = ∇∂⊤

t
(trA) = 0.

Using (16) and (14) we can compute

∆ψ =
∆Θ

1 +Θ2
− 2Θ∥∇Θ∥2

(1 + Θ2)2
=

2Θ

(1 + Θ2)2
∥A∥2 + (Θ2 − 1)Θ

1 + Θ2
κM ,

and therefore, taking into account that Θ arctanΘ ≥ 0, Θ ≤ −1 and

κM ≥ 0, we obtain

ψ∆ψ =
2ΘarctanΘ

(1 + Θ2)2
∥A∥2 + (Θ2 − 1)Θ arctanΘ

1 + Θ2
κM ≥ ϕ(Θ)∥A∥2, (17)
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where

ϕ(s) =
2s arctan s

(1 + s2)2
.

Observe that the function ϕ(s) is strictly increasing for s ≤ −1. Since

−αr ≤ Θ ≤ −1 on D(p, r), we get

ϕ(Θ) ≥ ϕ(−αr) =
2αr arctanαr

(1 + α2
r)

2
on D(p, r),

which, jointly with (17), yields

ψ∆ψ ≥ 2αr arctanαr

(1 + α2
r)

2
∥A∥2 on D(p, r).

Integrating now this inequality over D(p, r) and using Lemma 4 we con-

clude that

0 ≤ 2αr arctanαr

(1 + α2
r)

2

∫
D(p,r)

∥A∥2dΣ ≤
∫
D(p,r)

ψ∆ψ ≤ π2

2

L(r)

r log (R/r)
,

which yields (1).

2

Proof of Corollary 2. Since Σ is complete, then R can approach to

infinity in (1) for a fixed arbitrary p ∈ Σ and a fixed r, which gives∫
D(p,r)

∥A∥2dΣ = 0.

Therefore, ∥A∥2 = 0 and Σ must be totally geodesic. From (13), this

implies that Θ = Θ0 ≤ −1 is constant on Σ, and then (16) implies that,

when KM > 0 somewhere in M , it must be Θ0 = −1. Finally, by (9) we

conclude that Σ must be a slice.

2

Corollary 3 is a direct consequence of Theorem 1.
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