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Abstract

We give an Enneper-type representation for minimal surfaces in

the product of the hyperbolic plane with the real line. We apply this

representation to study the Gauss map of minimal surfaces in this

space.

1 Introduction

In [1] P. Andrade introduced a new method to describe minimal surfaces

in the Euclidean three-dimensional space which is equivalent to the classi-

cal Weierstrass representation. The method described by Andrade allows

to construct a local conformal minimal immersion χ : Ω ⊂ C → C × R,
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from a harmonic function h : Ω → R, provided that one chooses two

holomorphic functions L,H : Ω → C satisfying:

LzHz = (hz)
2 and |Lz(z)|+ |Hz(z)| ≠ 0, ∀z ∈ Ω.

The desired conformal minimal immersion terns out to be χ(z) = (L(z)−
H(z), h(z)) and it is now called an Enneper immersion associated to h.

The image χ(Ω) is called an Enneper graph of h and it is known that any

immersed minimal surface in R3 is, locally, the Enneper graph of some

harmonic function [1].

In the first part of this note we shall give an Enneper-type representation

for minimal surfaces in H2 × R by using the Weierstrass-type formula for

minimal surfaces in H2 × R described in [9].

The second part is devoted to the Gauss map of a minimal surface in

H2 × R. We shall apply the Enneper-type representation to prove that

given a non-holomorphic complex function g : M → C, satisfying a certain
condition, there exists a unique minimal immersion χ : M → H2×R with

Gauss map g.

We would like to point out that the theory of minimal surfaces in the

product H2 × R is nowadays a very rich subject, which is growing very

rapidly, with major contributions from P. Collin, B. Daniel, L. Hauswirth,

B. Nelli, R. Sa Earp, H. Rosenberg, E. Toubiana (see, for example, [2, 6,

10, 11, 12]). Other authors have considered the Gauss map for minimal

surfaces in H2 × R and we refer the reader to [4, 8, 7] and the references

therein.

2 Preliminaries

We shall use the upper half-plane model {(x1, x2) ∈ R2 |x2 > 0} for the

hyperbolic space H2 endowed with the metric gH = (dx21 + dx22)/x
2
2. The

space H2 × R, with the group structure given by

(x1, x2, x3) ∗ (x′1, x′2, x′3) = (x′1x2 + x1, x2x
′
2, x3 + x′3), (2.1)
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is a three-dimensional Lie group and the product metric gH2×R = gH + dx23
is left invariant. With respect to the metric gH2×R an orthonormal basis

of left invariant vector fields is given by

E1 = x2
∂

∂x1
, E2 = x2

∂

∂x2
, E3 =

∂

∂x3
.

2.1 The Gauss map

Lets G be a (n+1)-dimensional Lie group endowed with a left invariant

metric and Mn an orientable hypersurface of G. Denoting by e the iden-

tity of G and by Sn the unit sphere centred at the origin of the tangent

space TeG, we define the Gauss map

γ : M → Sn ⊂ TeG

by

γ(p) = (dLp−1)p(ξ(p)), p ∈ M.

Here Lp : G→ G is the left translation and ξ is a unit differentiable vector

field of G normal to M. Since Lp is an isometry we have

dγp(TpM) ⊆ Tγ(p)Sn

= {γ(p)}⊥ = (dLp−1)p(ξ(p)
⊥)

= (dLp−1)p(TpM).

(2.2)

Consequently,

(dLp)e(dγp(TpM)) ⊆ TpM.

Let now {E1, . . . , En+1} be an orthonormal basis of left invariant vector

fields of G. Writing

ξ =
n+1∑
i=1

ξiEi,

it results that

γ(p) =

n+1∑
i=1

ξi(p)Ei(e).
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2.2 The Weierstrass representation

From now on, Ω denotes a simply connected domain in the complex

plane C, z = u+ iv (with u, v ∈ R) the complex coordinate and, as usual,

we will adopt the following notation for the complex derivatives:

∂

∂z
=

1

2

( ∂

∂u
− i

∂

∂v

)
;

∂

∂z̄
=

1

2

( ∂

∂u
+ i

∂

∂v

)
.

As a convention we shall write, for a complex function f , ∂f
∂z = fz and

so on. With Re(f) and Im(f) we shall denote the real and imaginary

parts of f respectively.

With the above notations we have the following representation of min-

imal surfaces in H2 × R.

Theorem 2.1 ([9]). Let ψi, i = 1, 2, 3, three complex valued functions

defined in the domain Ω, such that the following conditions hold:

3∑
i=1

ψ2
i = 0,

3∑
i=1

|ψi|2 ̸= 0,


(ψ1)z̄ − ψ1ψ2 = 0

(ψ2)z̄ + |ψ1|2 = 0

(ψ3)z̄ = 0.

(2.3)

Then, for a fixed point z0 ∈ Ω, the map χ : Ω → H2 × R given by

χ(z) =

(
2Re

∫ z

zo

χ2 ψ1 dz, χ2, 2Re
∫ z

zo

ψ3 dz

)
,

where ln(χ2) = 2Re
∫ z
zo
ψ2 dz, defines a conformal minimal immersion.

As in the Euclidean case, rewriting the equation
∑3

i=1 ψ
2
i = 0 like

ψ2
3 = −(ψ1 + iψ2)(ψ1 − iψ2)

and assuming that ψ1 − iψ2 is not identically zero, we can introduce the

following complex functions:

f = ψ3 and g =
ψ3

ψ1 − iψ2
= −ψ1 + iψ2

ψ3
. (2.4)
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From g and f we can reconstruct the ψi setting
ψ1 =

f

2g
(1− g2),

ψ2 =
if

2g
(1 + g2),

ψ3 = f.

(2.5)

Moreover, with respect to f and g, (2.3) becomes
fz̄ = 0

gz̄ +
i

2

f̄ g

ḡ
(1− ḡ2) = 0.

(2.6)

The triple (Ω, g, f) is called the Weierstrass data of χ.

Remark 2.2. With respect to the function g, defined in (2.4), the Gauss

map of χ is

γ =
1

|g|2 + 1
[2Re(g)E1(e) + 2 Im(g)E2(e) + (|g|2 − 1)E3(e)].

Thus, using the extended stereographic projection π : S2(1) → C ∪ {∞},
we have

π ◦ γ = g.

This means that g can be identified with the Gauss map of χ.

3 Enneper-type immersions in H2 × R

We start this section by proving an Enneper-type formula for minimal

surfaces in H2 × R.

Theorem 3.1. Let h : Ω → R be a harmonic function and let F : Ω → C
be a complex valued function with positive imaginary part such that the

following conditions are satisfied:

(hz)
2 = − FzF z

Im(F )2
, (3.1)
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|Fz|+ |F z| ≠ 0, (3.2)

and
∂

∂z̄

(Im(F )

F z

)
+ i

(Re(F ))z̄
F z

= 0. (3.3)

Then the map χ : Ω → H2 × R, defined by χ(z) =
(
F (z), h(z)

)
, is a

conformal minimal immersion.

Proof: We shall apply Theorem 2.1. Let define three complex functions
ψ1 =

(Re(F ))z
Im(F )

,

ψ2 =
(Im(F ))z
Im(F )

,

ψ3 = hz.

(3.4)

Then, the ψi satisfy 
ψ1 + iψ2 =

Fz

Im(F )
,

ψ1 − iψ2 =
F z

Im(F )
.

(3.5)

Now, from (3.2), it results that

3∑
i=1

|ψi|2 =
(|Fz|+ |F z|)2

2 Im(F )
̸= 0.

Moreover, using (3.5) and (3.1), it is straightforward to check that

3∑
i=1

ψ2
i =

FzF z

Im(F )2
+ (hz)

2 = 0,

We now observe that, as h is a harmonic function, f = ψ3 = hz is holo-

morphic and that

g =
ψ3

ψ1 − iψ2
= hz

Im(F )

F z

. (3.6)

Consequently, from (3.3) and taking into account (3.1), we have

gz̄ +
i

2

f̄ g

ḡ
(1− ḡ2) = hz

[ ∂
∂z̄

(Im(F )

F z

)
+ i

(Re(F ))z̄
F z

]
= 0.
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Thus f and g satisfy (2.6) and using Theorem 2.1 we can conclude.

2

Remark 3.2. Condition (3.1) ensures that χ is conformal while (3.2) that

it is an immersion. Equation (3.3), which guaranties minimality, can be

rewritten as:

Fzz̄ + i
Fz̄Fz

Im(F )
= 0, (3.7)

which means that F is a harmonic map from (Ω, |dz|2) to (H2, gH).

The Weierstrass data of an Enneper immersion χ are given by

(Ω, g, f) =

(
Ω, hz

Im(F )

F z

, hz

)
.

Also, in analogy to the Euclidean case, we shall call

Dχ =

(
Fz

Im(F )
,− F z

Im(F )
, hz

)
(3.8)

the Enneper data of χ.

We now construct some examples of minimal immersions starting from

the Enneper data. The simplest case is when hz = 1. In this case we must

have

Dχ =

(
1

A
,A, 1

)
where A is a complex valued function such that

Fz

Im(F )
=

1

A
F z

Im(F )
= −A.

(3.9)

Example 3.3. We assume that A is a real valued function. Substituting

(3.9) in (3.3) it results

2Az̄ = i (1−A2)

which implies that Au = 0

Av = 1−A2.
(3.10)



206 S. Montaldo and I. I. Onnis

Denoting the real and imaginary parts of F by L and H respectively and

substituting (3.9) in (3.7) we get

Fzz̄ = i Im(F ),

which gives ∆L = 0

∆H = 4H.
(3.11)

Now, the first equation of (3.9) is equivalent toLu +Hv =
2H

A

Hu − Lv = 0.
(3.12)

Differentiating (3.12) and using (3.11) gives immediately

Lv = Hu = 0.

Finally, form the first equation of (3.12), we deduce that Lu = c = costant.

The function H can be computed using (3.10) and

2H

A
−Hv = c.

The corresponding minimal immersion is given by

χ(z) = (L(z), H(z), 2Re(z)) = (cu+ c1, H(z), 2u), c1 ∈ R,

which is clearly either a part of the plane x3 =
2
cx1 −

2c1
c , when c ̸= 0, or

a part of the plane x1 = c1 otherwise.

Example 3.4 (The helicoid). We now assume that A is a complex valued

function. Denoting by B and C the real and imaginary parts of A, with

calculations similar to those in the previous example we find that B and

C are solutions of 
Bu − Cv =

−2BC

|A|2

Cu +Bv =
B2 − C2 − |A|4

|A|2
.

(3.13)
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One can check that
B =

(sin v + cos v)(cos(2u) + sin(2v))

(sin v − cos v)(1 + cos(2u) sin(2v))

C =
sin(2u)(sin v + cos v)2

1 + cos(2u) sin(2v)

(3.14)

is a solution of (3.13). The corresponding Enneper immersion is a minimal

helicoid in H2 × R given by:

χ(u, v) =

(
sin(2u) sin(2v)

1 + cos(2u) sin(2v)
,

cos(2v)

1 + cos(2u) sin(2v)
, 2u

)
.

From (3.6), we have that g = −A(u, v)−1 and, therefore, we conclude that

the rank of the Gauss map of the helicoid is two.

Example 3.5 (Horizontal planes). If F is holomorphic and Fz ̸= 0, then

(3.2) and (3.3) of Theorem 3.1 are satisfied and (3.1) implies that h(z) =

χ3(z) = c ∈ R. This gives the conformal immersion in H2 × R of the

totally geodesic plane z = c.

We now show that any minimal surface in H2 × R can be rendered as

the Enneper graph of a harmonic function. More precisely, we have the

following

Theorem 3.6. Let ρ̃ : M2 → H2 × R ⊂ C × R be a minimal immersion

of a surface M in H2 × R. Then there exists a simply connected domain

Ω ⊂ C and a harmonic function h : Ω ⊂ C → R such that the immersed

minimal surface ρ̃(M) is an Enneper graph of h.

Proof: Suppose that the minimal immersion is given by ρ̃(z) = (ρ̃1(z) +

iρ̃2(z), ρ̃3(z)), with ρ̃2(z) > 0. Since M is minimal it cannot be compact

(if it were, then the third component would be a harmonic function on a

compact surface and thus constant) so, from the Uniformization Theorem,

it results that its covering space Ω is either the complex plane C or the

open unit complex disc.
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We denote by π : Ω → M the universal covering of M and by ρ : Ω →
H2×R the lift of ρ̃, i.e. ρ = ρ̃◦π. Since ρ is a conformal minimal immersion,

putting ϕ(z) = ρz(z) it follows, from [9], that
∑3

i,j=1 gijϕiϕj = 0, that is

(ρ1)
2
z + (ρ2)

2
z

(ρ2)2
+ (ρ3)

2
z = 0. (3.15)

Moreover, the minimality of ρ reduces to the following system:

∂

∂z̄

(ρ1)z
ρ2

− (ρ1)z(ρ2)z
ρ22

= 0

∂

∂z̄

(ρ2)z
ρ2

+
|(ρ1)z|2

ρ22
= 0

(ρ3)zz̄ = 0.

(3.16)

Last equation of (3.16) means that the function ρ3(z) is a harmonic

function. Moreover, (3.15) suggests to define, for a fixed point z0 ∈ Ω, the

following two complex functions:h(z) = ρ3(z)

F (z) =
∫ z
z0
[(ρ1)z + i (ρ2)z] dz +

∫ z
z0
[(ρ1)z̄ + i (ρ2)z̄] dz̄.

Since Ω is simply connected and the 1-forms (ρi)z dz don’t have real peri-

ods, the above integrals don’t depend on the path from z0 to z, so there

are well defined. We shall prove that ρ(z) = (F (z), h(z)). For this, we

have

F (z) =

∫ z

z0

[(ρ1)z + i (ρ2)z] dz +

∫ z

z0

[(ρ1)z̄ + i (ρ2)z̄] dz̄

=

∫ z

z0

dρ1 + i

∫ z

z0

dρ2 = ρ1(z) + iρ2(z),

where, in the last equality, we have assumed, without loss of generality,

that ρ(z0) = (0, 0, 0). Next, from

F z = (ρ1)z − i(ρ2)z, Fz = (ρ1)z + i(ρ2)z, Im(F ) = ρ2,

and taking into account (3.15), it results that

− FzF z

Im(F )2
= −(ρ1)

2
z + (ρ2)

2
z

(ρ2)2
= (ρ3)

2
z = (hz)

2,
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which is condition (3.1) of Theorem 3.1. In order to verify condition

(3.2) of Theorem 3.1, subtract to the first equation of (3.16) the second

multiplied by i to get

∂

∂z̄

(
(ρ1)z − i(ρ2)z

ρ2

)
= i (ρ1)z

(ρ1)z − i(ρ2)z
ρ22

.

Using this equality we conclude that

∂

∂z̄

(Im(F )

F z

)
+ i

(Re(F ))z̄
F z

=
∂

∂z̄

(
ρ2

(ρ1)z − i(ρ2)z

)
+ i

(ρ1)z
(ρ1)z − i(ρ2)z

=
∂

∂z̄

(
ρ2

(ρ1)z − i(ρ2)z

)
+

(ρ2)
2

[(ρ1)z − i(ρ2)z]2
∂

∂z̄

(
(ρ1)z − i(ρ2)z

ρ2

)
= 0.

Finally, to prove that ρ is an Enneper immersion associated to the har-

monic function h, we must verify (3.2), or equivalently that, for all z ∈ Ω,

|(ρ1)z + i(ρ2)z|+ |(ρ1)z − i(ρ2)z| ≠ 0.

Suppose that there exists a point z1 ∈ Ω such that(
(ρ1)z + i(ρ2)z

)
(z1) = 0 and

(
(ρ1)z − i(ρ2)z

)
(z1) = 0.

Then (ρ1)z(z1) = (ρ2)z(z1) = 0 and, from (3.15), (ρ3)z(z1) = 0. This

means that ρu(z1) = ρv(z1) = 0 which is in contradiction to the fact that

ρ is an immersion.

2

4 The Gauss map

In this section we study the Gauss map g of a minimal surface in (H2×
R, gH2×R). We start showing the following important fact.

Proposition 4.1. If χ : M2 → H2×R is a conformal minimal immersion

of a surface M2 in the space H2×R, then the Gauss map g of χ satisfies:

gzz̄ =

(
gz
g

− (1 + g2)

g(1− g2)
ḡz

)
gz̄. (4.1)
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Proof: We know, from the second equation of (2.6), that

gz̄ +
i

2

f̄ g

ḡ
(1− ḡ2) = 0.

Differentiating this equation with respect to z̄ and using the fact that

f̄z = 0, we get (4.1).

2

Remark 4.2. In terms of the Gauss map g the Enneper data (3.8) be-

comes:

Dχ =
2 i ḡz

g(1− g2)
(g2, 1,−g).

The importance of Proposition 4.1 will become manifest in the following:

Theorem 4.3. Let M2 be a simply connected Riemann surface. Let g :

M → C be a non-holomorphic solution of (4.1) and fix z0 ∈ M, F0 ∈ C
and h0 ∈ R. Then there exists a unique minimal immersion χ : M →
H2 × R, χ(z) = (F (z), h(z)), with Gauss map g and χ(z0) = (F0, h0).

Moreover, the immersion χ satisfies the equations:

Fz = 2i
g2gz

g(1− g2)
Im(F ), Fz̄ = 2i

gz̄
g(1− g2)

Im(F )

and

hz = −2i
ggz

g(1− g2)
.

Proof: For the proof we follow the idea given by B. Daniel in [3]. We

consider the differential system:
Fz = 2i

g2gz
g(1− g2)

Im(F ) := A Im(F )

Fz̄ = 2i
gz̄

g(1− g2)
Im(F ) := B Im(F ).

(4.2)

Using (4.1), we can prove that

2i(Az̄ −Bz) + |B|2 − |A|2 = 0,
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which is equivalent to

Fzz̄ = Fz̄z. (4.3)

From Frobenius’s Theorem (see, for example, [5, pag. 92]) the integrability

condition of (4.2) reduces to (4.3). Thus, as M is simply connected, we

conclude that (4.2) admits a unique solution F : M → C with F (z0) = F0.

We now consider the equation

hz = −2i
ggz

g(1− g2)
. (4.4)

Using again (4.1), it is not hard to check that hzz̄ = 0 and thus there

exists a unique solution h : M → R so that h(z0) = h0. If we define

χ(z) = (F (z), h(z)), it is obvious that χ(z0) = (F0, h0) and that

(hz)
2 = − FzF z

Im(F )2
.

This equation implies that χ is conformal (apply (3.1) of Theorem 3.1).

Now, differentiating the first equation in (4.2) with respect to z̄ and

using (4.1), it follows that 2Az̄ = −iA(A+B), which is equivalent to

Fzz̄ + i
FzFz̄

Im(F )
= 0.

Therefore, from Remark 3.2, we conclude that χ is minimal. Also, since

gz̄ ̸= 0, we have

|Fz|2 + |Fz̄|2 ̸= 0,

which guarantees that χ is an immersion.

Finally, from (4.4) and the second equation of (4.2), it results that

g = i
g(1− g2)

2gz
hz =

Im(F )

F z

hz

so, comparing with (3.6), we deduce that g is the Gauss map of the im-

mersion χ.

2
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