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Abstract

The subject of this paper is the group of diffeomorphisms

generated by the flows of the gradient vector fields of the

height functions on a manifold M immersed on an Euclidean

space. A related object is the Lie algebra generated by those
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In higher dimension it is proved that the Lie algebra is semi-

simple if M is compact and the holonomy group has no trivial

subrepresentations. In this case the isotropy Lie algebra is

parabolic, so that M is a covering of a flag manifold.

1 Introduction

Let f : Mn → RN be an immersion of the manifold M into the

Euclidian space RN with inner product ⟨·, ·⟩. By the gradient group

of f : M → RN we mean the group of diffeomorphisms generated

by the flows of the gradients of the height functions. Precisely, for

v ∈ RN let hv (x) = ⟨v, x⟩ be the corresponding height function and

denote by Xv = gradhv its gradient with respect to the induced

Riemannian metric on M . It is well known, and easy to prove, that

Xv (x) is the orthogonal projection of v into TxM (in fact, dhv(u) =

⟨v, u⟩ = ⟨projTyMv, u⟩ if u, v are tangent vectors).

We assume throughout that M is substantial, which means that

it is not contained in an affine subspace of Rn. This implies that

the map that associates v ∈ Rn to the gradient vector field Xv is

injective.

Write Xv
t for the flow of Xv and perform all the possible composi-

tions

gr (f) = {Xv1
t1 ◦ · · · ◦Xvk

tk
: vi ∈ RN , ti ∈ R, k ≥ 1}.

The elements of gr (f) are local diffeomorphisms of M and we call

gr (f) the gradient group of the immersion f : M → RN . Of course

the term “group” here is misleading since this set of local diffeomor-

phisms may not be a group due to the restrictions in the composi-

tions. However if the vector fields Xv are complete (e.g. if M is

compact) then gr (f) is a bona fide subgroup of the diffeomorphism
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group Diff (M) of M .

In this article we address the problem of finding those immersions

f : M → RN such that gr (f) is finite dimensional.

Here by the dimension of gr (f) we understand the dimension of

its Lie algebra in the following sense: Let us suppose once and for

all that M and f are smooth (C∞). Then the vector fields Xv are

smooth as well. Hence it makes sense to take successive Lie brackets

of these vector fields and generate a Lie subalgebra of the Lie algebra

of vector fields of M . We denote this subalgebra by gr (f), which is

the smallest subalgebra containing Xv, v ∈ RN . We say that gr (f)

is finite dimensional if dim gr (f) < ∞, so that our problem is to

determine the immersions f : M → RN such that gr (f) is finite

dimensional.

We note that by a classical theorem of Palais the flows of the vector

fields X ∈ gr (f) generate a Lie group G in case dim gr (f) < ∞
and the vector fields X ∈ gr (f) are complete. In this case the Lie

algebra g of G is isomorphic to gr (f) and the natural action of G on

M turns M into a homogenous space such that gr (f) is obtained by

the infinitesimal action of g. It follows that gr (f) = G is a Lie group

with Lie algebra gr (f). Furthermore G is connected and its action

on M is transitive and effective (by the very construction of G as a

group of diffeomorphisms).

This paper has two independent but complementary parts. In the

first one we consider the case of curves (dimM = 1) in RN and

determine all the immersed smooth curves such that the Lie algebra

gr (f) is finite dimensional. We prove in Section 2 that such a curve

must be analytic, so that we can use Taylor expansions techniques.

Now the basic result that makes a classification available is Corollary

3.3 which shows that dim gr (f) ≤ 3 if dimM = 1 and gr (f) is finite

dimensional. This has as a consequence that the ambient Euclidean
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space RN has dimension at most three. Afterwards (see Theorem

3.5) we show that dimension three is not allowed as well, so that a

curve with finite dimensional gradient group is contained in a plane.

This way we proceed to classify the curves by the dim gr (f). The

case is trivial if dim gr (f) = 1 because M must be a piece of a

straight line. If dim gr (f) = 2 there exists essentially just one curve

also, which is given explicitly in Theorem 4.1. On the other hand

those curves having dim gr (f) = 3 are given as the solutions of an

ordinary differential equation (see the classification Theorem 6.2).

We start to look at higher dimensional manifolds at Section 7.

We first prove a result relating gr (f) to the holonomy group of M ,

namely that the later is contained in the linear isotropy group of

gr (f). This result opens the way to apply Lie group methods when

the manifold M satisfies the following two conditions:

1. M is compact, and

2. the representation of the holonomy Lie algebra on the tangent

space has no trivial subrepresentations.

The second of these conditons rules out the case where dimM =

1, treated in the first part. This is because a 1-dimensional real

representation of the holonomy algebra (a Lie subalgebra of so (n))

is trivial. Hence the first part of the paper complements the second

one.

Now, the condition on the holonomy algebra implies that the isotro–

py subalgebra of the action of gr (f) on M coincides with its normal-

izer. This is used to prove that gr (f) is a semi-simple Lie group (by

force noncompact) and has finite center. In our approach compact-

ness of M is essential to ensure the existence of fixed points of some

subgroups of gr (f). Afterwards we make an analysis of the gradi-

ent vector fields on homogeneous spaces to prove that the isotropy
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subalgebra of the action of gr (f) on M is parabolic, so that M is a

covering of a flag manifold of gr (f).

We conclude this introduction by saying that one of the sources

of the gradient group of an immersion goes back to the construc-

tion of the Brownian motion on M made by Itô [9] in the nineteen

fourties. This is given as the solution of a stochastic differential equa-

tion whose coefficients are the gradient vector fields Xei , where ei,

i = 1, . . . , N , is an orthonormal basis of RN . (The point here is that

the second order operator
∑

i (X
ei)2 is the Laplace-Beltrami opera-

tor of the metric on M .) Later developments showed that the flow

of that stochastic differential equation evolves on the gradient group,

so that the knowledge of gr (f) (or gr (f)) is relevant to understand

the Brownian motion. To the best of our knowledge this group, and

algebra, has not been studied extensively, in the finite or infinite di-

mensional case. They may prove to be interesting invariants of the

immersions.

2 Real analytic curves

In this section we prove that every regular smooth curve such that

dim gr(f) < ∞ is real analytic.

Let f = (f1, . . . , fn) : M → Rn be a regular smooth curve such

that dim gr(f) < ∞. Let s : M → I ⊂ R be an arclength coordinate

system. We say that f is real analytic if fi, i = 1, . . . , n, are real

analytic functions with respect to s.

A vector field X : M → TM is written as X (s) = σ (s) d
ds

where

σ (s) = ⟨X (s) , f ′(s)⟩ : M → R is a real function. Let {e1, . . . , en} be

the standard basis of Rn and put X i = Xei : M → TM , i = 1, . . . , n,

for the gradient of the height function with respect to ei.

It is easy to see that
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X i = f ′
i

d

ds
. (1)

The gradient vector fields X i, i = 1, . . . , n, form a linearly inde-

pendent subset of gr(f). We complement it to a basis {X1, . . . , Xd}
of gr(f). The vector fields Xn+1, . . . , Xd are not necessarily gradient.

We write these vector fields as X i = σi
d
ds
. Their bracket is given by

[X i, Xj] = (σiσj
′ − σjσ

′
i)

d

ds
(2)

and these brackets are linear combinations with constant coefficients

of {X1, . . . , Xd}. In the sequel we write [σi, σj] = σiσj
′ − σjσ

′
i, that

is, we identify X i with σi.

Note that since f is given in arclength we have
n∑

i=1

σ2
i =

n∑
i=1

(
f

′

i

)2
= 1. (3)

We are ready to prove the following theorem.

Theorem 2.1. Let f : M → Rn be a regular smooth curve such that

gr(f) is finite dimensional. Then f is real analytic.

Proof: We prove that the functions σ1, . . . , σd are the solutions of an

analytic system of ordinary differential equations. This implies that

these functions are analytic. In particular this happens to σ1, . . . , σn,

so that f ′ = (σ1, . . . , σn) is analytic as well.

Fix j = 1, . . . , d. Equation (2) implies that

n∑
k=1

[σk, σj]σk =

(
n∑

k=1

σ2
k

)
σ

′

j − σj

(
n∑

k=1

σkσ
′

k

)
.

Equation (3) and its derivative implies that
∑n

k=1 σk
2 = 1 and∑n

k=1 σkσ
′

k = 0, respectively. Therefore

n∑
k=1

[σk, σj]σk = σ
′

j
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for every j = 1, . . . , d.

Now we write
∑n

k=1[σk, σj]σk in another fashion. The term [σk, σj]

is a linear combination with constant coefficients of σ1, . . . , σd for

every j, k = 1, . . . , d. Then
∑n

k=1[σk, σj]σk is a sum of products of

σ1, . . . , σd for every j = 1, . . . , d.

Therefore σ1, . . . , σd is the solution of the system of ordinary dif-

ferential equations

σ′
1(s) =

d∑
l,m=1

a1lmσl(s)σm(s)

σ′
2(s) =

d∑
l,m=1

a2lmσl(s)σm(s)

...
...

...

σ′
d(s) =

d∑
l,m=1

adlmσl(s)σm(s)

(4)

with their respective initial conditions, where ajlm are suitable real

numbers. It is well known that (4) has a unique real analytic solution

(see, for instance, [1]), which settles the theorem.

3 Restrictions on the dimensions

Let f : M1 → Rn be a smooth regular curve. Let s : M → I ⊂ R
be an arclength coordinate system of M . Theorem 2.1 states that

f is real analytic. In particular, Equations (1) and (2) imply that

the vector fields in gr(f) are real analytic. Let X ∈ gr(f) and fix

x0 ∈ M . We say that X = σ d
ds

has a singularity of order m at x0 if

the Taylor series of σ centered at s(x0) is written as

σ(s) =
∞∑

i=m

ai(s− s(x0))
i
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with am ̸= 0. Set

Om(x0) = {X ∈ gr(f) : X has a singularity of order ≥ m at x0}.

Note that Om(x0) is a subalgebra of gr(f).

Before proceeding we note the following fact which is an easy con-

sequence of the bracket formula (2).

Proposition 3.1. If X and Y are vector fields of a smooth curve M

then [X, Y ] = 0 if and only if they are linearly dependent (over R).

Theorem 3.2. Let f : M1 → Rn be a real analytic regular curve. If

there exist a point x0 ∈ M such that dim(O2(x0)) ≥ 2, then gr(f) is

infinite dimensional.

Proof: Let X = σ d
ds

and Y = τ d
ds

be two independent vector fields

in O2(x0). These vector fields are written respectively by

σ(s) =
∞∑

i=mX

ai(s− s(x0))
i

and

τ(s) =
∞∑

i=mY

bi(s− s(x0))
i

where the orders mX and mY of the singularities of X and Y , respec-

tively are ≥ 2. An easy computation with brackets shows that [X, Y ]

has singularity at x0 of order ≥ mX +mY −1 > max{mX ,mY }. Also
[X, Y ] ̸= 0 by Proposition 3.1. Because of the orders at x0 the vector

fields X, Y and [X, Y ] are linearly independent.

Repeating the argument with X and [X, Y ] we produce another

non trivial vector field [X, [X, Y ]], which singularity has order greater

than the order of the singularity of [X, Y ] at x0. Proceeding suc-

cessively we get a sequence X, [X, Y ], [X, [X, Y ]], [X, [X, [X, Y ]]],
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[X, [X, [X, [X, Y ]]]] and so on, of non trivial vector fields with strictly

increasing orders of singularities at x0. Therefore O2(x0) is an infi-

nite dimensional subspace of gr(f), proving the theorem.

Corollary 3.3. Let f : M1 → Rn be a real analytic regular curve.

Then gr(f) is infinite dimensional if dim gr(f) > 3 .

Proof: Fix x0 ∈ M and suppose that we have in gr(f) four linearly

independent vector fields Xj = σj
d
ds
. Write the Taylor series about

s(x0) as σj (s) =
∞∑
i=0

aji.(s − s(x0))
i. Making suitable linear combi-

nations of Xj (similar to the Gauss elimination of a system of linear

equations) we get new vector fields X̃j = σ̃j
d
ds

with

σ̃1(s) =
∞∑

i=m1

b1i.(s− s(x0))
i

σ̃2(s) =
∞∑

i=m2

b2i.(s− s(x0))
i

σ̃3(s) =
∞∑

i=m3

b3i.(s− s(x0))
i

σ̃4(s) =
∞∑

i=m4

b4i.(s− s(x0))
i

with m1 < m2 < m3 < m4 and bjmj
̸= 0 for j = 1, . . . , 4. Therefore

dim(O2(x0)) ≥ 2 and the result follows.

As a consequence we get the following restriction on the dimension

of the ambient Euclidean space.

Corollary 3.4. Let f : M → Rn be a regular smooth curve such that

gr(f) is finite dimensional. Then f(M) is contained in an affine

tridimensional subspace of Rn.
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Proof: In fact let A ⊂ Rn be the affine subspace spanned by M

and denote by V the vector subspace parallel to A. Then the map

v ∈ V 7→ Xv ∈ gr(f) is injective, so that dimV ≤ 3.

Therefore a substantial curve with finite dimensional gradient group

is immersed in R3. Our next result improve this by lowering the di-

mension to two.

Theorem 3.5. Let f : M → R3 be a substantial regular smooth

curve. Then gr(f) is infinite dimensional.

Proof: Assume by contradiction that dim gr(f) < ∞. There exist

a non-flat point p ∈ M . Without loss of generality we can consider

that f(p) is the origin of R3, that f is tangent to the x-axis at p and

that the principal normal has the same direction as the y-axis at p.

In addition we can make a dilation in such a way that the curvature

of the curve at p is equal to one. Let s : M → I ⊂ R be the arclength

coordinate system such that f(0) = (0, 0, 0) and f ′(0) = e1.

Denote the curvature function of f by κ. Note that dim gr(f) = 3

because the basic gradient vector fields X i = σi
d
ds
, i = 1, 2, 3, form a

linearly independent subset of gr(f).

We have also that σ1(0) = 1, σ2(0) = σ3(0) = 0, σ′
1(0) = σ′

3(0) = 0

and σ′
2(0) = κ(p) = 1 due to the arrangements made to the curve and

the coordinate system. The Taylor series of σ2
1 + σ2

2 + σ2
3 = 1 implies

that σ′′
1(0) = −1. Then the Taylor series of σ1, σ2 and σ3 are given by
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σ1(s) = 1− 1
2
s2 +

∞∑
i=3

σ
(i)
1 (0)

i!
si

σ2(s) = s+
∞∑
i=2

σ
(i)
2 (0)

i!
si

σ3(s) =
∞∑
i=2

σ
(i)
3 (0)

i!
si.

The Lie brackets are given by

[σ1, σ2] = σ1 + σ′′
2(0)σ2 + Aσ3

[σ1, σ3] = σ′′
3(0)σ2 +Bσ3

[σ2, σ3] = 1
2
σ′′
3(0)σ3.

So that the Jacobi identity gives(
σ′′
3(0)−

1

2
(σ′′

3(0))
2

)
σ2 +

(
B +

σ′′
2(0)σ

′′
3(0)

2

)
σ3 = 0, (5)

which implies that both coefficients are equal to zero.

The coefficient of σ2 in (5) gives that either σ′′
3(0) = 0 or σ′′

3(0) = 2.

But the first case is impossible, because this would imply that σ2 is

proportional to σ3. Hence σ′′
3(0) = 2. The other coefficient in (5)

gives B = −σ′′
2(0). Thus the brackets become

[σ1, σ2] = σ1 + σ′′
2(0)σ2 + Aσ3

[σ1, σ3] = 2σ2 − σ′′
2(0)σ3

[σ2, σ3] = σ3.

We can use the same procedure used in Theorem 2.1 (see (4)) in order

to isolate σ
′
1, σ

′
2 and σ

′
3. We get

σ′
1 = −σ1σ2 − σ′′

2(0)σ
2
2 − (A+ 2)σ2σ3 + σ′′

2(0)σ
2
3

σ′
2 = σ2

1 + σ′′
2(0)σ2σ3 + Aσ1σ3 − σ2

3

σ′
3 = 2σ1σ2 − σ′′

2(0)σ1σ3 + σ2σ3.

(6)
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If we calculate [σ1, σ2] using (6), we get

[σ1, σ2] = σ1 + σ′′
2(0)σ2 + Aσ3 − 2σ1σ

2
3 − 2dσ2σ

2
3 + 2σ2

2σ3 − Aσ3
3

what implies that −2σ1σ
2
3 − 2dσ2σ

2
3 +2σ2

2σ3 −Aσ3
3 = O(s4) is a non-

trivial element of gr(f). But Theorem 3.2 states that if dimO2(x)) ≥
2 for some x ∈ M , then gr(f) is infinite dimensional, arriving at a

contradiction.

4 Two dimensional groups

In view of Theorem 3.5 we consider from now on curves in R2.

When dim gr(f) = 1 it is easy to see that the curve must be a piece

of straight line in Euclidean space. The next theorem shows that in

case dim gr(f) = 2 there is also just one possible curve.

Theorem 4.1. Let f : M → R2 be a regular smooth curve such that

dim gr(f) = 2. Then there exist an arclength parameter s such that

f is a piece of the curve

s 7−→ (2 arctan(es)− π/4, log(cosh(s)))

composed with isometries and dilations of R2.

Proof: Take a non-flat point p ∈ M which is assumed to be the

origin of the plane and such that the curve is tangent to the x-axis

at p. In addition we can make a dilation so that the curvature at

p is equal to one. Let s : M → I ⊂ R be a arclength coordinate

system such that f(0) = (0, 0). The basic gradient vector fields are

X1 = σ1
d
ds

= f ′
1
d
ds

and X2 = σ2
d
ds

= f ′
2
d
ds
. We fix the orientation
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on M given by the normal vector field (−σ2, σ1). Using elementary

theory of curves in Euclidean spaces, we have that the Taylor series

of X1 and X2 about 0 are

σ1(s) = 1− 1

2
s2 +O(s3)

and

σ2(s) = s+
σ′′
2(0)

2
s2 +O(s3).

Therefore the curvature is given by

κ = [σ1, σ2] = σ1 + σ′′
2(0)σ2

due to de dimension of gr(f).

Now we are going to get a more convenient basis for gr(f). Con-

sider the gradient of the height function with respect to the vec-

tors (cos θ,− sin θ) and (sin θ, cos θ), which are given respectively by

Xθ
1 = cos θX1 − sin θX2 = σθ

1
d
ds

and Xθ
2 = sin θX1 + cos θX2 = σθ

2
d
ds
.

It is easy to see that κθ := [Xθ
1 , X

θ
2 ] = [X1, X2] = κ.

We can choose θ such that (1, σ′′
2(0)) (the first two terms of the

Taylor series of κ) is linearly dependent with (cos θ,− sin θ) (the first

two terms of the Taylor series of σθ
1) and such that cos θ > 0. Then

σθ
1 and κ are linearly dependent and

[σθ
1, σ

θ
2] = σθ

1(σ
θ
2)

′ − (σθ
1)

′σθ
2 = sec θσθ

1. (7)

This equation, together with

(σθ
1)

2 + (σθ
2)

2 = 1 (8)

and its derivative

σθ
1(σ

θ
1)

′ + σθ
2(σ

θ
2)

′ = 0 (9)

are enough to find σθ
1 and σθ

2 explicitly. In fact, first of all we multiply

Equation (7) by σθ
1, Equation (9) by σθ

2, sum the resulting equations
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(considering Equation (8)) in order to get

(σθ
2)

′ = sec θ(1− (σθ
2)

2) (10)

which must satisfy the initial condition σθ
2(0) = sin θ. Proceeding in

a similar way, we can see that

(σθ
1)

′ = − sec θσθ
1σ

θ
2 (11)

with the initial condition σθ
1(0) = cos θ. Equations (10) and (11) are

explicitly solvable and f is a piece of the curve

s 7→ (2 arctan(es)− π/4, log(cosh(s))), (12)

composed with isometries and dilations of R2, as we wanted to prove.

5 A one-parameter family of plane curves

In this section we study some properties of a one-parameter family

of curves. These curves are essentially all the regular smooth curves

such that dim gr(f) = 2 or 3.

Let f = (f1, f2) : M → R2 be a smooth regular curve. The

orientation of f will be given by the normal vector field (−σ2, σ1)

where, as before X1 = σ1
d
ds

and X2 = σ2
d
ds

are the basic gradient

vector fields. Then the curvature function of f is given by κ = [σ1, σ2].

We are interested to study curves that satisfies the following system

of ordinary differential equations
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

f ′
1(s) = σ1(s)

f ′
2(s) = σ2(s)

σ′
1(s) = −σ2(s)κ(s)

σ′
2(s) = σ1(s).κ(s)

κ′(s) = Cσ1(s)σ2(s)

f1(0) = 0

f2(0) = 0

σ1(0) = 1

σ2(0) = 0

κ(0) = 1

(13)

where C ∈ R is a fixed parameter.

For every C ∈ R, the solution of (13) is a real analytic curve. It

is a curve such that in a neighborhood of s = 0 it is placed above

the x-axis and it has its concavity pointed upwards. Therefore there

exist ε > 0 such that σ1(s) and σ2(s) are strictly positive for every

s ∈ (0, ε). If we multiply the third and the fifth equations of (13) we

get

Cσ1σ
′
1σ2 = −σ2κκ

′

which in the interval (0, ε) can be simplified to

Cσ1σ
′
1 = −κκ′.

We can integrate both sides in order to get

Cσ2
1 = −κ2 +D (14)

for some D ∈ R. But σ1 and κ are real analytic. Therefore (14) holds

everywhere with D = C + 1 due to the initial conditions. Then

Cσ2
1 = −κ2 + C + 1. (15)
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Analogously we can multiply the fourth and the fifth equations of

(13) in order to get

Cσ2
2 = κ2 − 1. (16)

Note that the curve is a circle if C = 0. Also, if C = −1, then

the solution of (13) is given by s 7→ (2 arctan(es)− π/4, ln(cosh(s))),

which is the curve studied in Section 4.

Therefore we suppose that C ̸= −1. In these cases it is possible to

prove that the solution is locally the inverse of an elliptic function,

although this information is not of much help for our purposes.

Let us make a qualitative analysis of these curves.

If C > −1, then κ ∈ [1, 1 + C] (or κ ∈ [1 + C, 1]) due to (16)

and |σ2| ≤ 1. The positive lower bound of κ and the geometry of

f near s = 0 implies that there exist a first point s = T > 0 such

σ1(T ) = 0 and σ2(T ) = 1. Write f̃ = (f̃1, f̃2) = f |[0,T ]. We claim that

the image of f is diffeomorphic to a circle, that it has horizontal and

vertical symmetry (see Figure 1) and that the image of f̃ is exactly

one fourth of the image of f . In fact, define f̂ : [0, 4T ] → R2 by

f̂(s) =


f̃(s) if s ∈ [0, T ]

(f̃1(2T − s), 2f̃2(T )− f̃2(2T − s)) if s ∈ [T, 2T ]

(−f̃1(s− 2T ), f̃2(2T )− f̃2(s− 2T )) if s ∈ [2T, 3T ]

(−f̃1(4T − s), f̃2(4T − s)) if s ∈ [3T, 4T ].

Figure 1: C = 3

Direct calculations show that f̂ satisfies the system of equations

(13) and it image is diffeomorphic to a circle. Moreover, the ana-

lytic extension of f̂ to R is f , what proves that the image of f is

diffeomorphic to a circle.
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If C < −1, then |σ2| ≤
√
−C−1 due to Equation (16). This im-

plies that σ1 never vanishes. More precisely, σ1(M) ∈ [
√
1 + C−1, 1].

We claim that κ vanishes at some point. In fact, if this is not the

case, then the fourth equation of (13) would imply that σ2 is always

increasing. Fifth equation of (13) would imply that κ′(s) ≤ A < 0

for s ≥ ε′ > 0 and κ would vanish at some point, what gives the

contradiction.

Let s = T > 0 be the first positive point such that κ(T ) = 0. As

in the case C > −1, we will rebuilt f from f̃ = (f̃1, f̃2) = f |[0,T ] using

some symmetries. In this case, f is similar to the sine function (see

Figure 2 (It is vertically distorted)) and f̃ is exactly one fourth of a

cycle of the periodic function. Define f̂ : [0, 4T ] → R2 by

f̂(s) =


f̃(s) if s ∈ [0, T ]

(2f̃1(T )− f̃1(2T − s), 2f̃2(T )− f̃2(2T − s)) if s ∈ [T, 2T ]

(2f̃1(T ) + f̃1(s− 2T ), 2f̃2(2T )− f̃2(s− 2T )) if s ∈ [2T, 3T ]

(4f̃1(T )− f̃1(4T − s), f̃2(4T − s)) if s ∈ [3T, 4T ].

Figure 2: C = −2

As in the case C > −1, we can use similar arguments and prove

that f is the analytic extension of f̂ , and therefore f is similar to the

sine function.

Remark: Notice that we can get the reversal (s 7→ −s) of the

parameter s making a reflection on R2 due to the symmetries of

f(M). We use this fact in Proposition 5.1.
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The following proposition characterizes the solution of (13) and its

composition with some symmetries of R2 as a solution of a system of

ordinary differential equations.

Proposition 5.1. Let C ̸= −1 and f = (f1, f2) : M → R2 be the

solution of 

f ′
1(s) = σ1(s)

f ′
2(s) = σ2(s)

σ′
1(s) = −σ2(s)κ(s)

σ′
2(s) = σ1(s)κ(s)

κ′(s) = Cσ1(s).σ2(s)

f1(0) = 0

f2(0) = 0

σ1(0) = cos θ0

σ2(0) = sin θ0

κ(0) = κ0,

(17)

where θ0 and κ0 satisfy C. sin2 θ0 = κ2
0 − 1. Denote the solution of

(13) by (f̃1, f̃2). Then there exist a constant D ∈ R such that f is

given by s 7→ (f̃1(s+D)− f̃1(D), f̃2(s+D)− f̃2(D)) composed with

isometries of R2.

Proof: The condition C sin2 θ0 = κ2
0−1 is necessary due to Equation

(16). First of all, let us see how the solutions of (17) are influenced

by some isometries of R2.

1. Reflection with respect to the x-axis and reversal of the parame-

ter s: If s 7→ (f1(s+D)−f1(D), f2(s+D)−f2(D)) is the solution

of (17), then s 7→ (f1(−s+D)− f1(D),−f2(−s+D) + f2(D))

is the solution of (17) with the initial condition σ1(0) = cos θ0

replaced by σ1(0) = − cos θ0.

2. Reflection with respect to the y-axis and reversal of the parame-

ter s: If s 7→ (f1(s+D)−f1(D), f2(s+D)−f2(D)) is the solution
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of (17), then s 7→ (−f1(−s+D) + f1(D), f2(−s+D)− f2(D))

is the solution of (17) with the initial condition σ2(0) = sin θ0

replaced by σ2(0) = − sin θ0.

3. Reflection with respect to (0, 0) ∈ R2 and reversal of the param-

eter s: If s 7→ (f1(s + D) − f1(D), f2(s + D) − f2(D)) is the

solution of (17), then s 7→ (−f1(−s + D) + f1(D),−f2(−s +

D)+f2(D)) is the solution of (17) the initial condition κ(0) = κ0

replaced by κ(0) = −κ0.

Therefore we can combine the isometries given above in order to

make cos θ0, sin θ0 and κ0 non-negative. But (17) with non-negative

values of cos θ0, sin θ0 and κ0 are solved by a translation of the so-

lution of (13). Therefore the general solution of (17) is given by

s 7→ (f̃1(s + D) − f̃1(D), f̃2(s + D) − f̃2(D)) composed with isome-

tries of R2, where D ∈ R and (f̃1, f̃2) is the solution of (13).

6 The classification theorem for curves

In this section we classify the regular smooth curves f = (f1, f2) :

M → R2 such that dim gr(f) = 3.

Theorem 6.1. Let f = (f1, f2) : M → R2 be a smooth regular curve

such that dim gr(f) = 3. Then there exist an arclength system of

coordinates and a constant C ̸= −1 such that (f1, f2) is a piece of the
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solution of the system of ordinary differential equations

f ′
1(s) = σ1(s)

f ′
2(s) = σ2(s)

σ′
1(s) = −σ2(s)κ(s)

σ′
2(s) = σ1(s).κ(s)

κ′(s) = Cσ1(s)σ2(s)

f1(0) = 0

f2(0) = 0

σ1(0) = 1

σ2(0) = 0

κ(0) = 1

(18)

eventually composed with isometries and dilations of R2. Conversely

every solution of (18) with C ̸= −1 is a curve such that dim gr(f) =

3.

Proof: There exist a non-flat point p ∈ M . Without loss of general-

ity, we can consider that f(p) is the origin of the plane, that the curve

is tangent to the x-axis at p and that the curve is locally placed above

the x-axis. In addition we can make an dilation in such a way that

the curvature of the curve at p is equal to one. Let s : M → I ⊂ R be

a arclength coordinate system such that f(0) = (0, 0) and f ′(0) = e1.

Then the Taylor series of σ1 and σ2 are given respectively by

σ1(s) = 1− 1

2
.s2 +O(s3)

and

σ2(s) = s+
σ′′
2(0)

2
.s2 +O(s3).

Moreover we have that the Taylor series of κ = [σ1, σ2] is given by

κ(s) = 1 + σ′′
2(0)s+O(s2).
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We have that dim gr(f) = 3, what implies that {σ1d/ds, σ2d/ds, κd/ds}
is a basis of gr(f). Set σθ

1 = cos θσ1 − sin θσ2 and σθ
2 = sin θσ1 +

cos θσ2, where θ ∈ R. Observe that {σθ
1d/ds, σ

θ
2d/ds, κd/ds} is a ba-

sis of gr(f) and that [σθ
1, σ

θ
2] = κ for every θ ∈ R. We are looking of

an “adequate” value of θ.

Direct calculations show that

σθ
2(s) = sin θ + cos θs+O(s2)[

κ(s), σθ
1(s)

]
= −(cos θ.σ′′

2(0) + sin θ)− (cos θ(σ
(3)
2 (0) + 2)

+ sin θσ′′
2(0))s+O(s2)

σθ
1(s) = cos θ − sin θs+O(s2)[

σθ
2(s), κ(s)

]
= (sin θσ′′

2(0)− cos θ) + (sin θ(σ
(3)
2 (0) + 2)

− cos θσ′′
2(0)).s+O(s2)

(19)

Observe that there exist η, A1 and A2 such that the first two terms

of the Taylor series of [ση
1 , κ]−A2σ

η
2 and [ση

2 , κ]−A1.σ
η
1 are simulta-

neously zero. This happens because the first two terms of the Taylor

series of [ση
1 , κ] is proportional to the first two terms of the Taylor

series of ση
2 if and only if the same happens with the pair [ση

2 , κ] and

ση
1 . Then

[ση
1 , σ

η
2 ] = κ

[ση
2 , κ]− A1σ

η
1 = B1σ

η
1 +B2σ

η
2 +B3κ = O(s2)

[κ, ση
1 ]− A2σ

η
2 = C1σ

η
1 + C2σ

η
2 + C3κ = O(s2).

(20)

Claim: A1 and A2 are non-zero constants and Bi = Ci = 0 for

i = 1, 2, 3.

Notice that [ση
2 , κ]−A1σ

η
1 and [κ, ση

1 ]−A2σ
η
2 are linearly dependent

(See Theorem 3.2). Thus the vectors (B1, B2, B3) and (C1, C2, C3)

are linearly dependent. Taking these facts into consideration and

considering the Jacobi identity

[[ση
1 , σ

η
2 ], κ] + [[ση

2 , κ], σ
η
1 ] + [[κ, ση

1 ], σ
η
2 ] = 0 (21)
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we have that A1.C3 = A2.B3 = C1 − B2 = 0. If B3 = 0, then

B1σ
η
1(s) + B2σ

η
2(s) = O(s2) what implies that B1 = B2 = 0. If

C3 = 0, we can conclude that C1 = C2 = 0 analogously. Therefore if

A1 and A2 are non-zero constants, the claim is proved. We will prove

that the other cases do not happen.

If A1 = A2 = 0, then [ση
1 , κ] and [ση

2 , κ] would be linearly dependent

and κ would be a linear combination of ση
1 and ση

2 , what contradicts

dim gr(f) = 3.

If A1 ̸= 0 and A2 = 0, then C1 = C2 = C3 = 0. This would imply

that [ση
2 , κ] = 0, that is, ση

2 and κ are linearly dependent, what gives

another contradiction. Therefore the claim is proved.

The system of equations (20) is given by

[ση
1 , σ

η
2 ] = κ

[ση
2 , κ] = A1σ

η
1

[κ, ση
1 ] = A2σ

η
2

(22)

We claim that at least one of the constants A1 or A2 is nega-

tive. In fact, if cos η = 0, then (19) implies that A2 = −1. Analo-

gously, if sin η = 0, then (19) implies that A1 = −1. Suppose that

cos η and sin η are different from zero. Then A1 can be written as

⟨(b2, 1), (tan η,−1)⟩ and A2 can be written as ⟨(b2, 1), (− cot η,−1)⟩
where ⟨·, ·⟩ is the canonical inner product of R2 (see (19)). But

(− cot η,−1) and (tan η,−1) are orthogonal vectors in the lower half

of R2 and (b2, 1) is in the upper half of R2. Therefore by geometrical

considerations A1 or A2 (or both) must be negative.

We claim that there exist an η such that A1 < 0. In fact if A1 > 0,

then we can choose η̃ = η + π/2. This means that ση̃
1 = ση

2 and

ση̃
2 = −ση

1 . Then
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[
ση̃
1 , σ

η̃
2

]
= κ[

ση̃
2 , κ
]

= A2σ
η̃
1[

κ, ση̃
1

]
= A1σ

η̃
2

(23)

and the claim follows.

Suppose that η was chosen in (22) such that A1 < 0. We can make

a dilation in order to make A1 = −1. In fact, consider the curve

defined by f̃(s) = c.f(c−1.s), where c is the positive square root of

−A−1
1 . Observe that σ̃1(s)

d
ds

= σ1(c
−1.s) d

ds
and σ̃2(s)

d
ds

= σ2(c
−1.s) d

ds

are the gradient of the height functions with respect to e1 and e2

respectively. Direct calculations show that
[σ̃η

1 , σ̃
η
2 ] = κ̃

[σ̃η
2 , κ̃] = −σ̃η

1

[κ̃, σ̃η
1 ] = Ã2σ̃

η
2

(24)

and hence A1 = −1. Therefore there exist a curve f η, which is the

composition of f with isometries and dilations of R2 such that
[ση

1 , σ
η
2 ] = κ

[ση
2 , κ] = −ση

1

[κ, ση
1 ] = Aση

2

(25)

holds for f η.

Let us prove that (25) is equivalent to the following system of

differential equations
ση
1
′ = −ση

2 .κ

ση
2
′ = ση

1 .κ

κ′ = −(A+ 1).ση
1 .σ

η
2 .

(26)

Take [ση
1 , σ

η
2 ] = ση

1 .(σ
η
2)

′ − (ση
1)

′.ση
2 = κ and multiply it by −ση

2 .

Take the derivative of (ση
1)

2 + (ση
2)

2 = 1 and multiply it by ση
1/2.

Sum these equations and it follows that ση
1
′ = −ση

2 .κ.
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Take [ση
1 , σ

η
2 ] = ση

1 .(σ
η
2)

′ − (ση
1)

′.ση
2 = κ again and multiply it by

ση
1 . Take the derivative of (σ

η
1)

2 + (ση
2)

2 = 1 and multiply it by ση
1/2.

Sum these equations and it follows that ση
2
′ = ση

1 .κ.

Take [ση
2 , κ] = ση

2 .κ
′ − (ση

2)
′.κ = −ση

1 and multiply by ση
2 . Take

[κ, ση
1 ] = κ.(ση

1)
′ − κ′.ση

1 = A2σ
η
2 and multiply it by −ση

1 . Sum these

equations and it follows that κ′ = −(A+1).ση
1 .σ

η
2 . Then (25) implies

(26).

In order to prove that (26) implies (25) it is enough to notice that

κ2 = (σ′
1)

2 + (σ′
2)

2 and make direct calculations.

Set eη1 = cos η.e1 − sin η.e2 and eη2 = sin η.e1 + cos η.e2 and fix

{eη1, e
η
2} as a basis of R2. Therefore f η = (f η

1 , f
η
2 ) : M → R2 with

respect to this new basis satisfies

f η
1
′(s) = ση

1(s)

f η
2
′(s) = ση

2(s)

ση
1
′(s) = −ση

2(s).κ(s)

ση
2
′(s) = ση

1(s).κ(s)

κ′(s) = C.ση
1(s).σ

η
2(s)

f η
1 (0) = 0

f η
2 (0) = 0

ση
1(0) = cos η

ση
2(0) = sin η

κ(0) = κ0.

(27)

Moreover we have that C sin2 η = κ2
0−1 due to the same reason that

Equation (13) holds. Notice that (27) coincides with (17). Proposi-

tion 5.1 settles the Theorem.

Therefore we arrive at the following classification.
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Theorem 6.2. Every regular smooth curve f : M → Rn such that

dim gr(f) < ∞ is contained in an affine two dimensional subspace

A2 ⊂ Rn. Moreover f is a piece of straight line (dim gr(f) = 1) or

there exist an arclength coordinate system s such that f is a piece of

the solution of (13) composed with isometries and dilations of A2.

7 Holonomy and linear isotropy

In this section we relate the holonomy group of the induced metric

on M with the linear part of the isotropy group of the action of gr(f).

Let π : BM → M be the bundle of frames of M and write OM ⊂
BM for the subbundle of orthonormal frames. As in Kobayashi-

Nomizu [10] an element of BM is a linear isomorphism p : RN →
TxM , x ∈ M , while p ∈ OM if it is an isometry between the standard

inner product in RN and the Riemannian metric in TxM . Also the

right action of Gl (n,R) on BM is given by pa = p ◦ a, p ∈ BM ,

a ∈ Gl (n,R).
Any ϕ ∈ gr (f) is a local diffeomorphism so that we can lift it to

the local diffeomorphism ϕ of BM by ϕ (p) = dϕ◦p, which commutes

with the right action of the structural group Gl (n,R). This lifting

defines a local action of gr (f) on BM .

On the other hand each gradient vector field Xv admits a lift X
v

to BM by linearization, that is, the flow of X
v

t is the lifting of the

flow of Xv, namely X
v

t (p) = dXt ◦ p for p ∈ BM . The lifted vector

fields X
v
are invariant under the right action of Gl (n,R) of BM .

Now, let gr (f) (p) be the orbit of p ∈ BM under gr (f). It is

clear that any q ∈ gr (f) (p) is the end point of a curve obtained by

concatenation of trajectories of the vector fields X
v
, v ∈ RN . This

means that gr (f) (p) is an orbit of a family of vector fields in the sense

of Stefan [12] and Sussmann [13]. By the results of [13] it follows
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that the orbits gr (f) (p), p ∈ M , are submanifolds of BM . The right

invariance of X
v
, v ∈ RN , imply that gr (f) (p) a = gr (f) (pa) and

that gr (f) (p) projects onto M . In particular all the orbits have the

same dimension. But by Stefan [12] the orbits are the leaves of a

foliation hence they are maximal integral manifolds of a distribution

without singularities.

For p ∈ BM put

Gp = {a ∈ Gl (n,R) : gr (f) (pa) = gr (f) (p)}
= {a ∈ Gl (n,R) : gr (f) (p) a = gr (f) (p)}

for the subgroup leaving invariant gr (f) (p). Another way of defining

Gp is by taking the intersection I of gr (f) (p) with the fiber through

p. Then a ∈ Gp if and only if pa ∈ I. We call Gp the linear isotropy

group at p.

(Although we do not need this below we mention that it is possible

to prove that Gp is a Lie subgroup of Gl (n,R) and gr (f) (p) is a

subbundle of BM having Gp as structural group.)

Now recall that the holonomy group Hol (p) of a connection based

at p is the set of a ∈ Gl (n,R) such that pa is the end point of a

horizontal curve starting at p. We consider here the Levi-Civita con-

nection, so that if p ∈ OM then Hol (p) is subgroup of the orthogonal

group O (n). The following statement relates Gp with Hol (p).

Proposition 7.1. Take a frame p ∈ BM and let Hol (p) be the

holonomy group at p. Then Hol (p) ⊂ Gp and the holonomy bundle

through p is contained in the orbit gr (f) (p).

Proof: Given x ∈ M , let {ξi}i=1,...,m, m = N−n, be an orthonormal

basis of vector fields orthogonal to M around x. Since Xv is the

orthogonal projection we have Xv = v −
∑m

i=1⟨v, ξi⟩ξi. Hence an
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easy computation shows that

∇YX
v =

m∑
i=1

⟨v, ξi⟩Aξi(Y )

where Aξi is the second fundamental form of M in the direction of

ξi. It follows that ∇YX
v = 0 if v ∈ TxM , that is, ∇Xv = 0, as a

linear map of TxM . But if ω stands for the connection form in BM

then for any frame p above x we have

∇Xv =
1

2
p ◦ ωp

(
X

v) ◦ p−1.

Therefore X
v
is horizontal above x if v is tangent to M at x. This

shows that the horizontal spaces Hp of the connection are tangent to

the orbits. Hence a horizontal curve starting in gr (f) (p) stays in this

orbit, so that if a ∈ Hol (p) then pa is the end point of a horizontal

curve starting at p showing pa ∈ gr (f) (p), that is, a ∈ Gp.

The above proposition is the basic tool to be used below in the

discussion of the finite dimensional gradient groups. As an easy con-

sequence of Proposition 7.1 we mention that in case M is a hypersur-

face then SO (n) ⊂ Gp. This is because there exists x ∈ M such that

the second fundamental form A at x is nondegenerate. If {fi}i=1,...,n

is an orthonormal basis diagonalizing A then the curvature R (fi, fj)

is given in the basis {fi} by a skew-symmetric matrix with nonzero

i, j and j, i entries, so that the holonomy group contains SO (n).

8 gr (f ) is semi-simple

From now on we assume that gr (f) is finite dimensional, so that

gr (f) is a (connected) Lie group if the vector fields in gr (f) are



184 R. Fukuoka and L. A. B. San Martin

complete. Also we assume without loss of generality that M is not

contained in an affine subspace of Rn. In this case the linear map

v ∈ Rn 7→ Xv ∈ gr (f) is injective, so that if V = {Xv ∈ gr (f) : v ∈
Rn} is its image then V has an inner product and we can view M as

an immersed submanifold of V ⊂ gr (f).

We note that gr (f) is not compact since the infinitesimal action of

gr (f) on M contains nonzero gradient vector fields. For x ∈ M let

grx(f) be the isotropy subgroup at x. The isotropy representation

of grx(f) on TxM is given by g ∈ grx(f) 7→ dgx ∈ Gl (TxM). If

p ∈ BxM then a ∈ Gp if and only if there exists g ∈ grx(f) such that

dgx ◦p = pa, that is a = p−1 ◦dgx ◦p so that the linear isotropy Gp at

p is identified to the image of the isotropy representation, implying

that Gp is a Lie subgroup. We write gp for its Lie algebra.

For p ∈ OM the holonomy group Hol (p) is compact. We write

hol (p) for its Lie algebra. The representation of the Lie algebra

hol (p) on TxM decomposes into irreducible representations

TxM = V1 ⊕ · · · ⊕ Vs.

Suppose that none of these representations is trivial, that is, dimVi ≥
2, i = 1, . . . , s. Then for every 0 ̸= v ∈ TxM there exists A ∈ hol (p)

such that Av ̸= 0. But it follows from Proposition 7.1 that hol (p) ⊂
gp. Hence the same assertion holds for gp instead of hol (p).

This has the following consequence on the Lie algebra grx(f) of

the isotropy group grx(f).

Proposition 8.1. Suppose that the representation of hol (p) on TxM

has no trivial components. Let gx be the isotropy subalgebra and

denote by n its normalizer in gr(f). Then n = gx.

Proof: The representation of gx on TxM is equivalent to its rep-

resentation on gr (f) /gx. The image of the representation on TxM



FINITE DIMENSIONAL GRADIENT LIE ALGEBRAS 185

is gp, and as mentioned above the assumption implies that for all

0 ̸= v ∈ TxM there exists A ∈ gp such that Av ̸= 0. Therefore

for every 0 ̸= w ∈ gr(f)/gx there exists Y ∈ gx such that Y w ̸= 0.

But this means that for every X /∈ gx there exists Y ∈ gx such that

[Y,X] /∈ gx, so that gx is its own normalizer.

Next we apply Lie group theory to prove that if a compact ho-

mogeneous space G/H is such that the isotropy subalgebra coincides

with its normalizer then G is semi-simple. We do this in two steps.

First we prove that the Lie algebra g of G decomposes as the direct

sum of semi-simple subalgebra and an abelian ideal. In a second turn

we prove that the abelian ideal is {0}.

Proposition 8.2. Let G/H be a compact homogeneous space and

denote by g and h the Lie algebras of G and H, respectively. Suppose

that the normalizer n (h) = h, and that the action of G on G/H is

effective. Then g decomposes as

g = l⊕ r

where r is an abelian ideal and l is a semi-simple subalgebra.

Proof: Let r be the solvable radical of g. By the decomposition

theorem of Levi it is enough to prove that r is abelian or, equivalently,

that its derived algebra r′ = {0}. This will be achieved if we prove

that r′ is contained in some isotropy subalgebra gx because the action

is assumed to be effective so that gx does not contain non trivial

ideals.

Let R′ be the connected subgroup whose Lie algebra is r′. We

shall prove that R′ has a fixed point in G/H. It is known that r′ is a

nilpotent ideal of g, so that by Engels’ theorem there exists a basis
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of g such that ad (X) is upper triangular, with 0′s on the diagonal,

for all X ∈ r′. In this basis Ad (g), g ∈ R′, is upper triangular with

1’s on the diagonal.

Now, let

N (h) = {g ∈ G : Ad (g) h = h}

be the normalizer of h in G. This is a closed subgroup whose Lie

algebra is n (h) = h. Clearly H ⊂ N (h) and since these groups have

the same Lie algebra, it follows that the fibration G/H → G/N (h)

is a covering with fiber N (h) /H. By assumption G/H is compact

so that G/N (h) is compact as well.

Now let k = dim h and denote by Grk (g) the Grassmannian of

k dimensional subspaces of g. The group G acts on Grk (g) by the

adjoint representation. Let G · h be the orbit of h. Then G · h =

G/N (h) because N (h) is the isotropy at h.

By a theorem of Vinberg [14] a triangular linear group acting on

a Grassmannian has a fixed point in any compact invariant subset.

Clearly G · h is compact and R′-invariant. Therefore R′ has a fixed

point, say x0 ∈ G/N (h). Since R′ is connected and the fibration

G/H → G/N (h) is a covering, it follows that any point in G/H

above x0 is also fixed by R′. Hence R′ has fixed points in G/H, con-

cluding the proof.

Proposition 8.3. In the same situation as in the above proposition

we have r = {0}, that is, g is semi-simple.

Proof: If X ∈ r then ad (X) g ⊂ r because r is an ideal. But r

is abelian so that ad (X)2 = 0. Therefore by Engels’ theorem ad (r)

is a triangular Lie algebra. The proof then follows as in the above

proposition.
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Summarizing the results obtained so far we get the following the-

orem about the gradient group being finite dimensional.

Theorem 8.4. Let f : M → RN be a smooth isometric immersion

such that

1. gr (f) is finite dimensional.

2. M is compact.

3. The representation of the holonomy algebra hol on TxM has no

trivial subrepresentations.

Then gr (f) is semi-simple noncompact.

We can go a bit further and look at the properties of M as a ho-

mogeneous space of gr (f). Write M = gr(f)/H, with a H ⊂ gr(f) a

closed subgroup with Lie algebra h. Take an Iwasawa decomposition

gr(f) = KAN of gr(f).

With the assumptions of the theorem the Lie algebra h is its

own normalizer. Hence the fibration M = gr(f)/H → gr(f)/N (h)

is a covering. Now as in the proof of Proposition 8.2 the space

gr(f)/N (h) is a compact orbit in a Grassmannian. Clearly it is AN -

invariant. But AN is a triangular group. Hence another application

of Vinberg’s theorem shows that AN has a fixed point in gr(f)/N (h).

Since AN is connected we conclude that this group has fixed points

in M = gr(f)/H. Hence up to a conjugation we can suppose that

AN ⊂ H. This yields the following statement.

Proposition 8.5. Let the assumptions be as in Theorem 8.4. Then

M = gr (f) /H and the isotropy subgroup contains AN for an Iwa-

sawa decomposition gr (f) = KAN of gr (f). This implies that K
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acts transitively on M , and M = K/H ∩ K. Moreover the center

Z (gr (f)) of gr (f) is finite.

Proof: We need to prove only the last statement. For this con-

sider the fibration π : gr (f) /H → gr (f) /N (h) and let x0 be the

origin of gr (f) /N (h). Clearly Z (gr (f)) ⊂ N (h), so that gx0 = x0

for any g ∈ Z (gr (f)) and g leaves invariant the fiber above x0. If

Z (gr (f)) were infinite then there would exist g ∈ Z (gr (f)) of in-

finite order. But then the infinite group {gn : n ∈ Z} acts on the

finite set π−1{x0}, so that for some n ∈ Z, gn has a fixed point in

π−1{x0}, that is gn ∈ Z (gr (f)) belongs to some isotropy subgroup of

M = gr (f) /H. But this is a contradiction since the action of gr (f)

on M is effective.

Remark: If gr (f) = k ⊕ a ⊕ n is the Iwasawa decomposition at

the Lie algebra level then the above proposition says that a ⊕ n is

contained in the isotropy subalgebra grx(f). We shall prove below

that the centralizer m of a in k is also contained in grx(f), so this Lie

algebra is actually a parabolic subalgebra of gr(f).

9 Parabolic subalgebra

In this section we prove that under the conditions of Theorem 8.4

the isotropy subalgebra is parabolic, so that M is a flag manifold of

gr (f) or a covering of a flag manifold.

The point is that we proved in the last section that the solvable

part AN of an Iwasawa decomposition is contained in the isotropy

subgroup grx(f) of the action of gr (f) on M . Hence the isotropy

subalgebra grx(f) contains a ⊕ n. It remains to show that grx(f)
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contains the centralizer m of a in k. This implies that grx(f) is a

parabolic subalgebra since it contains the minimal parabolic subal-

gebra m⊕ a⊕ n.

To that purpose we prove first a result which has independent in-

terest, namely that if a one-parameter group exp tX of a semi-simple

Lie group G is the flow of a gradient vector field in a homogeneous

space of G then the eigenvalues of ad (X) are real.

We recall the following facts.

1. Let X be a gradient vector field in a Riemannian manifold M

and write Xt for its flow. Suppose that x is a singularity of X.

Then the eigenvalues of the map dXt : TxM → TxM are real.

2. Let X and Y be commuting vector fields, [X, Y ] = 0, and

suppose that x is an isolated singularity of X. Then Y (x) = 0

and Yt (x) = x if Yt is the flow of Y . In fact, the points Yt (x)

are also fixed points of X.

3. Let K be a compact Lie group acting differentiably on a mani-

fold M . Suppose that x is a fixed point of K. Then a theorem

of E. Cartan ensures that the linear action of K on TxM is

equivalent to the action of K on a neighborhood of x. This

means that there are neighborhoods U of 0 ∈ TxM and V of x

and a diffeomorphism ϕ : U → V such that for every k ∈ K it

holds ϕ ◦ dkx = k ◦ ϕ.

Now let g be a noncompact semi-simple Lie algebra. The Jordan-

Schur decomposition of an element X ∈ g says that X decomposes

uniquely into commuting elements as X = Z +H + Y in such a way

that ad (Z) and ad(H) are semi-simple and ad (Y ) is nilpotent and

the eigenvalues of ad (Z) are purely imaginary while those of ad (H)

are real.



190 R. Fukuoka and L. A. B. San Martin

Proposition 9.1. Let G be a connected, noncompact semi-simple

Lie group with finite center and Lie algebra g. Suppose L ⊂ G is

a closed subgroup such that G acts effectively on G/L. Take X ∈ g

with Jordan-Schur decomposition X = Z +H + Y . Suppose that the

vector field induced by X on G/L is gradient with respect to some

immersion f : G/L → Rn (and the induced Riemannian metric on

G/L) and that it has an isolated singularity.

Then Z = 0.

Proof: Assume without loss of generality that the origin x0 of

G/L is an isolated fixed point of exp tX. Then X belongs to the

Lie algebra l of L as well as its components Z, H and Y in the

Jordan-Schur decomposition.

Write T = cl{exp tZ : t ∈ R}. Since the eigenvalues of ad (Z)

are purely imaginary and G has finite center, it follows that T is a

compact subgroup which is contained in L because Z ∈ l.

Now, let ρ : L → Gl (Tx0G/L) be the isotropy representation on the

tangent space and denote also by ρ the corresponding representation

of l. This representation is equivalent to the adjoint representation

of l on the quotient g/l. This implies that the Jordan-Schur decom-

position of ρ (X) is ρ (X) = ρ (Z) + ρ (H) + ρ (Y ). In particular the

eigenvalues of ρ (X) are those of ρ (Z +H). But the eigenvalues of

ρ (X) are real, so that ρ (Z) = 0 and hence ρ (T ) = cl{exp tρ (Z) :

t ∈ R} = {id}.
By the theorem of Cartan mentioned above, there exists a neigh-

borhood V of x0 such that the action of T on V reduces to the

identity. Now, the action on G/L is analytic and since this space is

connected, it follows that every h ∈ T acts on G/L by the identity

map. The assumption that the action is effective then implies that

T is the trivial group, so that Z = 0.
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Next we show that in the case of interest here the nilpotent part

Y in the decomposition of X also annihilates.. We approach this

question via Conley’s dynamical concept of chain recurrence for flows.

In the appendix to this section we recall the main definitions and

results about chain recurrence to be used.

Let us take as before a substantial immersion of M into RN and

the height functions hv (x) = ⟨v, x⟩, v ∈ RN . It is well known that

there exists a dense subset D ⊂ RN such that hv is a Morse function

if v ∈ D (see e.g. Bott-Tu [2]). For such v the gradient vector field

Xv has isolated singularities, which are the chain recurrent points of

Xv.

Note that we can view Xv as an element of gr(f) and hence take its

Jordan-Schur decomposition Xv = Hv + Y v, whose imaginary part

Zv = 0 by the above proposition.

Lemma 9.2. Let the notation be as above and suppose that hv is a

Morse function. Then the fixed points of Hv
t = exp tHv, t ∈ R, on

M are isolated.

Proof: Let AN be the solvable component of an Iwasawa decom-

position of gr (f) which is contained in the isotropy subgroup grx (f).

There is a natural fibration π : gr (f) /AN → M = gr (f) /grx (f).

The chain recurrent set R for the flow on gr (f) /AN induced by

Xv
t = exp tXv is the set of fixed points of Hv

t (see the appendix be-

low). By Proposition 9.4 a connected component C of R projects

into a chain recurrent component of Xv
t in gr (f) /grx (f). These

chain components are isolated fixed points because hv is a Morse

function. On the other hand a fixed point of Hv
t projects to a fixed

point. Therefore, the fixed points of Hv
t in M are isolated, proving

the lemma.
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Now we can prove the main result of this section ensuring that the

isotropy subalgebra is parabolic.

Theorem 9.3. Assume that M is compact and the tangent space

representation of the holonomy Lie algebra has no trivial subrepre-

sentations. Then the isotropy subalgebra grx(f) is parabolic and M

is a finite covering of a flag manifold of gr (f).

Proof: Take v ∈ RN such that hv is a Morse function and write

Xv = Hv +Y v as in the above lemma, so that the fixed points of Hv
t

are isolated. Now let Z (Hv) be the centralizer of Hv in gr (f) and

z (Hv) its centralizer in gr(f). The identity component of Z (Hv) is

Z (Hv)0 = exp⟨z (Hv)⟩. Let x ∈ M be a fixed point of Hv
t . Then

gx is also a fixed point if g ∈ Z (Hv). This implies that the orbit

Z (Hv)0 x reduces to x. Hence z (Hv) is contained in the isotropy

subalgebra grx(f) at x. In particular grx(f) contains the centralizer

m of a in k. Since we had proved that a⊕ n ⊂ grx(f) it follows that

the minimal parabolic subalgebra m⊕ a⊕ n ⊂ grx(f), so that grx(f)

is a parabolic subalgebra.

Remark: In the situation of the above proof it can be checked that

Hv is regular, that is, α (Hv) ̸= 0 for every root α, which implies

that Y v = 0.

Remark: We do not know whether M is in fact a flag manifold

and not just a covering of it, that is, whether the isotropy subgroup

grx(f) is itself parabolic or only contained in a parabolic subgroup.
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9.1 Appendix: Chain recurrence

We recall here some concepts and results on chain recurrence and

transitivity of flows that were used above. (For the details we refer to

Colonius-Kliemann [4], Conley [5], [6], Braga-San Martin [3], Patrão-

San Martin [11] and references therein.)

Let ϕ : R × Z → Z be a flow on a compact metric space (Z, d).

For x, y ∈ Z and ε, T > 0 an ε, T -chain of ϕ from x to y is given

by points x = x0, x1, . . . , xn = y ∈ Z and t0, . . . , tn−1 ≥ T , for some

n ∈ N, such that d (ϕti (xi) , xi+1) < ε, i = 0, 1, . . . , n − 1. Let

Cε,T (x) be the set of those y ∈ Z such that there exists an ε, T -

chain from x to y, and put C (x) =
⋂

ε,T Cε,T (x). The point x is

said to be chain recurrent if x ∈
⋂

ε,T Cε,T (x). The set R of chain

recurrent points is compact and each of its connected component C

is maximal chain transitive in the sense that for every x, y ∈ C we

have x ∈
⋂

ε,T Cε,T (y) and y ∈
⋂

ε,T Cε,T (x) and C is maximal with

this property (see [4], Theorem B.2.22).

There are the following known examples of chain recurrent sets.

1. Suppose ϕ is the flow of a gradient vector field on a compact

manifold M . Then x ∈ M is chain recurrent if and only if x is

a fixed point of the flow, ϕt (x) = x, t ∈ R. (See [6].)

2. Let G be a semi-simple Lie group with finite center and Lie

algebra g. Take X ∈ g with Jordan-Schur decomposition X =

Z + H + Y with ad (Z +H) semi-simple, ad (H) diagonaliz-

able and ad (Y ) nilpotent. The one-parameter group exp tX

induces flows on the homogeneous spaces of G. In particular

take an Iwasawa decomposition G = KAN and the compact

homogeneous space G/AN . Then the chain recurrent set of

the flow exp tX is given by the set of fixed points of exp tH,
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t ∈ R, in G/AN . (See Ferreira [8]. This result is a generaliza-

tion of Proposition 5.1.2 of [4], which gives the chain recurrent

components on projective space as generalized eigenspaces.)

The following result on projections of chain recurrent components

were proved in [3] for general fiber bundles.

Proposition 9.4. Let G be a Lie group and H ⊂ L be closed sub-

groups. There exists and equivariant fibration π : G/H → G/L. Let

Xt = exp tX be a one-parameter group of G. Let C ⊂ G/H be a

component of the chain recurrent set for the flow on G/H induced by

Xt. Then π (C) is contained in a component of the chain recurrent

set on G/L.

10 Examples

The main examples of compact immersed manifolds having finite

dimensional gradient groups are given by the immersions of the flag

manifolds of semi-simple groups into their Lie algebras.

Let g be a noncompact semi-simple Lie algebra an take a Cartan

decomposition g = k ⊕ s. Select an abelian subspace (Chevalley

subalgebra) a ⊂ s. Let K = ⟨exp ad (k)⟩ be the maximal compact

subgroup. Take H ∈ a. Then the K-adjoint orbit K · H identifies

with a flag manifold FH of a Lie group G with Lie algebra g. Under

this identification we get an action of G on K ·H. Clearly this adjoint

orbit is an embedding of FH into s.

Endow s with the Cartan-Killing inner product ⟨·, ·⟩, so that FH is

given the induced Riemmannian metric. By the G-action any X ∈ g

(in particular any X ∈ s) induces a vector field in FH = K ·H.

Now it is known that in case the eigenvalues of ad (H) are ±1

and 0 then the vector field induced by X ∈ s is the gradient of the
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height function hX (·) = ⟨X, ·⟩ defined by X itself (see Duistermaat-

Kolk-Varadarajan [7]). Therefore the Lie algebra generated by the

gradient vector fields is (isomorphic to) a subalgebra of g (and is g

itself if it has no compact factors). This is thus a class of examples

of finite dimensional gradient groups.

For instance if g = sl (n,R) then a can be the subalgebra of diag-

onal matrices and ad (H), H ∈ a, has eigenvalues ±1 and 0 if and

only if up to a permutation on the diagonal entries H is one of the

matrices

Hk =
1

n
diag{

k×
n− k, . . . , n− k︸ ︷︷ ︸,−k, . . . ,−k} k = 1, . . . , n− 1.

The flag manifold associated toHk is the Grassmannian of k-dimensio–

nal subspaces of Rn. Similar remarks hold for sl (n,C).
Another particular case is given by the rank one Lie algebra so (1, n).

There exists just one flag manifold and the adjoint orbitsK ·H are the

spheres in n-dimensional space s centered at the origin. This example

shows that the gradient group of the round sphere Sn−1 embedded in

Rn is finite dimensional and locally isomorphic to SO (1, n).

Remark: We mention that the vector field induced by X ∈ s on

FH = K · H is the gradient of the height function hX (·) = ⟨X, ·⟩
(taken with respect to the Cartan-Killing form), if the gradient is

taken with respect to a metric on K · H introduced by Borel in

the fifties. In general the Borel metric does not coincide with the

immersion metric on s, unless the eigenvalues of ad (H) are ±1 and

0.
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