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ON THE GAUSS MAP OF A

MINIMAL SURFACE IN THE

HEISENBERG GROUP

C. B. Figueroa

Abstract

In this paper we study the Gauss map of minimal surfaces in

the Heisenberg group,H3. We obtain a representation formula for

minimal surfaces in H3 by means of the Gauss map.

1 Introduction

It is well-known the classical Weierstrass representation formula de-

scribes minimal surfaces in R3 in terms of their Gauss map. More gener-

ally, Kenmotsu [7] show a representation formula for arbitrary surfaces in

R3 with nonvanishing mean curvature, which describes these surfaces in

terms of their Gauss map and mean curvature functions.

Motivated by these results, we will show that any minimal surfaces im-

mersed in H3 satisfies a system of first order partial equations involving

its Gauss map, ψ. An interesting feature is that the complete integrabil-

ity condition for the above equations is a nonlinear second order partial

differential equation which is nothing but the tension field of ψ.

On the other hand given a nowhere holomorphic smooth mapping ψ,

of a simply connected Riemann surface into the Riemman sphere S2 sat-
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isfying the complete integrability condition, we can construct a minimal

immersion of M into H3. We now review the contents of the paper.

In section 2 we present the basic Riemannian geometry of H3 equipped

with a left-invariant metric and a relationship between the Gauss map and

the extrinsic geometry of surfaces in H3. In the same section we describe,

in charts, the tension field of a minimal surface in H3.

In section 3 we prove that the Gauss map of a minimal immersion in

H3 must satisfy a first order differential equation of Beltrami type.

A representation formula for minimal surfaces in H3 by means of the

Gauss map and the integrability condition is shown in section 4 and 5.

In section 6 we make a little introduction the Hopf differential and show

a result which will be important for the next section.

Finally, in the last section we show some examples.

2 Basic Riemannian Geometry of H3

The Lie algebra, h3, of H3 is isomorphic to IR3 with the Lie product:{
[e1, e2] = e3

[ei, e3] = 0, i = 1, 2, 3.

where {ei} is the canonical basis in IR3.

The exponential map, exp : h3 → H3, is given by:

exp (A) = I +A2 +A3

and it is a diffeomorphism which induces on h3, by the Campbell-Hausdorff

formula, the group structure on H3 :

x1 ∗ x2 = x1 + x2 +
1
2 [x1,x2]. (1)

where x =xe1 + ye2 + ze3. Notice that the 1-parameter subgroups are

straight lines.
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From now on, modulo the identification given by exp, we consider H3 as

IR3 with the product given in (1). Using {ei} as the orthonormal frame at

the identity , we have an orthonormal basis of left-invariant vector fields:

E1 = ∂
∂x − y

2
∂
∂z

E2 = ∂
∂y +

x
2
∂
∂z

E3 = ∂
∂z

The left-invariant metric, induced by the Euclidean metric at the identity,

is given by

ds2 = dx2 + dy2 + (y2dx− x
2dy + dz)2, (2)

then the Riemman connection of ds2, in terms of the basis {Ei}, is given
by:

∇E1E2 = 1
2E3 = −∇E2E1

∇E1E3 = −1
2E2 = ∇E3E1

∇E2E3 = 1
2E1 = ∇E3E2

∇EiEi = 0.

Let M be an oriented 2-dimensional connected Riemannian manifold

and f :M → H3 an isometric immersion ofM intoH3. At a neighborhood

of any point of M we shall use an isothermal coordinate (X,U) ,

U
X−→M

f−→ H3

and making use of it, the first fundamental form is now written by ds2 =

λ2 |dz|2, λ > 0. The coordinate fields, Xu = f∗
(
∂
∂u

)
and Xv = f∗(

∂
∂v ), are

given by:

Xu = xuE1 + yuE2 + αE3

Xv = xvE1 + yvE2 + βE3

where we set
α = y

2xu −
x
2yu + zu

β = y
2xv −

x
2yv + zv

(3)
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Hence, it follows that

⟨Xu, Xu⟩ = ⟨Xv, Xv⟩ = λ2; ⟨Xu, Xv⟩ = 0. (4)

A unit normal vector field of the immersion f is given by:

η =
1

λ2
[(βyu − αyv)E1 + (αxv − βxu)E2 + (xuyv − xvyu)E3]

where we will denote the coordinates of η, in the basis {Ei}, by (a, b, c).

Is easily verify that

λ2(a2 + b2) = (α2 + β2). (5)

The tension field of the immersion f is given by

τ(f) = λ−2(∇XuXu +∇XvXv) = 2H

where H is the mean curvature vector. If f is minimal, we have :

∆x = −(αyu + βyv)

∆y = αxu + βxv
y
2∆x− x

2∆y +∆z = 0.

(6)

Observe that the third equation of the system of (6) is equivalent to:

αu + βv = 0. (7)

Finally we recall that in the Euclidean case the differential of the Gauss

map is just the second fundamental form for surfaces in R3. This fact can

be generalized for hypersurfaces in any Lie Group. The following theorem,

see [8], establishes a relationship between the Gauss map and the extrinsic

geometry of S.

Let S be an orientable hypersurfaces of a Lie group G with Lie algebra

g and η an unitary normal vector field of S. We define

γ : S → Sn−1 = {w ∈ g: ∥w∥ = 1}

with γ(x) = dLp−1(η(x)) for x ∈ S. We call this function, the Gauss map

of S.
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Theorem 2.1. Let S be an orientable hypersurfaces of a Lie group. Then

dLp ◦ dγp(v) = −(Aη(v) + αη̄(v)), v ∈ TpS,

where Aη is the Weingarten operator, αη̄(v) = ∇vη̄ and η̄ is a left invari-

ant vector field such that η(p) = η̄(p).

As a consequence, dL−1
p (TpS) is a Lie subalgebra of codimension 1 if the

Gauss map is constant. In the case of a surface in the Heisenberg group,

we have

[Xu, Xv] = (xuyv − xvyu)E3 = λ2cE3

So, if the Gauss map is constant, c must be equal to 0 and the surface

must be vertical.

3 The Beltrami Equation

In this section we shall prove that the Gauss map of any minimal im-

mersion in H3 satisfies a Beltrami equation.

With respect to the basis {Xu, Xv}, the operators Aη and αη̄ are repre-

sented by matrices (hij) and (ĥij), respectively. If we set (γij) = (hij+ĥij),

by Theorem (2.1), we have

dLp ◦ dγp = −(γij).

In particular, the coefficients of αη̄ is given by:

αη̄ = (ĥij) =
1

λ2
(

−αβ λ2

2 − β2

α2 − λ2

2 αβ
) (8)

From dLp ◦ dγp (Xu) = −γ11Xu− γ21Xv, and using (2.1), we can compute

the derivatives of a, b and c with respect to u:

au = −γ11xu − γ21xv

bu = −γ11yu − γ21yv

cu = −γ11α− γ21β

(9)
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In a similar fashion, we compute the derivatives of a, b and c with respect

to v:

av = −γ12xu − γ22xv

bv = −γ12yu − γ22yv

cv = −γ12α− γ22β.

(10)

Let S2 be the unit sphere in h3 ≃ T0H3 and we consider S2 as the

standard Riemann sphere: We cover S2 by the union of the two open sets

Ui, where we set U1 = S2 − {northpole} and U2 − {southpole} and let ψi

be the coordinate functions on Ui. Then

ψ1(x) = x1+ix2
1−x3 , if x = (x1, x2, x3) ∈ U1

ψ2(x) = x1−ix2
1+x3

, if x = (x1, x2, x3) ∈ U2.

We consider, for any surface in H3, the following sequence of mappings:

S
f−→ f(S)

Gauss Map−→ S2 ψi−→ w − plane.

with i = 1, 2. The composed map, which will be also called the Gauss map

of M ,

ψi : S → Riemann sphere

is considered as a complex mapping of a 1-dimensional complex manifold

M to the Riemann sphere. We omit the subscript i in ψi and write simply

ψ if there is no confusion or if the statement under consideration holds for

both ψi. We shall now compute the derivatives of the Gauss map ψ.

Proposition 3.1. Under the above notations, we have

∂ψ1

∂z̄
= −(

H +Θi

2
)(1 + ψ1ψ̄1)

2(
∂x

∂z̄
+ i

∂y

∂z̄
)

where Θ = (ĥ12−ĥ21)
2 and H the mean curvature of S.
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Proof: We know that

ψ1(z) =
a(z) + ib(z)

1− c(z)
.

Since we put ∂ψ1

∂z̄ = 1
2(
∂ψ1

∂u + i∂ψ1

∂v ) we have, using (9) and (4),

∂ψ1

∂u
=

1

(1− c)2
{[(−xu + yv)− i(xv + yu)] γ11 − [(xv + yu) + i(yv − xu)] γ21} .

By similar way, using (10), we have that

i
∂ψ1

∂v
=

1

(1− c)2
{[(xv + yu) + i(yv − xu)] γ12 + [(−xu + yv)− i(xv + yu)] γ22} .

Observe that (−xu+yv)− i(xv+yu) = − i [(xv + yu) + i(yv − xu)]. Then,

substituting in the above two equation and summing up we obtain that

∂ψ1

∂z̄
=

1

2(1− c)2
{(γ12 − γ21)− i(γ11 + γ22) [(xv + yu) + i(yv − xu)]} .

Notice that γ11 + γ22 = 2H + (ĥ11 + ĥ22) = 2H because ĥ11 + ĥ22 is

the trace of the matrix αη̄, which in H3 is equal to zero, see (8). And

γ12 − γ21 = ĥ12 − ĥ21, because the matrix of the Weingarten operator is

symmetric in the basis {Xu, Xv}. Then,

∂ψ1

∂z̄
=

(ĥ12 − ĥ21)− 2Hi

2(1− c)2
{(xv + yu) + i(yv − xu)}

Now (xv + yu) + i(yv − xu) = −2i(∂x∂z̄ + i∂y∂z̄ ) and using the fact that

(1 + ψ1ψ̄1)(1− c) = 2,

follow the result.

2

Remark 3.1. Note that Θ is a function of ψ1. In fact, by using (8) and

(5), we can see that Θ = 1
2(c

2). Then we have

Θ =
1

2
(
ψ1ψ̄1 − 1

1 + ψ1ψ̄1
)2 (11)
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Notice that Θ = 0 is equivalent to ψ1ψ̄1 = 1, so in the minimal case

(H = 0) we have, from Proposition 3.1,

∂ψ1

∂z̄ = 0

∂ψ1

∂z = 0

That is, the Gauss map ψ1, is constant. So the minimal surface is a

vertical plane, see [5].

We define here the following functions:

Φ = 1
2(h11 − h22)− ih12; Φ̂ = 1

2(ĥ11 − ĥ22)− i
2(ĥ12 + ĥ21)

Proposition 3.2. Under the above notations, we have

∂ψ1

∂z
=

(Φ + Φ̂)

2
(1 + ψ1ψ̄1)

2(
∂x

∂z̄
+ i

∂y

∂z̄
)

Proof: Since ∂ψ1

∂z = 1
2(
∂ψ1

∂u − i∂ψ1

∂v ), we can prove the Proposition 3.2 in

the same way as Proposition 3.1.

2

By the same argument or using the relation ψ1ψ2 = 1, we can also prove

the following

Proposition 3.3. The complex derivatives of the Gauss map ψ2 are given

∂ψ2

∂z̄ = −(H+Θi
2 )(1 + ψ1ψ̄1)

2(∂x∂z̄ − i∂y∂z̄ )

∂ψ2

∂z = (Φ+Φ̂)
2 (1 + ψ1ψ̄1)

2(∂x∂z̄ − i∂y∂z̄ )
(12)

We can calculate the norms of these complex vectors

Corollary 3.1. Let ψ be the Gauss map of an arbitrary minimal surface

in H3. Then we have ∣∣∣∂ψ∂z̄ ∣∣∣ = λ
2 (1 + ψψ̄) |Θi+H|∣∣∣∂ψ∂z ∣∣∣ = λ
2 (1 + ψψ̄)

∣∣∣Φ+ Φ̂
∣∣∣ . (13)
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Proof: For ψ = ψ1. Firstly we prove that

4

∣∣∣∣∂x∂z̄ + i
∂y

∂z̄

∣∣∣∣2 = λ2(1− c)2.

In fact,
∂x

∂z̄
+ i

∂y

∂z̄
=

1

2
[(xu − yv) + i(xv + yu)] .

Then, using (4), we have

4

∣∣∣∣∂x∂z̄ + i
∂y

∂z̄

∣∣∣∣2 = 2λ2(1− c)− (α2 + β2).

From (5) and using a2 + b2 + c2 = 1, follows the result. For ψ = ψ2 , we

can prove the proposition in the same way.

2

Now we prove that the Gauss map of an arbitrary immersed surface

in H3 must satisfy a first order differential equation which is a natural

extension of the Cauchy-Riemman equation.

Theorem 3.1. The Gauss map ψ of a surface in H3 satisfies a Beltrami

equation:

(Φ + Φ̂)
∂ψ

∂z̄
= −(H +Θi)

∂ψ

∂z
(14)

Proof: By Propositions 3.1 and 3.2 we obtain (Φ+Φ̂)∂ψ1

∂z̄ = −(H+iΘ)∂ψ1

∂z

in U1. On U1 ∩U2 we have also (Φ+ Φ̂)∂ψ2

∂z̄ = −(H + iΘ)∂ψ2

∂z by virtue of

ψ1ψ2 = 1. By the continuity we have the same formula on U2.

2

4 The Weierstrass Formula

In this section we shall give a Weierstrass formula for minimal surfaces

in H3. We consider surfaces that their Gauss map nowhere holomorphic,
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that is Θ ̸= 0. Since ψ1ψ2 = 1, we have

1 + ψ1ψ̄1 = ψ̄1(ψ̄2 + ψ1)

1 + ψ2ψ̄2 = ψ2(ψ̄2 + ψ1)

ψ1
∂ψ2

∂z̄
+ ψ2

∂ψ1

∂z̄
= 0.

This, together with Propositions (3.1) and (3.2), yields the following equa-

tion,

(Θi)ψ1(ψ2)
2(ψ̄2+ψ1)

2(
∂x

∂z̄
−i∂y

∂z̄
)+(Θi)ψ2(ψ̄1)

2(ψ̄2+ψ1)
2(
∂x

∂z̄
+i

∂y

∂z̄
) = 0.

Since (ψ̄2 + ψ1)
2 ̸= 0 and Θ ̸= 0, we have[

∂x

∂z̄
− i

∂y

∂z̄
+ (ψ̄1)

2(
∂x

∂z̄
+ i

∂y

∂z̄
)

]
= 0. (15)

Proposition 4.1. Let f : M −→ H3 be a minimal immersion of M into

H3 and ψ : M −→ S2 be the Gauss map of M into S2 considered as the

Riemann sphere. Then we have, on U1,

∂x
∂z̄ =

2i(1−ψ̄2
1)

(ψ1ψ̄1−1)2
∂ψ1

∂z̄

∂y
∂z̄ =

2(1+ψ̄2
1)

(ψ1ψ̄1−1)2
∂ψ1

∂z̄

∂ξ
∂z̄ = −4ψ̄1

(ψ1ψ̄1−1)2
∂ψ1

∂z̄

(16)

where ξ is such that ξu = −β and ξv = α.

On U2 we have similar equations

∂x
∂z̄ =

2i(1−ψ̄2
2)

(ψ2ψ̄2−1)2
∂ψ2

∂z̄

∂y
∂z̄ =

−2(1+ψ̄2
2)

(ψ2ψ̄2−1)2
∂ψ2

∂z̄

∂ξ
∂z̄ = 4ψ̄2

(ψ2ψ̄2−1)2
∂ψ2

∂z̄

(17)

Proof: From (15) we have

(1 + ψ̄2
1)
∂x

∂z̄
= i(1− ψ̄2

1)
∂y

∂z̄
. (18)
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By virtue of Proposition 3.1 and equation (18), we have

(1 + ψ̄2
1)

[
−2

Θ(1 + ψ1ψ̄1)2
∂ψ1

∂z̄
− i

∂y

∂z̄

]
= i(1− ψ̄2

1)
∂y

∂z̄

whence we obtain

Θ
∂y

∂z̄
=

i(1 + ψ̄2
1)

(1 + ψ1ψ̄1)2
∂ψ1

∂z̄
,

using (11) follows the second formula of (16). By the similar way we have

also the first formula of (16). The last equality of (16) follows from the

next formula:

1

2
(α− iβ)(

∂x

∂z̄
+ i

∂y

∂z̄
) = λ2

ψ1

(1 + ψ1ψ̄1)2
. (19)

We shall prove at first this equation. By mean the definition of ψ1we get

1
2(α− iβ)(∂x∂z + i∂y∂z )− λ2 ψ1

(1+ψ1ψ̄1)2
=

1
4

{
(α− iβ)(xu + ixv + iyu − yv)− λ2(1− c)(a+ ib)

}
.

(20)

The real part of the above formula is equal to

1
4

{
α(xu − yv) + β(xv + yu)− λ2(1− c)a

}
=

1
4

{
αxu − αyv + βxv + βyu − (1− 1

λ2
(xuyv − xvyu))(βyu − αyv)

}
=

1
4λ2

{
αxuλ

2 + βxvλ
2 + (xuyvβyu − xuy

2
vα− xvy

2
uβ + xvyuαyv)

}
= 0.

The last equal held using the relations in (4). By the similar way we can

see that the imaginary part of (20) is also zero. This prove the formula.

Since ∂ψ1

∂z̄ ̸= 0, we have

1

2
(α+ iβ)

∣∣∣∣∂x∂z̄ + i
∂y

∂z̄

∣∣∣∣2 = λ2ψ̄1(
∂x
∂z̄ + i∂y∂z̄ )

(1 + ψ1ψ̄1)2
.

Using (19), we obtain

Θ

2
(α+ iβ) =

−2ψ̄1

(1 + ψ1ψ̄1)2
∂ψ1

∂z̄
.
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But we know, see remark (7), ∂α∂u + ∂β
∂v = 0; then, there exist a differential

function ξ such that ξu = −β and ξv = α. Hence,

Θ

2
(ξu + iξv) =

−2iψ̄1

(1 + ψ1ψ̄1)2
∂ψ1

∂z̄
.

(17) can be proved using (16) and the relation ψ1ψ2 = 1. This concludes

the proof.

2

5 Integrability Condition

We shall show in this section that the Gauss map of a minimal immer-

sion in H3 satisfies a second order differential equation which help us to

find a integrability condition for the system (16) and (17).

Theorem 5.1. Let f : M → H3 be an isometric immersion of M into

H3. Then f is minimal iff the Gauss map ψ satisfy

∂2ψ

∂z∂z̄
− 2ψ̄

ψψ̄ − 1

∂ψ

∂z̄

∂ψ

∂z
= 0 (21)

Proof: We shall prove (21) for ψ = ψ1. Firstly we derive the system (16)

with respect a z. From the first equation of this system we have

∂2x

∂z∂z̄
=

2i(1− ψ̄2)

(ψψ̄ − 1)2

[
∂2ψ

∂z∂z̄
− 2ψ̄

(ψψ̄ − 1)

∂ψ

∂z̄

∂ψ

∂z

]
− 4i(ψ − ψ̄)

(ψψ̄ − 1)3
∂ψ

∂z̄

∂ψ̄

∂z
.

Notice that the second term of the right side is real and equal to λ2bc
4 =

−(αyu+βyv)
4 and by the first equation of (6) it is equal to

∂2x

∂z∂z̄
. By the

similar way, from the second equation of (16), we have

∂2y

∂z∂z̄
=

2i(1 + ψ̄2)

(ψψ̄ − 1)2

[
∂2ψ

∂z∂z̄
− 2ψ̄

(ψψ̄ − 1)

∂ψ

∂z̄

∂ψ

∂z

]
− 4(ψ + ψ̄)

(ψψ̄ − 1)3
∂ψ

∂z̄

∂ψ̄

∂z
.

In this case the second term of the right side is real and equal to −λ2ac
4 =

αxu+βxv
4 and it is equal to

∂2y

∂z∂z̄
. Finally, from the third equation of (16)
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we have:

∂2ξ

∂z∂z̄
=

ψ̄

(ψψ̄ − 1)2

[
∂2ψ

∂z∂z̄
− 2ψ̄

(ψψ̄ − 1)

∂ψ

∂z̄

∂ψ

∂z

]
+

4

(ψψ̄ − 1)3
∂ψ

∂z̄

∂ψ̄

∂z
.

The second term of the right side is equal to λ2c
4 and, by using the fact

that ξu = −β and ξv = α, this is equal to
∂2ξ

∂z∂z̄
. Then the Gauss map ψ

satisfy (21) iff f is a minimal immersion of M into H3. We also get the

same equation for ψ = ψ2 by the same argument

2

Furthermore we can see that equation (21) is just the complete inte-

grability condition for the system (16) and (17). Therefore we have the

following

Theorem 5.2. Let M be a simply connected 2-dimensional smooth Rie-

mannian manifold and ψ1 : M → S2 be a nowhere holomorphic smooth

mapping which satisfies the differential equation (21). Then ψ1 is a Gauss

map of the following minimal surface of H3:

x = Re
z∫
0

−2i(1−ψ2
1)

(ψ1ψ̄1−1)2
∂ψ1

∂z̄ dz + c1

y = Re
z∫
0

2(1+ψ2
1)

(ψ1ψ̄1−1)2
∂ψ1

∂z̄ dz + c2

ξ = Re
z∫
0

−4ψ1

(ψ1ψ̄1−1)2
∂ψ1

∂z̄ dz + c3

(22)

Proof: This follows from Theorems (4.1) and (5.1).

2

So we have found a correspondence from the set of solution of the differ-

ential equation (21) to the set of minimal surfaces ofH3. In [1], Akutagawa

and Nishikawa showed a similar representation with the same integrabil-

ity condition, (21) for spacelike CMC surface in L3. Now we shall study

the uniqueness of the correspondence. In [2], B. Daniel also obtained a

similar result, that is, he constructs minimal surfaces in H3 starting with

a harmonic map into the hyperbolic disk.
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Theorem 5.3. Let ψ(z) (resp. ψ̃(z)) be a smooth mapping satisfying

(21) on a simply connected 2-dimensional manifold M. We define a min-

imal immersion X(z) (resp. X̃(z)) by the above theorem. Then the two

condition are equivalent:

1. There exist a holomorphic mapping w = f(z) with f ′(z) ̸= 0 on M

and an isometry τ in H3 such that X̃(f(z)) = τ ◦X(z), z ∈M .

2. There exist a holomorphic mapping w = f(z) with f ′(z) ̸= 0 on M

such that ψ̃(f(z)) = ψ(z), z ∈M .

Proof: We can repeat the proof of Theorem 5 of [7].

2

6 The Hopf differential

Let us point out some remarks about harmonic maps into the hyperbolic

plane H2. Let M and N two simply connected Riemannian surfaces. If

z = x + iy and w = u + iv are local conformal parameters on M and N

respectively, and the metric tensor of N is given by

ω = ρ2dwdw̄

Then ψ :M → N is harmonic if and only if the tension field τ(ψ) = 0, i.e.

τ(ψ) = ψzz̄ +
2ρw
ρ
ψzψz̄ = 0

On the other hand, the complexified first fundamental form of ψ is

ψ∗(ω) = Qdz2 + µdzdz̄ + Q̄dz̄2

where,

Q = ρ2ψzψ̄z = ρ2

4 (|ψu|
2 − |ψv|2 − 2i ⟨ψu, ψv⟩)

µ = ρ2(ψzψ̄z̄ + ψz̄ψ̄z) = ρ2

2 (|ψu|
2 + |ψv|2)
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We calculate

Qz̄ = ρ2(ψ̄zτ(ψ) + ψzτ(ψ))

Thus, if ψ is harmonic,

Qz̄ = 0

Since ψ∗(ω) is a Riemannian metric, we get µ2−4 |Q|2 ≥ 0, and equality

holds exactly at the singular points of ψ. But

µ2 − 4 |Q|2 = |ψu|2 |ψv|2 − ⟨ψu, ψv⟩2 ≥ 0

This mean, if p is a singular point, ψx is parallel to ψy, or det(dψp) = 0.

When N is the Poincaré disk, that is,

H2 = D = {z ∈ C : |z| < 1}

endowed with the metric,
4dzdz̄

(1− |z|2)2

we have that any mapping ψ :M → H2 is harmonic if

∂2ψ

∂z∂z̄
− 2ψ̄

ψψ̄ − 1

∂ψ

∂z̄

∂ψ

∂z
= 0.

Compare with (21).

Proposition 6.1. Let ψ : M → H2 be a harmonic map , nowhere anti-

holomorphic and det(dψ) = 0 on an open subset of M. Then ψ(M) lies in

a geodesic of H2.

Proof: By the above remark, this imply that Q is holomorphic and µ2 −
4 |Q|2 = 0. It follows that if Q = 0 imply µ = 0 and ψ is constant. If Q is

not identically zero, Q only has isolated zeros. Take Q(z0) ̸= 0 and follow

the proof in [3]

2
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7 Examples

In this section we classify the minimal surfaces by the rank of its Gauss

map.

1. We have seen that the vertical plane is the unique minimal surface

that the Gauss map is constant.

2. Assume that f :M → H3 is a minimal inmersion and its Gauss map,

ψ1, is nowhere antiholomorphic and has rank equal 1, det(dψ1) = 0.

This type of surface we will call minimal surface of rank one. From

(6.1), ψ1(M) is a geodesic in H2. So, define

ψ1(ζ) =
eζ+ζ̄ − 1

eζ+ζ̄ + 1

which is a geodesic in H2. The minimal immersion f defined by (16)

is
x(ζ) = i(ζ − ζ̄)

y(ζ) = 1
2(e

ζ+ζ̄ − e−(ζ+ζ̄))

ξ(ζ) = −1
2(e

ζ+ζ̄ + e−(ζ+ζ̄))

From the last equality and using (3) we obtain

z(ζ) =
i

2
(ζ − ζ̄)(eζ+ζ̄ − e−(ζ+ζ̄))

This surface is an entire graph over R2, given by

z = xy

In general, if T is an isometry of H2, then T ◦ ψ1 is harmonic and

is a Gauss map of a minimal surface of rank one, so we classify all

this type of surface.In [5], we also obtained a similar result.

3. Let ψ1 : D → C be ψ1(ζ) = ζ̄. Then ψ1 satisfies (21) and the

minimal immersion defined by (22) is written as

X(ζ) = (
2i(ζ − ζ̄)

ζζ̄ − 1
,
2(ζ + ζ̄)

ζζ̄ − 1
, cte.), ζ ∈ D.
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This is the horizontal plane. Observe that det(dψ1) < 0 and the

Hopf differential of ψ1 is Q = 0.

For more examples see [2] and [4].
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