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Abstract

We consider conformally flat Lorentzian hypersurfaces in

the conformal compactification of Lorentz space Rn+1
1 assum-

ing that locally the shape operator has the same algebraic

type and its eigenvalues has constant multiplicity. We prove

that to every conformally flat Lorentzian hypersurface one can

associate a curved flat in the Grassmannian of Lorentzian n-

planes in Rn+3
2 , allows so a connection to the Guichard‘s net

when n = 3.
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1 Introduction

A pseudo-Riemannian manifold (M, g) is called conformally flat if,

for any x ∈ M , there exists a neighborhood U of x and a function

u : U → R such that (U, e2ug) is flat ([1]).

In similar form as happens in the Riemannian case, any 2-dimensional

pseudo-Riemannian manifold is conformally flat. For dimension n ≥
4, the necessary and sufficient condition for conformal flatness con-

dition is given by the vanishing of the Weyl tensor, and in dimension

n = 3, however, the criterium for conformally flatness is that the

Schouten tensor is a Codazzi tensor.

In the hypersurfaces setting, recently U. Hertrich-Jeromin studied

conformally flat hypersurfaces in the sphere Sn+1 using a different

point of view that used by Cartan, to classify locally that kind of

hypersurfaces. More particularly, U. Hertrich-Jeromin used in [7], [8],

[9], Möbius geometry and its projective model in Rn+3
1 , to reprove the

classic Cartan‘s classification and also for giving a different vision to

the 3-dimensional case: the existence of a 1-1 correspondence between

conformally flat hypersurfaces in the conformal sphere S4 with three

distinct principal curvatures and the Guichard‘s nets. The started

point in all those studies is to consider the conformal sphere as the

conformal compactification of the Euclidean space Rn+1. Already in

the Lorentzian setting, in a recent work of the author with M. Magid,

in [4], were considered the conformally flat Lorentzian hypersurfaces

through of Möbius geometry and its projective model in Rn+3
2 . In

fact, considering the different algebric types of the shape operators

in the Lorentzian case, it was established a local characterization

to the conformally flat Lorentzian hypersurfaces in the conformal

compactification of Rn+1
1 . We observe that in this case, the ambient

space corresponds to the projectivized light cone in RP n+2 induced
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from Rn+3
2 ([4]) which we denote henceforth by R̂n+1

1 .

From another hand, the conformally flat hypersurfaces in the con-

formal sphere Sn+1, were proved to be also important in the con-

text of the integrable systems. More specifically, in [7] and [9], U.

Hertrich-Jeromin showed that to each of them, one can associate a

curved flat constituted by the generalized Gauss map of the flat lift

in the light cone Ln+2 in the Lorentzian space Rn+3
1 . Moreover, if

the hypersurface is 3-dimensional with three distinct real eigenvalues

the curved flat becomes to be a regular map, that assures the exis-

tence of canonical principal curvature coordinates, which are justly

the canonical Guichard coordinates existing on every conformally flat

hypersurface (see [7]).

The main goal in this note it is to prove that one can also associate

to every conformally flat Lorentzian hypersurface in R̂n+1
1 a curved

flat in the Grassmannian O2(n+3)
O1(n)×O1(3)

of Lorentzian n-planes in Rn+3
2 .

In fact, following the U. Hertrich-Jeromin‘s ideas in [7], we prove,

assuming that locally the shape operator has the same algebraic type

and its eigenvalues has constant multiplicity, the following theorem.

Theorem 1.1. the light cone representative f : Mn
1 → Ln+2

1 of a

Lorentzian hypersurface in R̂n+1
1 induces a flat metric on Mn

1 if and

only if its generalized Gauss map is a curved flat.

As a consequence we have the next result.

Corollary 1.1. Given a conformally flat Lorentzian hypersurface in

R̂n+1
1 , the generalized Gauss map of any flat light cone lift is a curved

flat.

Hence for the particular case of conformally flat hypersurfaces M3
1

of R̂4
1 with three distinct real eigenvalues, one gets an interpretation
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of the Guichard‘s nets through of the curved flats in similar form as

the defined positive case: In the Lorentzian case the curved flat is

also a regular map, which gives the canonical principal curvatures

coordinates that are justly the canonical Guichard‘s net existing on

the conformally flat Lorentzian hypersurface in R̂4
1 with three distinct

real eigenvalues ([4]).

2 Known previous results

For hypersurfaces Mn in the sphere Sn+1, we have in dimensions

n ≥ 4 a classic result by Cartan. The induced metric of a hypersur-

face Mn in the sphere Sn+1 (n ≥ 4) is conformally flat if and only

if it is a branched channel hypersurface, that means if at least n− 1

of the principal curvatures coincide at each point. For n = 3, the re-

sult of Cartan no longer holds in its full generality, since there exist

examples of 3-dimensional conformally flat hypersurfaces in S4 with

exactly 3 different principal curvatures. In particular, in this case,

U. Hertrich-Jeromin in ([8], [9]), used Möbius geometry for establish-

ing a relation between that kind of hypersurfaces and the Guichard‘s

nets. To be more especific, recalling that a triple orthogonal system

of surfaces in a three dimensional Riemannian manifold

X = (x1, x2, x3) : (M
3, <,>) → R3

2
∼= R× iR× iR

is called a Guichard net if its Lamé functions li := || ∂
∂xi

||, 1 ≤ i ≤ 3,

satisfy the condition
∑
l2i = 0, U. Hertrich-Jeromin proves in ([8]) the

following structural theorem: for a hypersurface M3 of S4 with three

different principal curvatures to be conformally flat, it must allow

the existence of a Guichard‘s net. Its converse also holds: given a

Guichard net X, there exists locally a conformally flat hypersurface

in S4 whose second fundamental form has three distinct principal

curvatures with conformal fundamental forms dxi.
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In another interesting direction, the conformally flat hypersurfaces

are also related to the integrable system constituted by the equations

of the curved flats. In fact in [7], U. Hertrich-Jeromin also used the

projective model in Möbius geometry to prove that to each confor-

mally flat hypersurface in the conformal sphere one can associate a

curved flat constituted by the generalized Gauss map of a flat lift in

the light cone Ln+2 in the Lorentzian space Rn+3
1 . More specifically,

he proved the following theorem:

Theorem 2.1. [7] The light cone representative f : M → Ln+2 of

a hypersurface in Sn+1 induces a flat metric on M if and only if its

generalized Gauss map γf :Mn → O1(n+3)
O(n)×O1(3)

is a curved flat.

It follows from Theorem 2.1 that given a conformally flat hypersur-

face, the generalized Gauss map of any flat light cone lift is a curved

flat.

In the case of hypersurfaces 3-dimensional with three distinct real

eigenvalues, it was proved in [7] that the induced metric from a curved

flat associated to a flat light cone lift (representative of the confor-

mally flat hypersurface) is a multiple of the conformal metric which

is non-degenerated since the three eigenvalues are distinct. Hence

the curved flat is a regular map, and so, one has canonical prin-

cipal curvature coordinates which always come with regular curved

flat. Finally U. Hertrich-Jeromin showed that the canonical princi-

pal curvature coordinates coming from the regular curved flat yields

just the canonical Guichard net existing on every conformally flat

hypersurface (for more details see [7]).
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2.1 Lorentzian Setting

Since in this note we are interested in to start a study of the connec-

tion between the conformally flat Lorentzian hypersurfaces in R̂n+1
1

and the curved flats, we review now some basic facts about the con-

formal geometry and the projective compactification of the Lorentz

space Rn+1
1 , as well as some results of [4], about the Guichard co-

ordinates system which is allowed in any 3-dimensional conformally

flat Lorentzian hypersurface with three different real principal cur-

vatures.

Let Rn+3
2 be Rn+3 with the metric ⟨v⃗, w⃗⟩ = −v1w1 +

∑n+1
i=2 viwi +

vn+2wn+3 + vn+3wn+2, for v⃗ = (v1, ..., vn+3), w⃗ = (w1, ..., wn+3). Let

RP n+2 denote the real projective space of lines passing through the

origin in Rn+3, π the projection from Rn+3 − {0} to RP n+2, Ln+2
1 =

{v ∈ Rn+3
2 |⟨v, v⟩ = 0} the light cone. Then the projection of Ln+2

1 −
{0} is homeomorphic to our ambient space R̂n+1

1 . From [10] we

know that there is a bijection between points in RP n+2 and quadrics

and planes in Rn+1
1 . In particular, spacelike points correspond to

Lorentzian spheres and timelike planes, while the timelike points

correspond to hyperbolic spaces and spacelike planes. Moreover,

the Lorentzian spheres in Rn+1
1 correspond to points in RP n+2

+ , the

projectivized spacelike points, while hyperbolic spaces correspond to

points in RP n+2
− , the projectivized timelike points. Finally, points in

Rn+1
1 or Sn+1

1 or Hn+1
1 are identified with points in R̂n+1

1 = RP n+2
0

the projectivized light cone in RP n+2 induced from Rn+3
2 .

By the natural constructions made in [10], one can also define the

spherical congruence and their envelopes, as follows:

A differential n-parameter family of spheres S : Mn
1 → RP n+2

+ is

called a spherical congruence. It corresponds to a family of Lorentzian
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spheres in Rn+1
1 .

A differential map f : Mn
1 → R̂n+1

1 envelopes a spherical congru-

ence S if, for all p ∈Mn
1 , f(p) ∈ S(p) and Tf(p)f(M

n
1 ) ⊂ Tf(p)S(p).

In particular, by rescaling one can assume that S takes values

in Sn+2
2 , so an equivalent condition to be an envelope for spherical

congruence is

⟨f, S⟩ = 0 and ⟨df, S⟩ = 0.

Next we define the f -adapted frame which are adequate to estab-

lish the fundamental equations for the hypersurface. {e1, ..., en+3}
is a pseudo-orthonormal basis of Rn+3

2 if < ei, ej >= ±δij for 1 ≤
i, j ≤ n + 1, with −1 for i = 1 and +1 otherwise, and en+2, en+3 ∈
{e1, ..., en+1}⊥ are null vectors with < en+2, en+3 >= 1. By an or-

thonormal basis {v1, ...vn} in a Lorentzian n-dimensional space one

means that < v1, v1 >= −1, < vi, vj >= δij, and < v1, vj >= 0 for

2 ≤ i, j ≤ n.

So in analogy to the positive definite case, one defines a strip as

a pair of smooth maps (f, S) : Mn
1 → Ln+2

1 × Sn+2
2 , where f is a

immersion and S is a spherical congruence enveloped by f . For an

f -adapted frame for the strip (f, S), one means a map F : Mn
1 →

O2(n + 3) such that S = Fen+1, f = Fen+2 and such that, for all

p ∈ Mn
1 , span{Fe1, ..., Fen}p = dfp(TpM

n
1 ), for {ei}n+3

i=1 a pseudo-

orthonormal basis of Rn+3
2 .

Then, assuming locally that the shape operator has the same al-

gebraic type, this means, it can locally be diagonalizable over R or

C, or not diagonalizable with one eigenvalue of multiplicity two or

three, the following lemma is proved in [4]:

Lemma 2.1. ([4]) If the metric of a light cone representative f :

Mn
1 → Rn+3

2 of a Lorentzian hypersurface in the projectivized light

cone R̂n+1
1 is flat, then its normal bundle is flat (as an immersion
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into Rn+3
2 ).

The natural extension of the branched channel hypersurface to the

Lorentzian setting, is as following. A regular map f : Mn
1 → R̂n+1

1

is called a branched channel hypersurface if it envelopes a spherical

congruence S with rank dS ≤ 1.

The definition above simplifies for dimension n ≥ 4, saying that

f : Mn
1 → R̂n+1

1 , n ≥ 4 is branched channel hypersurface if the

Weingarten tensor field AS with respect to any enveloped spherical

congruence S, has an eigenvalue of multiplicity n− 1 ([4]).

So, from [4], we know that f : Mn
1 → R̂n+1

1 , n ≥ 4, is confor-

mally flat iff it is a branched channel hypersurface. Now, in the case

of dimension n = 3, that result doesn‘t hold even that the second

fundamental form was digonalizable over R. But in this last case, if

a1, a2, a3 denote the three distinct eigenvalues of the shape operator,

then the next theorem was proved.

Theorem 2.2. ([4]) If f : M3
1 → R̂4

1 is real diagonalizable with

three distinct eigenvalues, then it is conformally flat iff the conformal

fundamental forms γi given by
γ1 =

√
(a1 − a2)(a1 − a3)ω1,

γ2 =
√

(a1 − a2)(a3 − a2)ω2,

γ3 =
√

(a1 − a3)(a2 − a3)ω3,

(1)

are closed, where ωi are the dual 1-forms to the vector fields Si of a

pseudo-orthonormal f -adapted frame F = (S1, S2, S3, S, f, f̂) for the

strip (f, S).

Theorem 2.2 assures the existence of a coordinates system x1, x2, x3

such that γi = dxi, for which the coordinates surfaces xi = cte con-

stitute a triple orthogonal system whose Láme functions li = || ∂
∂xi

||
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satisfy
∑

i l
2
i = 0. Here one observes that assuming for instance

a1 < a2 < a3, x2 is the only imaginary coordinate function being the

other real coordinates functions. So if the conformally flat Lorentzian

hypersurface has second fundamental form diagonalizable over R, our
Guichard nets take values in R× iR× R.
Hence a necessary condition of conformally flatness is the existence

of a Guichard net ([4]):

Theorem 2.3. On every conformally flat Lorentzian hypersurface in

R̂4
1 with shape operator diagonalizable over R and with three distinct

eigenvalues, there is a Guichard net consisting of surfaces of principal

curvatures.

To finish this section, we just observe that in the 3-dimensional

real diagonalizable case, the conformal metric C can be recovered

from the conformal fundamental forms (1) as −γ21 + γ22 + γ23 .

3 The Curved Flats

The main goal of this section is to prove Theorem 1.1 and to es-

tablish, in the case of 3-dimensional conformally flat Lorentzian hy-

persurfaces with 3 different principal curvatures, an interpretation of

the Guichard nets through of the curved flats. In order to do that, we

follow the U. Hertrich-Jeromin‘s ideas in [7] and use the basic facts

reviewed in Section 2.1 above, as well as Lemma 2.1.

A curved flat is a map into a symmetric space which is tangent at

each point to a flat of the symmetric space, i.e., each tangent space

is abelian (see [5]). Formally it is defined as:

Definition 3.1. A map φ :Mn → G
K

into a (pseudo) Riemmannian

symmetric space is called a curved flat if for any lift F :Mn → G of
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φ we have [ΦP ∧ ΦP ] = 0, where

F−1dF = Φ = ΦK + ΦP : TM → G = K ⊕ P

is the symmetric decomposition of the connection form of F .

Here we recall that the product [Φ∧Ψ] is defined by [Φ∧Ψ](x, y) :=

[Φ(x),Ψ(y)]− [Φ(y),Ψ(x)], and that in the matrix Lie algebras con-

text [Φ ∧ Φ](x, y) = 2Φ ∧ Φ(x, y) where the second ∧ means matrix

multiplication with ∧ for the components.

Since a frame F is determined by its Maurer-Cartan form Φ =

F−1dF which satisfies the integrability condition dΦ+ 1
2
[Φ∧Φ] = 0,

that in components is:dΦK + 1
2
[ΦK ∧ ΦK] +

1
2
[ΦP ∧ ΦP ] = 0

dΦP + [ΦK ∧ ΦP ] = 0,

it follows that φ : Mn → G
K

is a curved flat if and only if those

equations decouple further to give
dΦK + 1

2
[ΦK ∧ ΦK] = 0

dΦP + [ΦK ∧ ΦP ] = 0

[ΦP ∧ ΦP ] = 0.

(2)

Now we just recall that the curved flats come in 1-parameter fam-

ilies, this means, their integrability equations can be rewritten as a

zero-curvature condition involving an auxiliary parameter. That in

particular, assures that the geometries associated to curved flats can

be handled in the context of integrable system theory ([5]).

Now we will focus to prove Theorem 1.1. We begin identifying

the Gauss-Codazzi-Ricci equations for the Lorentzian immersion as
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the integrability condition of a 1-form connection associated to a f -

adapted frame to the strip (f, S):

Let f : Mn
1 → Ln+2

1 ⊂ Rn+3
2 be a representative of the immersion

into R̂n+1
1 and S :Mn

1 → Sn+2
2 ⊂ Rn+3

2 be a spherical congruence en-

veloped by f . Now let F be a f -adapted pseudo-orthonormal framing

for the strip (f, S), given by

F = (S1, ..., Sn, S, f, f̂) :M
n
1 → O2(n+ 3) (3)

with span{S1, ..., Sn}p = dfp(TpM
n
1 ) for all p ∈ Mn

1 . In particular

Si = Fei, i = 1, ..., n, S = Fen+1, f = Fen+2, and f̂ := Fen+3.

Moreover, {S1..., Sn} forms an orthonormal set with ⟨S1, S1⟩ = −1,

where f and f̂ are null vectors such that ⟨f, f̂⟩ = 1.

As usual, dFeB =
∑

A ωABFeA, so the connection form Φ =

F−1dF : TM → o2(n+ 3) is given by

Φ =

(
ω η

−η∗ ν

)
=

(
ω η

−J ′ηtI1,n−1 ν

)

where

J ′ =

1 0 0

0 0 1

0 1 0

 , ω =
(
ωij

)
: TM → o1(n)

η =


−ψ1 −w1 −ζ1
ψ2 w2 ζ2
...

...
...

ψn wn ζn

 : TM → M(n× 3) and

nu =

 0 0 v

−v 0 0

0 0 0

 : TM → o1(3).
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Writing df = dFen+2 = −w1S1 + ....+ wnSn, and making τ1 = −1

and τi = 1 for 2 ≤ i ≤ n, the first and second fundamental forms are

given by:

I =
n∑

i=1

τiw
2
i , II = −(

n∑
i=1

τiwiψi)S − (
n∑

i=1

τiwiζi)f − (
n∑

i=1

τiw
2
i )f̂ .

The integrability condition for the existence of such a frame F , the

Maurer Cartan equations dΦ+ 1
2
[Φ∧Φ] = 0, are Gauss-Codazzi-Ricci

equations for the immersion f , namely:

The Ricci equation: dν = η∗ ∧ η, ie:


dv =

∑n
i τi(ψi ∧ ζi)

0 =
∑n

1 τi(ψi ∧ wi)

0 =
∑n

1 τi(ζi ∧ wi)

(4)

the Codazzi equation: dη = −(ω ∧ η + η ∧ v), which in components

is: 
dψi +

∑
j τiτjωij ∧ ψj = wi ∧ v

dwi +
∑

j τiτjωij ∧ wj = 0

dζi +
∑

j τiτjωij ∧ ζj = v ∧ ψi,

(5)

and the Gauss equation ρ = η ∧ η∗ with the curvature form ρ =

dω + ω ∧ ω:

ρij := dωij +
n∑

k=1

ωik ∧ ωkj = τi(ψi ∧ ψj + wi ∧ ζj + ζi ∧ wj). (6)

Then it follows from the second and third Ricci equation, that

the second fundamental forms IIS = −w1ψ1 +
∑n

2 wiψi and IIf̂ =

−w1ζ1 +
∑n

2 wiζi, where S is being considered as a unit normal field
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to the immersion f :Mn
1 → Rn+3

2 , are symmetric forms with respect

to the Lorentzian metric. Proof of Theorem 1.1. Let g the gen-

eralized Gauss map associated to f : Mn
1 → Ln+2

1 immersion in the

light cone, defined by

g :Mn
1 → O2(n+ 3)

O1(n)×O1(3)
p 7→ dpf(TpM

n
1 ),

which takes values in the Grassmannian of Lorentz n-planes in Rn+3
2 ,

i.e, into the space of hyperbolas in R̂n+1
1 . In fact, using Lorentzian

Möbius geometry one can see that those hyperbolas come from the in-

tersection of a one hyperbolic space corresponding to S1(p), p ∈Mn
1

and n − 1 spheres corresponding to {Si(p)}ni=1, p ∈ Mn
1 , so generi-

cally it is a hyperbola. In the next we take F = (S1, .., Sn, S, f, f̂)

a f -adapted pseudo-orthonormal frame as in (3). Then according to

symmetric decomposition of the Lie algebra, o2(n+3) = K⊕P where

K = o1(n)× o1(3), and the connection 1-form Φ of F splits into the

K and P-parts, namely: Φ = ΦK + ΦP with

ΦK =

(
ω 0

0 ν

)
: TM → K, ΦP =

(
0 η

−η∗ 0

)
: TM → P .

Hence if the induced metric by the representative is assumed to be

flat, one has, from Lemma 2.1, that besides the tangent bundle, the

normal bundle of f :Mn
1 → Rn+3

2 is also flat. Then it follows from the

conditions dω = −ω∧ω and dv = −v∧ v that dΦK+ 1
2
[ΦK ∧ΦK] = 0

and [ΦP ∧ ΦP ] = 2ΦP ∧ ΦP = 0. From other hand, since dη =

−(ω ∧ η + η ∧ v) it follows that dΦP + [ΦK ∧ ΦP ] = 0. Hence we

have checked conditions (2), and so the generalized Gauss map is a

curved flat. Conversely, if the generalized Gauss map is a curved flat

we have that for all i, j

ψi ∧ ψj + wi ∧ ζj + ζi ∧ wj = 0,
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which implies that ρij = 0 for all i, j (see equation (6)). Hence the

induced metric on Mn
1 is flat. □

It follows that

Corollary 3.1. Given a conformally flat Lorentzian hypersurface in

R̂n+1
1 , the generalized Gauss map of any flat light cone lift is a curved

flat.

Remark For the 3-dimensional case with a diagonalizable shape op-

erator with three distinct real eigenvalues a1, a2, a3, one expects that,

in similar form as happens in the define positive case, the induced

metric by a curved flat was exactly a multiple of the conformal metric

C = −γ21 + γ22 + γ23 , where γi are the conformal fundamental forms

(1). Now, since we are assuming the three eigenvalues are different,

one see that the induce metric by the curved flat is non-degenerate,

so the curved flat is regular. Finally, integranting γi given by (1),

one gets the canonical principal curvature coordinates which come

with the regular curved flat. Those give the canonical Guichard‘s

net existing on every real diagonalizable conformally flat Lorentzian

hypersurface [4].
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