
Matemática Contemporânea, Vol. 33, 101–121

http://doi.org/10.21711/231766362007/rmc335

©2007, Sociedade Brasileira de Matemática

GROMOLL-MEYER ACTIONS AND

TRIALITY

C. E. Durán A. Rigas

Abstract

We use the triality presentation of the Spin groups Spin(n), n =

4, . . . , 8, to provide extensions of the Gromoll-Meyer and canonical

actions on Sp(2) ∼= Spin(5).

1 Introduction

The triality presentation of Spin(8) provides an extremely useful algebra

to work in low-dimensional Lie groups and their associated bundles and

quotient maps; see for example [Ri, CR1, CR2], where among other results

Hopf maps are studied under this viewpoint.

In this note we use triality to extend the Gromoll-Meyer non-negative

curvature model of the Milnor (2,-1) exotic sphere. Using this technique

the action extends to many actions and spaces; to give a detailed descrip-

tion of all actions and quotients involved would make this paper rather

unwieldy. Our intention is to remark how the triality presentation al-

lows the actual computation and explicit identification in some of these

examples.

The athours are partially supported by FAPESP grant 2005/04558-0. The non-

trivial commutative diagrams were made with the help of the Paul Taylor’s package

diagrams. The anonymous referee provided many useful comments and corrections.
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Essentially, we shall see that in many cases the spaces involved have

product structures S7×X; these product structures are expicitly realized

with triality triples. In the “exotic” case, preliminary computation with

invariants suggests that they also have product structures Σ7 ×X, where

Σ7 is an exotic sphere. The non-cancellation phenomenon implies that

Σ7 × X is diffeomorphic to the standard case S7 × X for many cases of

manifolds X ([Wa]). Thus these quotients probably do not produce new

examples of manifolds of non-negative curvature but instead a testbed for

studying non-cancellation phenomena in explicit terms.

2 Preliminaries

A fundamental construction in the geometry of non-negative curvature

is the Gromoll-Meyer action, ([GM]) which is the following free S3 action

on the group Sp(2) of quaternionic 2 × 2 matrices A satisfying A∗A =

AA∗ = I (the reader should beware that we are expressing the Gromoll-

Meyer action as a right action instead of as a left action):(
a c

b d

)
⋆q =

(
q̄ 0

0 q̄

)(
a c

b d

)(
q 0

0 1

)
=

(
q̄aq q̄c

q̄bq q̄d

)
.

The quotient Σ7
GM is diffeomorphic to the Milnor exotic sphere Σ7

2,−1

([Mi]), and O’Neill’s theorem [ON] implies that the biinvariant metric of

Sp(2) descends to a metric of non-negative curvature on Σ7
GM .

A crucial aspect of the geometry and topology of the Gromoll-Meyer

action is the existence of a “canonical” action of S3 on Sp(2):(
a c

b d

)
• q =

(
a c

b d

)(
1 0

0 q

)
=

(
a cq

b dq

)
.

The quotient of Sp(2) by this action is diffeomorphic to the standard

sphere S7; in fact the projection to the quotient is realized as the projec-

tion onto the first column

(
a c

b d

)
7→

(
a

b

)
. Let us remark that the metric
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subduced in S7 by the bi-invariant metric on Sp(2) is not the standard

round metric on the sphere ([Du]).

Therefore we have the following “cross diagram”:

S3

⋆

y
S3 •−−−−→ Sp(2) −−−−→ S7y

Σ7

The study of the geometry and topology of these two actions, one with

a “standard” quotient and the other with a “exotic” quotient, produces

far reaching consequences, exploited in [Du, DMR, ADPR, DP].

It has now been realized that this “cross diagram” situation can be

studied in more general contexts. In [DPR], we study the geometry and

topology of these diagrams associated to arbitrary S3-principal bundles

over S7, indexed by k mod 12 (and E1 is the classical Gromoll-Meyer

action on Sp(2)):

S3

⋆

y
S3 •−−−−→ Ek −−−−→ S7y

Σ7
k

,

which provides geometric Gromoll-Meyer type models for all 7-dimensional

exotic spheres Σ7
k, (indexed by k mod 28), each one of them in infinitely

many ways.

In this note we use the triality presentations of the low-dimensional Spin

groups to provide extensions of both the Gromoll-Meyer and canonical

actions in another direction. Recall that the group Sp(2) is isomorphic to

the universal cover Spin(5) of the special orthogonal group SO(5). We
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have the chain of inclusions Spin(4) ⊂ Spin(5) ⊂ Spin(6) ⊂ Spin(7) ⊂
Spin(8); the triality presentation gives “cross digrams” of the form

S3

⋆

y
S3 •−−−−→ Spin(n) −−−−→ Cℓy

M ℓ

,

for n = 4, 5, 6, 7, 8, ℓ = 1
2n(n−1)−3 indexes the dimension of the quotients

Cℓ and M ℓ, and the classical Gromoll-Meyer action corresponds to n =

5 above; actually (see section 4) we write the free Spin(4)-actions that

contain the classical ones as subactions. Since in the biinvariant metric

subgroups are totally geodesic, note that the Milnor (2,-1) sphere in its

Gromoll-Meyer model is included in a totally geodesic way in the quotients

M ℓ. This, added to the non-cancellation S7×Sk ∼= Σ7×Sk, leads to totally

geodesic embeddings of Σ7 in products S7 × Sk; however the metric on

S7 × Sk will have no relationship with the product metric of two round

spheres.

A careful study of the topological and geometric invariants of these (in

principle exotic) manifolds will be considered in a forthcoming paper.

3 Triality

Here we just provide the basic notation for the triality presentation of

Spin(n); for details, the reader can take [Ri] or [CR2] as a starting point.

We denote by H, O the algebra of quaternions and the Cayley algebra of

octonions, respectively.

We describe the Cayley algebra of octonions as the algebra structure on

pairs of quaternions given by by(
a

b

)
·

(
c

d

)
=

(
ac− d̄b

da+ dc̄

)
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Consider the the set S of triples (A,B,C) ∈ SO(8)×SO(8)×SO(8) such

that for all ξ, η ∈ O in the Cayley algebra , A(ξ · η) = B(ξ) · C(η), where

the dot represents Cayley multiplication. Given A ∈ SO(8), this condition

determines B and C modulo a sign, also, this set has a group structure

given by componentwise multiplication. With these two comments in

mind, it is simple to show that S is the (universal) double cover Spin(8) →
SO(8), with projection given by (A,B,C) 7→ A. Actually, any element

of the triple determines the other two modulo sign, and we also have

valid projections (A,B,C) 7→ B, (A,B,C) 7→ C. Denoting the usual

orthonormal basis of O by {1 = e0, e1, . . . , e7}, we have

Spin(n) = {(A,B,C) ∈ Spin(n+ 1) | A(e8−n) = e8−n}

for n = 1, . . . 7, projecting to the canonical SO(n) ⊂ SO(8). A useful

characterization of Spin(7) is given by

Spin(7) = {(A,B,C) ∈ Spin(8) : C = B̃} ,

where B̃ is given by B̃(x) = B(x̄) and the bar denotes Cayley conjugation.

Of course in all the others subgroups Spin(n) ⊂ Spin(7) we can then write

(A,B, B̃) instead of (A,B,C).

The group G2 of automorphisms of the Cayley algebra can also be seen

as the subgroup given by the diagonal in Spin(8): G2 = {(A,A,A) ∈
Spin(8)}.

4 Generalized actions

First let us remark that both of these actions are actually subactions of

S3 × S3 ∼= Spin(4) actions on Sp(2):(
a c

b d

)
⋆(p, q) =

(
p̄ 0

0 p̄

)(
a c

b d

)(
q 0

0 1

)
=

(
p̄aq p̄c

p̄bq p̄d

)
,(

a c

b d

)
• (p, q) =

(
a c

b d

)(
p 0

0 q

)
=

(
ap cq

bp dq

)
,
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with quotients diffeomorphic to S4 in both cases (see section 5); the

Gromoll-Meyer action is given by the diagonal subaction A⋆(q, q) and

the canonical one by A • (1, q).
Given a quaternion x, we denote by lx, rx : H → H the left and right

multiplication operators, lx(h) = xh, rx(h) = hx, and the 4 × 4 identity

matrix by 1. Consider now the following monomorphisms S1, S2 : G →
Spin(8):

S1(x) =

((
1 0

0 rx̄

)
,

(
rx̄ 0

0 1

)
,

(
lx 0

0 1

))
,

S2(x) =

((
1 0

0 lx

)
,

(
1 0

0 lx

)
,

(
1 0

0 lx

))
,

G(x) =

((
1 0

0 lx ◦ rx̄

)
,

(
rx̄ 0

0 lx

)
,

(
lx 0

0 lx

))
.

Note that

� For all x ∈ S3, S1(x) and S2(x) commute.

� The image of S2(x) is contained in G2 ⊂ Spin(8).

� The inclusions S1(x) and S2(x) are conjugate to each other (this will

be used in section 5.3).

Consider now the following S3 × S3 actions on Spin(8):

(A,B,C) •T (p, q) = (A,B,C)S1(p)S2(q)

=

(
A

(
1 0

0 lq ◦ rp̄

)
, B

(
rp̄ 0

0 lq

)
, C

(
lp 0

0 lq

))

(A,B,C)⋆T (p, q) = G(p̄)(A,B,C)S2(q)

=

((
1 0

0 lp̄ ◦ rp

)
A

(
1 0

0 lq

)
,

(
rp 0

0 lp̄

)
B

(
1 0

0 lq

)
,

(
lp̄ 0

0 lp̄

)
C

(
1 0

0 lq

))
.
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Note that the matrices multiplying the first component A of (A,B,C)

have the 4 × 4 identity matrix on the upper-left corner. It thus follows

that

Proposition 1. These Spin(4)-actions leave the subsets Spin(n), n =

4, 5, 6, 7, invariant as sets.

Now we reach the main results of this section:

Theorem 1. The •T and ⋆T actions on Spin(5) described above are

conjugate to the • and ⋆-actions on Sp(2) given at the beggining of the

section.

Proof: The map p1 : Spin(d) → SO(8) is just the projection to the

quotient p : Spin(d) → SO(d) and the inclusion SO(d) ↪→ SO(8); for this

proof the other projections p2, p3 given by p2(A,B,C) = B, p3(A,B,C) =

C are much more interesting:

Recall that Spin(5) = (A,B, B̃) such that A ∈ SO(5), and that since

Sp(2) acts in H×H it is naturally a subgroup of SO(8). We have that if

(A,B, B̃) ∈ Spin(5), then B = p2(A,B, B̃) is a subgroup of SO(8) that

is (linearly) conjugate to the “canonical” Sp(2) given by the standard

quaternionic structure on H×H (see proposition 7 of [CR2]). Since C = B̃

which is B conjugated by the Cayley bar involution, the same is true for

C = p3(A,B,C).

Then looking at the C-component of the triality triples gives the desired

result. To be more specific, a 2×2 matrix

(
a c

b d

)
in Sp(2) is determined

by its first and second columns

(
a

b

)
and

(
c

d

)
, that is, the images A

(
1

0

)

and A

(
0

1

)
. Both Spin(4)-actions preserve the columns; the standard

•-action acts by (
a

b

)
→

(
ap

bp

)
,

(
c

d

)
→

(
cq

dq

)
,
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and the exotic ⋆-action by(
a

b

)
→

(
p̄aq

p̄bq

)
,

(
c

d

)
→

(
p̄c

p̄d

)
.

The corresponding columns in the triality presentation are C(1) and C(e4).

Then keeping track of what happens to C(1) and C(e4) when C is trans-

formed by the actions we see that it is the same as the actions expressed

in the canonical Sp(2).

2

Next we show that these extensions of the actions are free:

Theorem 2. For all d = 4, 5, 6, 7, 8, both the • and ⋆ actions (as S3×S3

actions) are free on Spin(d).

Proof: For the •-action this is trivial, being the right action of S3×S3 as

a subgroup. For the ⋆-action, this requires the analysis of the action on a

component of the triality triple (A,B,C): suppose that (A,B,C)⋆(p, q) =

(A,B,C). Choosing, for example, the C-component, we get(
lp̄ 0

0 lp̄

)
C

(
1 0

0 lq

)
= C

Dividing C into 4× 4 blocks C =

(
E F

G H

)
, we have

(
lp̄ 0

0 lp̄

)
C

(
1 0

0 lq

)
=

(
lp̄ ◦ E lp̄ ◦ F ◦ lq
lp̄ ◦G lp̄ ◦H ◦ lq

)
.

Since the column (E,G)t has rank 4 it follows that lp̄ is the identity and

p = 1. Then since the column (F,H)t has rank 4, q = 1 by the same

reasoning.

2

Remark. The anonymous referee observed that this construction actually

applies to Spin(n) for all n ≥ 4, not only for n = 4, 5, 6, 7, 8. Indeed,
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construct a block diagonal matrices Ap, Bq ∈ SO(n) by

Ap =

(
1 0

0 lp̄ ◦ rp

)
Bq =

(
1 0

0 lq

)
,

where the 1 in the upper left positions is the (n − 4) × (n − 4) identity

matrix. We then get a free action of SO(3) × S3 in SO(n) which is

(p, q) ·X = ApXBq. For n = 4, 5, 6, 7, 8, this action is a Z2 reduction of

the actions given above (just look at the A-component). These actions can

be lifted to Spin(n); however, for n > 8 we lose the triality interpretation.

5 Quotients

In this section we study the quotients of some of these actions. There

are several actions in question:

� The Spin(4) action (p, q) •T ;

� The restricted actions (1, q), (p, 1) and (q, q) of •T ;

� The Spin(4) action (p, q) of ⋆T ;

� The restricted actions (1, q), (p, 1) and (q, q) of ⋆T ;

Note that in both cases (• and ⋆) the Spin(4) ∼= S3
p × S3

q action is

given by the commuting actions (p, 1) and (1, q), and therefore we have

principal bundles

S3
p · · ·Spin(d)/S3

q → Spin(d)/Spin(4) ,

S3
q · · ·Spin(d)/S3

p → Spin(d)/Spin(4) ,

where we have denoted by S3
p and S3

q the typical principal fiber of these

actions. Sometimes in the sequel we abuse notation and denote by S3
p

(resp. S3
q ) the actions themselves.
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Let us first give a short description of the Spin(5) ∼= Sp(2) case; this

description is given with respect to the Sp(2) presentation of the actions

given at the beginning of section 3.

For the canonical •-action this produces Hopf bundles S3 · · ·S7 → S4

in either case: the (p, 1)-action kills the first column and then the (1, q)-

action is just the canonical Hopf action on S7. In the exotic ⋆-action,

we find an asymmetry: S3
p · · ·Spin(5)/S3

q → S4 is again the Hopf bundle

S3 · · ·S7 → S4 (since the quotient of the (1, q)-action is realized by pro-

jecting on the second column), whereas in the bundle S3
q · · ·Spin(5)/S3

p →
S4 the total space Spin(5)/S3

p is Sp(2) divided by the diagonal action. It

is well-known that this space is diffeomorphic to T1S
4, the unit tangent

bundle of S4.

5.1 The canonical •T -action

For the •T action, we have the following table of quotients; Vn,k de-

notes the sets of all orthonormal k-frames in Rn (in particular, V2,n is the

unit tangent bundle of Sn−1). The table shows the symmetry between

the (p, 1)-action and the (1, q)-action, since they essentially are the same

action operating on the first or last columns.

•T (p, q) (1, q) (p, 1)

Spin(4) point S3 S3

Spin(5) S4 S7 S7

Spin(6) V6,2 S7 × S5 S7 × S5

Spin(7) V7,3 V7,2 × S7 V7,2 × S7

Spin(8) V8,4 V7,2 × S7 × S7 V7,2 × S7 × S7

Let us give a couple of explicit realizations of the quotients; these real-

izations are easily expressed in terms of the triality presentation.
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The most important part is not the quotients in itselves, but the fact

that they have non-trivial product structures; as mentioned in the intro-

duction, this reinforces the hope of having product structures and non-

cancellation phenomena in an explicit way in this fashion.

Theorem 3. The quotient Spin(6)/S3
q is explicitly diffeomorphic to S7×

S5, and also to the complex 2-frames on S7, the homogeneous space

SU(4)/SU(2).

Proof: Let Φ : Spin(6) → S7×S5 be given by Φ(A,B,C) = (B(1), A(e2)).

A priori the image falls in S7×S7; however, since we are in Spin(6), A(1) =

1 and A(e1) = e1. Thus A(e2) lies in the space orthogonal to 1, e1 and

therefore the image falls in S7 × S5. Note that both B(1) and A(e2)

are invariant under the (1, q)-action and therefore Φ descends to a map

ϕ : Spin(6)/S3
p → S7 × S5. We construct an inverse, noting that the

class of [(A,B, B̃)] under the S3
q action is determined by the first four

columns B(1), . . . B(e3) of its B-component. Then, using the basic prop-

erty A(ξ · η) = B(ξ)B̃(η) (and · denotes the Cayley multiplication), we

have

� B(1) = α.

� B(e2) = A(e2) ·B(1) = γ · α.

� B(e3) = A(e1) ·B(e2) = e1 · (γ · α).

� B(e1) = A(e2) ·B(e3) = γ · (e1 · (γ · α)).

Therefore, the map ϕ is smoothly invertible using the formulas above.

Consider now the map F : Spin(6) → S7×S7, F (A,B, B̃) = (B(1), B(e2)).

Again these coordinates are invariant under the S3
q -action and F de-

scends to f : Spin(6)/S3
q → S7 × S7. However, in Spin(6) we have that

B(e1) = A(e1) · B(1) = e1 · B(e1). Since B ∈ SO(8), B(e2) is orthogonal

to the span of B(1), B(e1) which by the previous remark is the same as
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the span of B(1), e1 · B(1). Taking left multiplication by e1 to define the

complex structure on R8 we get that B(e2) is complex orthogonal to B(1)

and thus the pair (B(1), B(e2)) lives in the complex unit tangent bundle

of S7, SU(4)/SU(2): The inverse of this map is again given by providing

the first four columns of B; given (ϵ, ζ) a complex 2-frame,

� B(1) = ϵ.

� B(e1) = e1 · ϵ.

� B(e2) = ζ.

� B(e3) = e1 · ζ.

2

Let us study the (p, 1)-action on Spin(6):

Theorem 4. The quotient Spin(6)/S3
p is explicitly diffeomorphic to S7×

S5.

Proof: Now the class of (A,B,C) = (A,B, B̃) is determined by the last

four columns of B. Then in a similar vein to the previous theorem we

have Φ : Spin(6)/S3
p given by

Φ([A,B, B̃]) = (B(e4), A(e2)) ,

with inverse given by

� B(e4) = δ.

� B(e5) = A(e1) ·B(e4) = e1 · δ.

� B(e6) = A(e2) ·B(e4) = γ · δ.

� B(e7) = A(e2) ·B(e5) = γ · (e1 · δ).
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2

Note that by triality, these maps can be expressed in terms of B, e.g.

Φ[(A,B, B̃)] = (B(e4),−B(e4) ·B(e6)).

With these examples, the astute reader will have noticed that the quo-

tients of the different •-actions are characterized by choosing the adequate

columns from (A,B,C). For example, the full Spin(4)-action on Spin(6)

is the standard homogeneous space Spin(6)/Spin(4) = V6,2, the unit tan-

gent bundle of S5, with identification given by (A(e1), A(e2)). Let us put

together all these actions in the diagrams

According to the notation we adopted, i.e., B(1) = α ∈ S7, B(e4) =

δ ∈ S7 and A(e2) = γ ∈ S5
1,e1

, we have
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The long parentheses are a result of expressing A(e3) in terms of (α, γ) =

(B(1), A(e2)), respectively in terms of (δ, γ) = (B(e4), A(e2)) through

Cayley products. Let us remark that the bundle S4 . . . V6,2 → S5 is not

trivial in spite of the fact that it has a section; in fact V6,2 is not even

homotopically equivalent to S5 × S4 (see [Ja]).

The corresponding diagrams for Spin(7) is given by

Where we have the diffeomorphisms Spin(7)/S3
p
∼= V8,3

∼= S7 × V7,2
∼=

Spin(7)/S3
q , and recall that S7×V7,2 is diffeomorphic to V8,3 via (α, (J,K)) 7→
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(α, α · J, α ·K), with inverse (α, β, ϵ) 7→ (α, (ᾱ, αϵ)). The maps are given

by

and the last horizontal map is (Ae1, Ae2, Ae3) 7→ (Ae1, Ae2).

For the Spin(8) case, recall that Spin(8) is a trivial principal Spin(7)

bundle over S7 and therefore the associated Spin(7)/S3
p , respectively

Spin(7)/S3
q bundles are trivial as well and one has

Given the diffeomorphism

Spin(8) ∋ (A,B,C) 7→
(
L
A(1)

·A,L
A(1)

·R
A(1)

·B,LA(1) · C);A(1)
)
∈ Spin(7)×S7 ,
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whose inverse is

Spin(7)× S7 ∋ ((Λ,M, M̃), α) 7→ (Lα · Λ, Lα ·Rα ·M,Lᾱ · M̃) ∈ Spin(8) ,

then Spin(8)/Spin(4) ∼= Spin(7)/Spin(4) × S7 as [(A,B,C)]Spin(4) 7→ ((A(1) ·
A(e1), A(1) ·A(e2), A(1) ·A(e3)), A(1) ∈ V7,3 × S7 and since V7,3 fibers over V7,2

with fiber S4 and V7,2 × S7 is diffeomorphic to V8,3 as we saw, we get back

5.2 Associated Bundles

Let us remark that the (p, q) Spin(4)-actions and the restricted diagonal S3

actions are related by the passage from a principal bundle to associated bundles;

indeed, if we let S3
p × S3

q act on S3 via the canonical projection to SO(4), i.e.,

(p, q) · s = psq̄, then the quotient of the diagonal restrictions ∆ = (q, q) for both

the • and the ⋆ actions is given by the associated

Spin(n)/∆ ∼= Spin(n)×S3
p×S3

q
S3 ;

and we have a (non-principal) bundle

S3 · · ·Spin(n)/∆ → Spin(n)/S3
p × S3

q .

In the classical case, this produces the unit tangent bundle of the 4-sphere

S3 · · ·V5,2 → S4 (in the •-action), and the classical Milnor fibration S3 · · ·Σ7
2,−1 →

S4 in the ⋆-action ([GM]). In the next section we will study this diagonal action

for the first of the extension, namely the generalized Gromoll-Meyer action on

Spin(6).

5.3 The exotic ⋆T actions

In the “canonical” • actions, the maps [(A,B,C)] 7→ A(e1) (or A(e2) or A(e3)

defines a bundle with total space the respective quotient and base a sphere; in
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most cases, the product structure of the quotient arises from the triviality of

these bundles.

What will happen in the exotic ⋆-actions is that the corresponding bundles

will not be trivial; however, in spite of the non-triviality of the bundle, the total

space can be diffeomorphic to a product. But in these cases the “triviality” of the

total space has to be detected by more powerful invariants. The most interesting

action in here is the diagonal ⋆-actions (q, q) on Spin(n), since they all contain

the Gromoll-Meyer sphere embedded in a totally geodesic fashion. In this section

we will study just the first case, namely M12 = Spin(6)/S3
GM , the quotient of the

diagonal Gromoll-Meyer extension on Spin(6). As we saw in 5.2, the manifold

M12 is a non-principal S3-bundle over a 9-dimensional manifold Q9.

On the other hand, since the two separate actions S3
p and S3

q commute we also

have a principal S3
p ...Spin(6)/S

3
q → Q9 and saw that Spin(6)/S3

q is diffeomorphic

to S7 × S5. (recall that the inclusions S1(q) and S2(q) are conjugate so that the

(q, 1)-quotient is the same for the ⋆ and •-actions). Using the formula for this

diffeomorphism and the explicit S3
p action we get:

Theorem 5. For p ∈ S3, (α, γ) ∈ S7 × S5 the free action with quotient Q is

p ∗ (α, γ) = (

(
ap

p̄b

)
, (ξ, p̄ηp)) where

(
a

b

)
∈ H⊕H and (ξ, η) ∈ ImH⊕ ImH are

both unit vectors.

The above, in turn says that Q is the total space of the associated 5-Sphere

bundle to the R6 vector bundle over S4, obtained from the principal Hopf bun-

dle S3...S7 → S4, the representation S3 → SO(3) (universal covering) that

induces canonically an R3−vector bundle and the Whitney sum with a trivial

3-dimensional bundle. I.e., S5...Q → S4 is the unit sphere bundle of R6...(S7×S3

R3) ⊕ ϵ3 → S4. In particular, Q is not trivial over S4, since the Hopf bundle

represents the generator of the stable group π4BSO ∼= Z.
Note that there are more bundles related to this action:
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a non principal bundle, and

a principal bundle.

The base spaces of these bundles also are total spaces: we know that V6,2 =

T1S
5 is the total space of the non trivial S4...V6,2 → S5 and Q is the total space

of a non trivial bundle S5...Q → S4.

The diffeomorphism types of the spaces involved may still be the same, while

they are not bundle isomorphic. We intend to complete this study in a forth-

coming paper and we close now with a few comments that seem to indicate

that this phenomenon is indeed present, and the exoticity of the Gromoll-Meyer

construction is lost when we pass to the bigger quotients: the manifold M12 ∼=
Spin(6)/S3

GM is diffeomorphic to Σ7
k ×S5 for any homotopy 7-sphere. In partic-

ular, M12 is diffeomorphic to S7 × S5.

First note that the basic homotopy invariants of M12 coincide with the re-

spective ones of S7×S5; the exact homotopy sequence shows that the homotopy

groups coincide, and a Gysin sequence argument shows that the homology groups

are the same. In fact lifting constructions as in [Du] could be used to provide

explict homeomorphisms (not diffeomorphisms!) between these spaces and the

standard ones. However, differential topological invariants show diffeomorphisms

in a non-explicit way:

Fix an arbitrary Σ7
k that may even be S7. We know that it is parallelizable

since π7BSO(7) = 0. Let Z12 = Σ7
k × S5; using the fact that TS5 has a section

we conclude that Z12 is also parallelizable. Since Z12 has zero sixth homology it

follows that its signature is zero.

Now the corresponding facts for M12 are also valid. From S3 · · ·M → Q and

S5 · · ·Q → S4 we conclude that S3 × S5...M → S4 is a (linear) bundle and the

analogous argument as above can be used to conclude thatM is also parallelizable

with zero signature. Then, standard methods of Differential Topology1 imply

1Due to the work of many people, in particular, W. Browder, C.T.C. Wall, S. Smale,

S. Novikov, D. Sullivan and others.
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that they are diffeomorphic.

The same kind of argument shows that Σ7
k × S3, for any k has just one differ-

entiable structure: that of the cartesian product S7 × S3; this has already been

observed in the non-cancellation context in [Ri2]. Here, however, one has more

structure that could be used to realize this non-cancellation in by an explicit

geometric diffeomorphism.
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