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A GEOMETRIC ITÔ FORMULA*

P. Catuogno

Abstract

Let M and N be manifolds equipped with connections ΓM and

ΓN respectively and F : M → N be a smooth map. Let X be

an M -valued semimartingale and Θ be an 1-form on N . We prove

the following Itô formula in the context of Schwartz (second order)

geometry,

∫
Θ dΓ

N

F (X) =

∫
F ∗Θ dΓ

M

X +
1

2

∫
β∗
FΘ(dX, dX)

where the integrals are in the Itô sense, and βF is the fundamental

form of F . Some applications are discussed.

1 Introduction

We recall the Itô formula for continuous semimartingales, which in the

real valued case is

F (Xt) = F (X0) +

∫ t

0
F ′(X)dX +

1

2

∫ t

0
F ′′(X)d[X,X] (1)
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for X a continuous semimartingale and F a twice continuously differen-

tiable function (see for instance Ph. Protter [11]). The equation (1) stands

at the heart of stochastic calculus. It shows that C2 functions of continu-

ous semimartingales are also semimartingales, and provides explicitly the

Doob-Meyer decomposition of f(X). Thus it allows calculations to be

made, playing a role analogous to that of the fundamental theorem of

ordinary calculus.

The aim of this work is to extend the formula (1) to the stochastic

differential geometry context. More precisely, we prove the following geo-

metric Itô formula. Let M and N be manifolds endowed with connections

ΓM and ΓN respectively and F : M → N be a smooth map. Let X be an

M -valued semimartingale and Θ be an 1-form on N . Then∫
Θ dΓ

N
F (X) =

∫
F ∗Θ dΓ

M
X +

1

2

∫
β∗
FΘ(dX, dX) (2)

where the integrals are in the Itô sense, and βF is the fundamental form

of F . In the special case that M = N = R (equipped with the usual

connection) and Θ = dx, we recovery the classical Itô formula (2).

In the literature there are two versions of (2), one of J. M. Bismut for

Itô processes (see [1] pp 407, Théorème 3.5) and another of J. R. Norris

(see [10] pp 207). Both using covariant differentials and Stratonovich to

Itô conversion rules. Our formulation and proof are different, we write

the geometric Itô formula in terms of Itô integrals and give an intrinsic

stochastic proof.

We apply the formula (2) to obtain the Bismut characterization of har-

monic maps (see [8] pp 52), a stochastic characterization of the solutions

of the heat equation, and we show that a smooth map is an harmonic Rie-

mannian submersion if and only if sends Brownian motions into Brownian

motions (this affirmation appear without proof in [10] pp 207).

The paper is organized as follows: In Section 2, we review some of the

standard facts on Schwartz geometry and stochastic calculus on manifolds

(see for instance M. Emery [4], [5], P. Meyer [7], [9] and L. Schwartz [13],

[14]). In section 3 we prove our principal results.
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2 Schwartz Geometry and Stochastic Calculus

Throughout this paper all the geometrical objects like manifolds, maps

and functions will always be assumed to be smooth. As to manifolds and

stochastic differential geometry, we shall use freely concepts and notations

of Emery [4].

Let x be a point in a manifold M . The second order tangent space

to M at x, τxM is the vector space of all differential operators on M at

x of order at most two without a constant term. Let (U, xi) be a local

coordinate system around x. Every L ∈ τxM can be written in a unique

way as

L = aiDi + aijDij

where aij = aji, Di =
∂

∂xi
and Dij =

∂

∂xi∂xj
are differential operators

at x (we shall use the convention of summing over repeated indices). The

elements of τxM are called second order tangent vectors at x, the elements

of the dual vector space τ∗xM are called second order forms at x. Every

θ ∈ τ∗xM can be written in a unique way as

θ = θid
2xi+ θijdx

i · dxj

where θij = θji and {d2xi, 2dxi · dxj : i ≤ j} is the dual basis of {Di, Dij :

i ≤ j}.
The disjoint union τM =

⋃
x∈M τxM (respectively τ∗M =

⋃
x∈M τ∗xM)

is canonically endowed with a vector bundle structure over M , it is called

the second order tangent fiber bundle (respectively second order cotangent

fiber bundle) of M .

The relation between second order geometry and stochastic calculus on

manifolds is based in two fundamentals observations of L. Schwartz [13]:

the Itô formula shows that M -valued semimartingales are well defined,

and, secondly, means the Itô’s differentials dXi and d[Xi, Xj ] (where (xi)

is a local chart and Xi the i-th coordinate of the M -valued semimartingale

X in this chart) behave under a change of coordinates as the coefficients
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of a second order tangent vector. This means that second order forms can

be integrated along semimartingales. More formally,

Definition 1. A continuous random process X on a manifold M is a

semimartingale if its composition f(X) with any f ∈ C∞(M) is a real

valued semimartingale.

Let ΘXt ∈ τ∗Xt
M be an adapted stochastic second order form along Xt,

an M -valued semimartingale. The integral of the form Θ along X was

proposed by P. Meyer [7] (see also M. Emery [4] and [5]). Locally this

integral can be describe as: let (U, xi) be a local coordinate system in

M . With respect to this chart the second order form Θ can be written

as Θx = θi(x)d
2xi + θij(x)dx

i · dxj where θi and θij = θji are (C∞ say)

functions in M . Then the integral of Θ along X is defined by:∫ t

0
Θ d2X =

∫ t

0
θi(Xs)dX

i
s +

∫ t

0
θij(Xs)d[X

i, Xj ]s

We recall that a classical geometric connection Γ on M is equivalent to

a section of the vector bundle Hom(τM, TM) such that Γ|TM = IdTM

(see for instance [7] pp 52).

Let M be a manifold endowed with a connection Γ. Let θXt ∈ T ∗
Xt
M

be an adapted stochastic 1-form along Xt, an M -valued semimartingale.

The Itô integral of the form Θ along X is defined by:∫ t

0
Θ dΓX =

∫ t

0
Γ∗Θ d2X

where Γ∗(x) : T ∗
xM → τ∗xM is the pull-back of Γ(x) (see [7], [4] and [5]).

We say that a M -valued semimartingale X is a Γ-martingale if for any

1-form Θ the Itô integral
∫ t
0 Θ dΓX is a local martingale.

Let F : M → N be a smooth map, and L ∈ τxM . We have that

F∗(x)L ∈ τF (x)N , the differential of F is given by

F∗(x)L(f) = L(f ◦ F )

where f ∈ C∞(N). A covector θ ∈ τ∗F (x)N is pulled back into F ∗(x)θ ∈
τ∗xM by

⟨F ∗(x)θ, L⟩ = ⟨θ, F∗(x)L⟩



A GEOMETRIC ITÔ FORMULA 89

where L ∈ τxM .

In terms of stochastic integrals the pull-back is well comported. In fact,

let X be an M -valued semimartingale and Θ ∈ τ∗F (X)N be an adapted

stochastic second order form along F (X), we have that∫
F ∗Θ d2X =

∫
Θ d2F (X). (3)

Let L be a smooth section of τM . The squared field operator associated

to L, denoted by QL, is the symmetric tensor given by

QL(f, g) =
1

2
(L(fg)− fL(g)− gL(f))

where f, g ∈ C∞(M). We can consider Qx : τxM → TxM ⊙ TxM as the

linear map defined by

Qx(L = aiDi + aijDij) = aijDi ⊙Dj .

Pushing forward of second order vectors by smooth maps is related to

the so called Schwartz morphisms between second order tangent vector

bundles.

Definition 2. Let M and N be manifolds and take x ∈ M and y ∈ N .

A linear map f : τxM → τyN is called a Schwartz morphism if

i) f(TxM) ⊂ TyN and

ii) for every L ∈ τxM we have that Q(fL) = (f ⊗ f)(QL).

We remark that if F : M → N is a smooth map between manifolds,

then its differential is a Schwartz morphism.

Definition 3. Let M and N be manifolds equipped with connections ΓM

and ΓN respectively and F : M → N be a smooth map. The section αF

of τ∗M ⊗ F ∗TN is defined by

αF = ΓN ◦ F∗ − F∗ ◦ ΓM .
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The fundamental form of F , βF is the unique section of (TM ⊙ TM)∗ ⊗
F ∗TN such that αF = βF ◦Q. The map F is said to be affine if its fun-

damental form vanishes i.e. βF = 0. In the case that M is a Riemannian

manifold and ΓM is the Levi-Civita connection, the tension field of F ,

τF : M → TN is given by

τF = trβF .

The map F is said to be harmonic if its tension field vanish i.e. τF = 0.

The following linear algebra lemma shows that βF is well defined.

Lemma 1. Let E be a vector bundle and α be a section of τ∗M ⊗E such

that α|TM = 0. Then there exists an unique section β of (TM⊙TM)∗⊗E

such that α = β ◦Q.

Proof: Since Ker Q = TM ⊂ Ker α, the lemma follows from the first

isomorphism theorem (see [12] pp 67).

2

Proposition 1. Let M , N and L be manifolds equipped with connections

ΓM , ΓN and ΓL respectively. Let F : M → N and G : N → L be smooth

maps. Then

βG◦F = G∗ ◦ βF + βG ◦ (F∗ ⊗ F∗)

Proof: We first compute αG◦F .

αG◦F = ΓL ◦ (G ◦ F )∗ − (G ◦ F )∗ ◦ ΓM

= ΓL ◦G∗ ◦ F∗ −G∗ ◦ ΓN ◦ F∗ +G∗ ◦ ΓN ◦ F∗ −G∗ ◦ F∗ ◦ ΓM

= G∗ ◦ (ΓN ◦ F∗ − F∗ ◦ ΓM ) + (ΓL ◦G∗ −G∗ ◦ ΓN ) ◦ F∗

= G∗ ◦ αF + αG ◦ F∗

From the definition of β, using the expression for αG◦F and the fact that

F∗ is a Schwartz morphism, we have that

βG◦F ◦Q = αG◦F

= G∗ ◦ αF + αG ◦ F∗

= G∗ ◦ βF ◦Q+ βG ◦Q ◦ F∗

= (G∗ ◦ βF + βG ◦ F∗ ⊗ F∗) ◦Q.
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This establish the formula.

2

3 The geometric Itô formula

We can now formulate our main result.

Theorem 1. Let M and N be manifolds equipped with connections ΓM

and ΓN respectively and F : M → N be a smooth map. Let X be an

M -valued semimartingale and Θ be an 1-form on N . Then∫
Θ dΓ

N
F (X) =

∫
F ∗Θ dΓ

M
X +

1

2

∫
β∗
FΘ(dX, dX)

Proof: We calculate∫
Θ dΓ

N
F (X) =

∫
(ΓN )∗Θ d2F (X)

=
∫
F ∗(ΓN )∗Θ d2X

=
∫
F ∗(ΓN )∗Θ d2X +

∫
(ΓM )∗F ∗Θ d2X −

∫
(ΓM )∗F ∗Θ d2X

=
∫
(ΓM )∗F ∗Θ d2X +

∫ (
F ∗(ΓN )∗Θ− (ΓM )∗F ∗Θ

)
d2X

=
∫
F ∗Θ dΓ

M

2 X +
∫
α∗
FΘ d2X

=
∫
F ∗Θ dΓ

M

2 X + 1
2

∫
β∗
FΘ(dX, dX),

where we use the formula (3) in the second line. The last equality is a

consequence of the lemma below.

2

Lemma 2.
∫
α∗
FΘ d2X = 1

2

∫
β∗
FΘ(dX, dX)

Proof: By the definition of βF , we have that

1

2

∫
β∗
FΘ(dX, dX) =

∫
Q∗β∗

FΘ d2X =

∫
(βF ◦Q)∗Θ d2X =

∫
α∗
FΘ d2X.

For the first equality see [4] Proposition 6.31.

2
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The following result is well known in the literature (see [4] pp 40 propo-

sition 4.32, [2] pp 234 among others).

Proposition 2. Let M and N be manifolds equipped with connections ΓM

and ΓN respectively and F : M → N be a smooth map. Then F is affine

if and only if, for every ΓM -martingale X, F (X) is a ΓN -martingale.

Proof: It is clear from the theorem and the definitions.

2

Corollary 1. Let M be a Riemannian manifold, N be a manifold endowed

with a connection ΓN and F : M → N be a smooth map. Let B be an

M -valued Brownian motion and Θ be an 1-form on N . Then∫
Θ dΓ

N
F (B) =

∫
F ∗Θ dΓ

M
B +

1

2

∫
τ∗FΘ(B) dt

where ΓM is the Levi-Civita connection associated to the Riemannian met-

ric.

Proof: By the definition of τF , we have that∫
β∗
FΘ(dB, dB) =

∫
trβ∗

FΘ(B) dt =

∫
τ∗FΘ(B) dt.

For the first equality see [4] Proposition 5.18. The result follows from the

geometric Itô formula.

2

Corollary 2. Let M be a Riemannian manifold, N be a manifold endowed

with a connection ΓN and F : M × [0, T ] → N be a smooth map. Let B

be an M -valued Brownian motion and Θ be an 1-form on N . Then∫
Θ dΓ

N
F (B,S) =

∫
F ∗
SΘ dΓ

M
B +

∫ (
− dFS

dt
+

1

2
τFS

)∗
Θ(B) dt

where St is the finite variation processes T − t and ΓM is the Levi-Civita

connection associated to the Riemannian metric.
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Proof: We consider in M × [0, T ] the product connection ΓN ×Γ where Γ

is the standard connection of the interval [0, T ], the geometric Itô formula

gives∫
Θ dΓ

N
F (B,S) =

∫
F ∗Θ dΓ

M×Γ(B,S) +
1

2

∫
β∗
FΘ(d(B,S)d(B,S)).

(4)

By the good properties of the Itô integral respect to the product connec-

tion (see [5] Proposition 3.15 pp 50),∫
F ∗Θ dΓ

M×Γ(B,S) =

∫
F (·, S)∗Θ dΓ

M
B +

∫
F (B, ·)∗Θ dΓS (5)

=

∫
F ∗
SΘ dΓ

M
B −

∫
Θ(

dF

dt
(B,S)) dt.

As S is a finite variation processes an easy calculation shows that

∫
β∗
FΘ(d(B,S), d(B,S)) =

∫
β∗
FS

Θ(dB, dB) (6)

=

∫
τ∗FS

Θ(B) dt

Substituting (5) and (6) in (4) we conclude that∫
Θ dΓ

N
F (B,S) =

∫
F ∗
SΘ dΓ

M
B +

∫ (
− dFS

dt
+

1

2
τFS

)∗
Θ(B) dt.

2

As a direct consequence of Corollary 1, we have the following result of

Bismut (see e.g. [8] pp 54, [2] pp 224 and [4] Proposition 5.28).

Proposition 3. Let M be a Riemannian manifold, N be a manifold

equipped with a connection ΓN and F : M → N be a smooth map. Then

F is harmonic if and only if, for every M -valued Brownian motion B,

F (B) is a ΓN -martingale.

Proof: Let F be harmonic and B be an M -valued Brownian motion. Let

Θ be an 1-form on N . From τF = 0 and the Corollary 1, it follows that∫
Θ dΓ

N
F (B) =

∫
F ∗Θ dΓ

M
B.
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Hence
∫
Θ dΓ

N
F (B) is a local martingale.

Conversely, if F transforms Brownian motions into ΓN -martingales,

from the Corollary 1 and the Doob-Meyer decomposition we have that

τ∗FΘ = 0 for every 1-form Θ on N . We conclude that τF = 0.

2

From the Corollary 2 and the Doob-Meyer decomposition we obtain the

following stochastic characterization of the solutions of the heat equation,

Proposition 4. Let M be a Riemannian manifold, N be a manifold en-

dowed with a connection ΓN and F : M × [0, T ] → N be a smooth map.

Then F is solution of the heat equation dFt
dt = 1

2τFt if and only if, for every

M -valued Brownian motion B, F (Bt, T − t) is a ΓN -martingale.

We recall that a smooth map F : M → N between Riemannian mani-

folds is a Riemannian submersion if F∗(x)|(Ker F∗)
⊥ is an isometry for

every x ∈ M (see [3]).

The following proposition states that a smooth map is a harmonic Rie-

mannian submersion if and only if it sends Brownian motions into Brown-

ian motions (see [10] pp 207). Let us mention a simple consequence of this,

a smooth map F : M → M is an isometry if and only if sends Brownian

motions into Brownian motions.

Proposition 5. Let M and N be Riemannian manifolds and F : M → N

be a smooth map. Then F is a harmonic Riemannian submersion if and

only if, for every M -valued Brownian motion B, F (B) is a N -valued

Brownian motion.

Proof: Let F be a harmonic Riemannian submersion and B be an M -

valued Brownian motion, from the above proposition, we have that F (B)

is a ΓN -martingale. Let f ∈ C∞(N), we first observe that ∇(f ◦ F ) =

F †(∇ f) where F † is the adjoint of F∗. Applying the Levy characterization

of Brownian motions (see e.g. [4] Proposition 5.18) we obtain that

[f ◦ F (B), f ◦ F (B)] = [(f ◦ F )(B), (f ◦ F )(B)] =

∫
∥∇(f ◦ F )∥2(B)dt.
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On the other hand,

∥∇(f ◦ F )∥2 = ∥F †(∇f)∥2 ◦ F = ∥(∇f)∥2 ◦ F

since F † is an isometry. We conclude that

[f ◦ F (B), f ◦ F (B)] =

∫
∥(∇f)∥2(F (B))dt,

and a new application of the Levy characterization gives the result.

Conversely, if F transforms M -valued Brownian motions into N -valued

Brownian motions, from the above proposition we have that τF = 0. Let

Θ = df , then ∫
df dΓ

N
F (B) =

∫
d(f ◦ F ) dΓ

M
B.

From the properties of the Itô integral (see [4] Proposition 7.34) and the

fact that B and F (B) are Brownian motions,

f◦F (B)−f◦F (B0)−
1

2

∫
∆Nf(F (B))dt = f◦F (B)−f◦F (B0)−

1

2

∫
∆M (f◦F )(B)dt.

It follows that (∆Nf) ◦ F = ∆M (f ◦ F ) and taking the product f = g · h,
we obtain that

< ∇(g ◦ F ),∇(h ◦ F ) >=< ∇g,∇h > ◦F.

We conclude that F∗|(KerF∗)
⊥ is an isometry, i.e. F is a Riemannian

submersion.

2

Example 1. Let F : R3 → R2 be a smooth map such that it trans-

forms Brownian motions into Brownian motions, we have that F is a

harmonic Riemannian submersion. Applying Theorem 2.1 of [15] we have

that F−1(x), for x ∈ R2 are 1-dimensional minimal submanifolds of R3,

hence F−1(x)is a line. Let H be a plane orthogonal to F−1(x), and PH be

the orthogonal projector onto H. Obviously, PH is an harmonic Rieman-

nian submersion and F = (F |H) ◦ PH . Identifying H with R2 we have
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that F |H send R2-Brownian motions into R2-Brownian motions, else is

an isometry. We obtain that

F (x1, x2, x3) = (a11x1 + a12x2 + a13x3 + b1, a21x1 + a22x2 + a23x3 + b2)

where {(a11, a12, a13), (a21, a22, a23)} is an orthonormal set.
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[1] Bismut, J. M., Mécanique Aléatorie, Lecture Notes in Mathematics

866, Springer (1981).

[2] Darling, R. W., Martingales in manifolds - definition, examples, and
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Séminaire de Probabilités XVI, 1-148. Lecture Notes in Mathematics

921, Springer (1982).

[15] Watson, B., Manifold maps commuting with the Laplacian, J. Differ-

ential Geometry 8, (1973), 85-94.



A GEOMETRIC ITÔ FORMULA 99
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