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Abstract

In this work we study the generalized Gauss map of spacelike

surfaces in the Lorentz-Minkowski space Ln, with emphasis to the

case n = 4. We present necessary and sufficient conditions for a

complex map to be a Gauss map of a spacelike surface in L4 and a

representation formula of Kenmotsu type, and this gives a method

to construct spacelike surfaces with prescribed nonvanishing scalar

mean curvature and Gauss map. We also present the extension to

L4 of the complete integrability conditions for existence of surface

in R3 and L3 of Kenmotsu and Akutagawa-Nishikawa.
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1 Introduction

Let {ei : 1 ≤ i ≤ n} be the canonical basis of the real vector space

Rn, n ≥ 2, and define a symmetric bilinear form ⟨, ⟩ of index 1 in Rn by

⟨u, v⟩ = u1v1 + · · ·+ un−1vn−1 − unvn, where u =
∑

uiei and v =
∑

viei

are vectors of Ln. The form ⟨, ⟩, is the Lorentz scalar product and the

n–dimensional Lorentz–Minkowski space Ln is the space Rn endowed with

this form. A spacelike surface in Ln, n ≥ 3, is the image S = X(M2)

of a connected, oriented abstract surface M2 through a locally conformal

immersion X : M2 → Ln such that the induced form ds2 = X∗⟨, ⟩ is a

Riemannian metric in M2.

The classical Gauss map for surfaces in R3, was introduced by Gauss in

his fundamental work on the theory of surfaces and he used it to define

what today is known as Gauss curvature. For surfaces of higher codimen-

sion in Euclidian space, we have a natural generalization of the Gauss

map, where the image space is the Grassmannian G2,n of the oriented

2-planes in Rn, which may be identified with the complex quadric Qn−2 of

the complex projective space CPn−1. D. Hoffman and R. Osserman in [6]

studied in detail the properties of the generalized Gauss map of a surface

S immersed in Rn.

For connected, oriented spacelike surfaces S the n–dimensional

Lorentz-Minkowski space, it is also natural to think in the generalized

Gauss map. This concept was introduced by F. J. M. Estudillo and A.

Romero [4] as follows: let G+
2,n be the set of all oriented spacelike 2–planes

in Ln. It is known that G+
2,n is an open subset of the classical Grass-

mannian of 2-planes in Ln. Also, we may identify G+
2,n with the complex

quadric Qn−2
1 := {[z] ∈ CPn−1

1 : (z1)2 + · · · + (zn−1)2 − (zn)2 = 0},
where CPn−1

1 := {z ∈ Cn \ {0} : ≪ z, z ≫> 0}/C∗ and ≪ z, w ≫=

z1w1+. . .−znwn is the indefinite hermitian form in Cn, see [3, 12]. There-

fore, if we associate to each point p ∈ M2, the tangent plane TpM in G+
2,n,

we can define a map G : M2 → Qn−2
1 which is called the generalized Gauss

map of the spacelike surface S = X(M2) in Ln.
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Motivated by these results, in this work we firstly study what conditions

a generalized Gauss map G : M2 → Qn−2
1 of a spacelike surface in Ln must

satisfy by the virtue of being such a map. This is done in section 2, where

the main result is Theorem 2.2. The similar problem in the Euclidian space

Rn was studied by D. Hoffman and R. Osserman in [7, 8]. In section 3

we study the generalized Gauss map of spacelike surfaces S = X(M2) in

L4 and prove that if it is given locally by a function Φ, that is, Xz = µΦ,

with Φ =
(
1 + ab, i(1 − ab),a − b,a + b

)
[2, 5], then F1F2 = F1F2 and

Im{T1 + T2} = 0 see Theorem 3.3. This result is very important in the

study of a special class of the spacelike surfaces in L4, the surfaces with

degenerate Gauss map [15].

In section 4 we relate our work with the work of K. Kenmotsu, and

K. Akutagawa and S. Nishikawa. In [9], Kenmotsu proved that the Gauss

map and the mean curvature of an arbitrary surface in R3 satisfy a second

order differential equation, and later he extended this result for surfaces in

R4, see [10]. In [1] Akutagawa and Nishikawa, showed that a same type of

equation is satisfied for arbitrary spacelike surfaces in L3. In Theorem 4.1,

we show that the generalized Gauss map and the mean curvature vector

of a spacelike surface in L4 satisfy a second order differential equation

which generalizes the above mentioned equations. In Proposition 4.3, we

introduce a complex representation formula of Kenmotsu’s type for simply

connected spacelike surfaces conformally immersed in L4 with nonzero

mean curvature h =
√
|⟨H,H⟩|; we emphasize that this is equivalent to

say that the mean curvature vector H is nonzero nor lightlike.

Finally in section 5 we prove our main result Theorem 5.3, which gives

sufficient conditions for a complex map G : M2 → Q2
1 to be the generalized

Gauss map of a conformal spacelike immersion X of M2 onto S in L4 with

nonzero mean curvature h.

We observe that besides the Weierstrass type representation for space-

like surfaces in L4 given in [2, 5], there exists another Weierstrass type

representation that is discussed in [11].
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2 The generalized Gauss map of spacelike sur-

faces in Ln

The generalized Gauss map G of a spacelike surface S in Ln, given by

a conformal immersion X : M2 → Ln, is locally defined by

G(z) = [Xz], (1)

where z = u+ iv is a conformal parameter for M2. The local conformality

of S is expressed by λ2 = ⟨Xu, Xu⟩ = ⟨Xv, Xv⟩, ⟨Xu, Xv⟩ = 0. Thus

ds2 = λ2|dz|2, λ2 = 2 ≪ Xz, Xz ≫ . (2)

Moreover,

∆MX = 2H, Xzz =
λ2

2
H, (3)

where ∆MX is the Laplacia-Beltrami operator on M2 and H is the mean

curvature vector field.

Now given a map of M2 in the quadric Qn−2
1 of CPn−1

1 , we can represent

it locally in the form [Φ(z)], where Φ(z) = (ϕ1(z), . . . , ϕn(z)) satisfies

(ϕ1)2 + (ϕ2)2 + · · ·+ (ϕn−1)2 − (ϕn)2 = 0. (4)

This map describes the Gauss map of a spacelike surface S in Ln, given

by X : M2 → Ln, if

Xz = µΦ, (5)

for some map µ : M2 → C. Note that S is regular where µ is nonvanishing.

Therefore, from (2), (3) and (5) it follows that

λ2 = 2 ≪ Xz, Xz ≫= 2|µ|2 ≪ Φ,Φ ≫,
λ2

2
H = (µΦ)z = µzΦ+ µΦz.

Thus,

µ ≪ Φ,Φ ≫ H = Φ(logµ)z +Φz, (6)

whenever µ ̸= 0.
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Lemma 2.1. Let W be a vector of Cn
1 in the form W = A + iB where

A and B are spacelike vectors of Ln satisfying ⟨A,A⟩ = ⟨B,B⟩ and

⟨A,B⟩ = 0. Let Π2 be the spacelike 2–plane spanned by A and B. For

any pair of vectors C and D of Ln, let Z = C + iD ∈ Cn
1 and define

Z⊤ := C⊤ + iD⊤, where C⊤ and D⊤ are the projections of C and D on

Π2. Then,

Z⊤ =
≪ Z,W ≫
≪ W,W ≫

W +
≪ Z,W ≫
≪ W,W ≫

W, (7)

where Cn
1 := (Cn,≪,≫), with ≪ z, w ≫:=

∑n−1
k=1 z

kwk − znwn,

z, w ∈ Cn.

Proof: Since

C⊤ =
⟨C,A⟩
⟨A,A⟩

A+
⟨C,B⟩
⟨B,B⟩

B, D⊤ =
⟨D,A⟩
⟨A,A⟩

A+
⟨D,B⟩
⟨B,B⟩

B

are the projections of C,D on Π2 and

A =
W +W

2
, B =

W −W

2i
, C =

Z + Z

2
, D =

Z − Z

2i
,

the result follows.

□

We can apply Lemma 2.1 for W = Φ, in such a way that Π2 is the

tangent plane of a surface S, given by X such that Xz = µΦ and Z = Φz.

Since [Φ] ∈ Qn−2
1 , then ≪ Φz,Φ ≫= 0. Hence,

(Φz)
⊤ = ηΦ, η :=

≪ Φz,Φ ≫
≪ Φ,Φ ≫

. (8)

Denoting by V the component of Φz orthogonal to the plane Π2 = TpS,

that is, V := Φz − (Φz)
⊤, we have

V = Φz − ηΦ. (9)

The mean curvature vector H is orthogonal to the tangent plane of S,

thus from µ ≪ Φ,Φ ≫ H = (Φz − ηΦ) + ((log µ)z + η)Φ, it follows that

(logµ)z + η = 0, (10)



60 A. C. Asperti and J. A. M. Vilhena

and by (9) we have

V = µ ≪ Φ,Φ ≫ H. (11)

The proofs of Theorem 2.2 and of Lemma 2.3 below are similar to the

proofs given by Hoffman and Osserman to Theorem 2.3 and to Lemma

2.4 in the case Rn [7]. For this reason these proofs will be omitted here.

Theorem 2.2. Let S be a spacelike surface in Ln locally given by a con-

formal map X : Ω → Ln. Let Φ be the Gauss map of S, that is, Xz = µΦ.

Then, for every z ∈ Ω, V is of the form

V(z) = eiα(z)R(z), (12)

where R(z) is a vector of Ln. Furthermore, on the set {z ∈ Ω : V(z) ̸= 0},
the function α : Ω → R is uniquely defined modulo 2π, and satisfies

αzz = Im(ηz). (13)

Note that V and η given in (12) and (13), are expressed explicitly by

(8) and (9) in terms of the local representation Φ of the Gauss map G. By

Lemma 2.3 below, V and η are independent of the particular representa-

tion of G.

Lemma 2.3. Given a map Φ : Ω → Cn \ {0}, set Φ̂ = fΦ where f is a

smooth nonvanishing complex function. Let η,V be defined in terms of Φ

as in (8) and (9) and the correspondents η̂, V̂ in terms of Φ̂. Then

V̂ = fV

and in the set where V̂ and V are nonzero, the functions α, α̂ defined by

(12) satisfy

α̂zz − Im(η̂z) = αzz − Im(ηz).
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3 The generalized Gauss map for spacelike sur-

faces in L4

In this section we shall obtain explicit conditions that the generalized

Gauss map of a spacelike surface S in L4 must satisfy. Let S be a spacelike

surface, immersed in L4 by X : M2 → L4 with generalized Gauss map

G : M2 → Q2
1, given locally by G = [Xz] where (U, z = u + iv) are local

isothermal coordinates of M2. It follows from (4) that we may express G

by a pair of complex functions a(z) :=
−ϕ3 + ϕ4

ϕ1 − iϕ2
, b(z) :=

ϕ3 + ϕ4

ϕ1 − iϕ2
· Since

λ2 = 4|µ|2|1−ab|2, then ab ̸= 1. Hence, we can write G(z) = [Φ(z)] where

Φ(z) =
(
1 + a(z)b(z), i(1− a(z)b(z)),a(z)− b(z),a(z) + b(z)

)
. (14)

We now introduce certain auxiliary functions derived from the functions

a(z) and b(z) describing the Gauss map, as follows:

F1 = F1(a,b) :=
az

1− ab
, F2 = F2(a,b) :=

bz

1− ab
,

(15)

F̂1 = F̂1(a,b) :=
az

1− ab
, F̂2 = F̂2(a,b) :=

bz

1− ab
,

S1(a,b) :=
azz
az

+ 2b · az

1− ab
, S2(a,b) :=

bzz

bz
+ 2a · bz

1− ab
, (16)

T1(a,b) :=

(
azz
az

+ 2bF̂1

)
z

, T2(a,b) :=

(
bzz

bz
+ 2aF̂2

)
z

, (17)

where T1 and T2 are defined on the set {z : az ̸= 0,bz ̸= 0}.

Lemma 3.1. Let R(w) =
αw + β

βw + α
, |α|2 − |β|2 = 1, be a Möbius trans-

formation and Y any of the auxiliary functions F 1F2, F1F 2, F̂1F̂2, F̂1F̂2,

Sk and Tk, k = 1, 2. Then Y is invariant by (R(a), R(b)), that is ,

Y (R(a), R(b)) = Y (a,b).
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Proof: We will indicate the proof only for the function S1 and the proof

for the other functions is analogous. By a straightforward calculation, we

obtain that

R(a)z =
az

(βa+ α)2
, R(a)z =

az

(βa+ α)2
, R(a)zz =

azz(βa+ α)− 2azazβ

(βa+ α)3
.

Since the same is true for R(b), we obtain that

1−R(a)R(b) =
1− ab

(βa+ α)(βb+ α)
.

Thus,

S1(R(a), R(b)) =
R(a)zz
R(a)z

+
2R(b)R(a)z

1−R(a)R(b)
,

S1(R(a), R(b)) =
azz
az

− 2azβ

(βa+ α)
+

2(αb+ β)

(βa+ α)

az

1− ab

=
azz
az

+
2baz

1− ab
= S1(a,b).

□

Clearly the functions Fk and Tk above are smooth whenever wk(w1 =

a(z), w2 = b(z)) are finite. Now if a(z) = ∞ or b(z) = ∞, we may apply

a Möbius transformation as above in a way that the functions a(z) and

b(z) stay both finite in a neighborhood of a point . This corresponds to a

Lorentz transformation in the surface S of L4. In fact, consider the group

SU(1, 1) = U(1, 1) ∩ SL(2,C), that is,

SU(1, 1) =

{[
α β

β α

]
: |α|2 − |β|2 = 1

}
.

Therefore, for A =

[
α β

β α

]
in SU(1, 1), we have that the matrix

ΛA =


Re(α2 + β2) −Im(α2 − β2) 0 −2Re(αβ)

Im(α2 + β2) Re(α2 − β2) 0 −2Im(αβ)

0 0 1 0

−2Re(αβ) −2Im(αβ) 0 |α|2 + |β|2


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is in O++(3, 1), the group of Lorentz transformations of L4 which preserve

space and time orientation.

We conclude that to each change of conformal coordinates in the space-

like surface S of L4, through a Möbius transformation R(w) in such

a way a(z) and b(z) are finite, corresponds a Lorentz transformation

ΛA ∈ O++(3, 1) of L4 (for more details see [14]).

Lemma 3.2. Let Fk and F̂k, k = 1, 2, defined in (15). Then

Im
{(

bF1

)
z
+
(
aF2

)
z

}
= Im

{(
bF̂1

)
z
+
(
aF̂2

)
z

}
.

Proof: By a direct calculation, we obtain that(
bF1

)
z
−
(
bF̂1

)
z
=

az bz − az bz

(1− ab)2
,

since
(
b
)
z
= bz and

(
b
)
z
= bz. Analogously,(

aF2

)
z
−
(
aF̂2

)
z
=

az bz − az bz

(1− ab)2
.

Therefore, (
aF2

)
z
−
(
bF1

)
z
=
(
aF̂2

)
z
−
(
bF̂1

)
z
. (18)

On the other hand,

2iIm
{(

bF1

)
z
+
(
aF2

)
z

}
=

((
aF2

)
z
−
(
bF1

)
z

)
−
((

aF2

)
z
−
(
bF1

)
z

)
(18)
=

((
aF̂2

)
z
−
(
bF̂1

)
z

)
−
((

aF̂2

)
z
−
(
bF̂1

)
z

)
=

((
bF̂1

)
z
+
(
aF̂2

)
z

)
−
((

bF̂1

)
z
+
(
aF̂2

)
z

)
= 2iIm

{(
bF̂1

)
z
+
(
aF̂2

)
z

}
.

This proves the lemma.

□

Now we present the necessary conditions for a map in Q2
1 to be a gen-

eralized Gauss map of a spacelike surface in L4.
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Theorem 3.3. Let S be an oriented spacelike surface given by the im-

mersion X : M2 → L4, with generalized Gauss map G locally given by

(14) via the pair of functions a(z) and b(z), where z is a local conformal

parameter on M2. Then,

F1F2 = F1F2 , (19)

Im{T1 + T2} = 0 whenever az ̸= 0, bz ̸= 0. (20)

Proof: We apply Theorem 2.2 to show that (12) and (13) imply respec-

tively (19) and (20). The first step is to express the functions η(z) and

V(z), defined in (8) and (9), in terms of the functions a(z),b(z) and Fk(z).

From (14) we have

Φz(z) = az
(
b,−ib, 1, 1

)
+ bz

(
a,−ia,−1, 1

)
, (21)

≪ Φ,Φ ≫= 2|1− ab|2 > 0, (22)

because ab ̸= 1. It follows that

≪ Φz,Φ ≫= 2baz(ab− 1) + 2abz(b− 1).

Hence,

η(z) = − baz

1− ab
− abz

1− ab
⇔ η(z) = −(bF1 + aF2). (23)

Now, substituting (14), (21) and (23) in V(z) = Φz − ηΦ, yields

V(z) =
az

1− ab

(
2Re(b), 2Im(b), 1− |b|2, 1 + |b|2

)
+

+
bz

1− ab

(
2Re(a), 2Im(a), |a|2 − 1, |a|2 + 1

)
= F1B + F2A, (24)

where

A : =
(
2Re(a), 2Im(a), |a|2 − 1, |a|2 + 1

)
, (25)

B : =
(
2Re(b), 2Im(b), 1− |b|2, 1 + |b|2

)
. (26)
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Note that A and B are nonzero, lightlike and future directed vectors of L4,

such that ≪ A,B ≫= −2|1− ab|2 < 0. So, they are linearly independent

vectors of the light cone of L4. From (24), we conclude that V(z) = 0 if

and only if F1(z) = F2(z) = 0, which is equivalent to az(z) = bz(z) = 0.

In particular, wherever V(z) = 0, the condition (19) is trivially satisfied.

Letting V = (V1,V2,V3,V4), A = (A1,A2,A3,A4) and B =

(B1,B2,B3,B4), the condition (12) of Theorem 2.2, implies that VtV =

RtR wherever V(z) ̸= 0. Therefore, the entries VjVk, 1 ≤ j, k ≤ 4 of the

matrix VtV must be real. On the other hand, from (24) we have

VjVk =
(
F1Bj + F2Aj

)
(F1Bk + F2Ak) =

=
(
|F1|2BjBk + |F2|2AjAk

)
+
(
F1F2AjBk + F1F2AkBj

)
.

Thus, VjVk ∈ R if and only if
(
F1F2AjBk + F1F2AkBj

)
∈ R because(

|F1|2BjBk + |F2|2AjAk
)
is a real number. Hence,

VjVk ∈ R ⇔
(
F1F2 − F1F2

) (
AjBk −AkBj

)
= 0.

This implies that

F1F2 − F1F2 = 0 or AjBk −AkBj = 0, 1 ≤ j < k ≤ 4. (27)

We will show that (AjBk−AkBj) is nonzero for all z0 ∈ U, where (U, z =

u+ iv) are local isothermal coordinates of S. In fact, since S is a spacelike

surface, the metric ds2 = 4|µ|2|1 − ab|2|dz|2 induced by X : M2 → L4

is Riemannian, hence ab ̸= 1 on U . Let z0 be any point in U such that

V(z0) ̸= 0 and

Aj(z0)Bk(z0)−Ak(z0)Bj(z0) = 0, 1 ≤ j < k ≤ 4.

These six equations imply that

1. ab = ab, 2. Re(a+ b)(1− ab) = 0,

3. Re(a− b)(1− ab) = 0, 4. Im(a+ b)(1− ab) = 0,

5. Im(a− b)(1− ab) = 0, 6. |a|2|b|2 = 1.
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By the equations 1 and 6 above we have that

|a|2|b|2 = 1 ⇔ (ab)(ab) = 1 ⇒ (ab)2 = 1 ⇒ a(z0)b(z0) = ±1. (28)

Now using equations 2, 3, 4 and 5 we may easily conclude that a(z0) =

b(z0) = 0, which contradicts (28). Hence, VtV is a real hermitian matrix

if and only if F1F2 = F1F2, which proves (19).

To prove (20), we need first to establish a relation between the argument

of the coordinates of V and the argument of the functions F1 and F2. From

(19) and (24) we have that

F 1V(z) = F 1(F1B + F2A) = F1F 1B + F 1F2A

= F1F 1B + F1F 2A = F1(F 1B + F 2A) = F1V(z).

In a similar way, we prove that F 2V(z) = F2V(z). Since we are assuming

that az ̸= 0 and bz ̸= 0, we have F1 ̸= 0 and F2 ̸= 0. So V(z) ̸= 0 and

there exists some nonzero component Vj of V which satisfies

F 1Vj = F1Vj , F 2Vj = F2Vj . (29)

Then (29) implies that arg(F 1Vj) = 0 (mod π) and arg(F 2Vj) = 0

(mod π), which are equivalent to − arg(Fk) + arg(Vj) = 0 (mod π), k =

1, 2. Now from (12) we have V(z) = eiα(z)R(z), then arg(Vj) = α(z)

(mod 2π). Therefore,

α(z) = arg(Fk) (mod π), k = 1, 2.

Hence

α(z) =
1

2

(
arg(F1) + arg(F2)

)
⇔ α(z) =

1

2

(
arg(F1F2)

)
(mod

π

2
).

(30)

Now (15) yields

arg(F1F2) = arg

(
az

1− ab
· bz

1− ab

)
= Im

{
log

(
azbz

|1− ab|2

)}
.

Therefore,

α(z) =
1

2
Im
(
log az + logbz

)
+ 2nπ, n ∈ Z.
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Thus,

αzz =
1

2
Im

{(
azz
az

)
z

+

(
bzz

bz

)
z

}
. (31)

From (31) we have that

αzz =
1

2
Im

{(
azz

az
+ 2bF̂1

)
z

+

(
bzz

bz
+ 2aF̂2

)
z

− 2
((

bF̂1

)
z
+
(
aF̂2

)
z

)}
,

αzz =
1

2
Im
{
T1(a,b) + T2(a,b)

}
− Im

((
bF̂1

)
z
+
(
aF̂2

)
z

)
. (32)

On the other hand, we have seen from (13) that αzz = Im(ηz). Hence

from (23) we have that

αzz = −Im
((

bF1

)
z
+
(
aF2

)
z

)
. (33)

Therefore, comparing (32) with (33) and using the Lemma 3.2, we prove

(20). Finally, observe that (19) and (20) are independent of the choice of

the conformal coordinates ofM2. This concludes the proof of the theorem.

□

In the following corollary we will be using the notation of Akutagawa

and Nishigawa for spacelike surfaces in L3 [1].

Corollary 3.4. Let S be a spacelike surface in L3 defined by the immer-

sion X : M2 → L3, and let w = f(z) be the local representation of the

Gauss map, that is N = 1
1−|f |2 (2Re(f), 2Im(f), 1 + |f |2) and |f(z)| ≠ 1,

in local isothermal coordinates (U, z = u+ iv) of M2. Then at every point

of M2, one of the following two conditions must hold:

(i) fz = 0 or (ii) fz ̸= 0 and Im

{(
fzz
fz

+
2ffz

1− |f |2

)
z

}
= 0.

Remark 3.5. We can give an example of a map [Φ] : U → Q2
1 which

cannot represent the Gauss map of any spacelike surface in L4. In fact,

for instance setting a(z) = z + z and b(z) = −i(z − z) in (14), we have

az = 1 and bz = i. Hence,

F 1F2 =
i

(1− 4Re(z)Im(z))2
, F1F 2 =

−i

(1− 4Re(z)Im(z))2
.
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This tells us that the condition (19) does not hold.

4 The Kenmotsu’s type formula for spacelike sur-

faces in L4

In this section we prove that the mean curvature vector field H and

the components a(z), b(z) of the Gauss map of a spacelike surface in L4

must satisfy a second order partial differential equation. We also write the

integration factor µ, defined in (5), explicitly in terms of a(z), b(z) and

H. This allows us to give a representation formula for spacelike surfaces

in L4 in terms of the Gauss map and of mean curvature vector H.

In [1] it was proved that the Gauss map f and the mean curvature h of

a spacelike surface in L3 need to satisfy the equation

h

(
fzz +

2ffzfz
1− |f |2

)
= hzfz ⇔ S1(f, f) = (log h)z (34)

wherever fz ̸= 0. Since h is real, we have that (log h)zz is a real number.

Hence,

Im{(S1(f, f))z} = 0 ⇔ Im{T1(f, f)} = 0.

Our goal now is to generalize the equation (34) for spacelike surfaces in

L4, in such a way that the necessary condition Im{T1 + T2} = 0, given in

(20), becomes a consequence of this generalized equation. More precisely,

we have the following.

Theorem 4.1. Let S be a spacelike surface immersed in L4 by X :

M2 → L4, with generalized Gauss map G given locally by (14) via the

pair of functions a(z) and b(z), where z is a local conformal parameter

on M2. Then the mean curvature vector H and the functions a(z) and

b(z) satisfy the second order PDE
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⟨H,H⟩
(
bz

(
azz +

2bazaz

1− ab

)
+ az

(
bzz +

2abzbz

1− ab

))
= azbz⟨H,H⟩z.

(35)

Proof: The Gauss map of S is locally defined by G(z) = [Xz] and given

by (14), that is, Xz = µΦ(z) for some function µ : M2 → C. From (8)

and (9) we obtain

µ ≪ Φ,Φ ≫ H = Φz − ηΦ, η :=
≪ Φz,Φ ≫
≪ Φ,Φ ≫

.

We can easily verify that

≪ µ ≪ Φ,Φ ≫ H, (µ ≪ Φ,Φ ≫ H) ≫=

=≪ Φz,Φz ≫ −2η ≪ Φz,Φ ≫ +η2 ≪ Φ,Φ ≫ .

Since [Φ] ∈ Q2
1, that is ≪ Φ,Φ ≫= 0, we have that ≪ Φz,Φ ≫= 0. Thus,

the above equation is reduced to

≪ Φ,Φ ≫2 ⟨H,H⟩µ2 =≪ Φz.Φz ≫ . (36)

Let us now explicitly calculate ≪ Φz,Φz ≫ in function of a(z) and b(z).

From (21) we have that

≪ Φz,Φz ≫= −4azbz. (37)

Therefore,

≪ Φ,Φ ≫2 ⟨H,H⟩µ2 = −4azbz. (38)

Now differentiating µ ≪ Φ,Φ ≫ H = Φz−ηΦ with respect to z, we obtain

≪ Φ,Φ ≫z (µH)+ ≪ Φ,Φ ≫ (µH)z = Φzz − ηzΦ− ηΦz.

On the other hand,

≪ Φ,Φ ≫z (µH)+ ≪ Φ,Φ ≫ (µH)z =
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= (≪ Φz,Φ ≫ + ≪ Φ,Φz ≫)µH+ ≪ Φ,Φ ≫ ((µ)zH + µHz).

Thus,

≪ Φ,Φ ≫ µHz = Φzz − ηzΦ− ηΦz − (≪ Φz,Φ ≫ +≪ Φz,Φ ≫)µH −

− (≪ Φ,Φ ≫ H)µz.

Moreover, note that µH =
Φz − ηΦ

≪ Φ,Φ ≫
, ≪ Φ,Φ ≫ H =

Φz − ηΦ

µ
. There-

fore,

≪ Φ,Φ ≫ µHz = Φzz − ηΦz −

−

(
≪ Φz,Φ ≫
≪ Φ,Φ ≫ +

≪ Φz,Φ ≫
≪ Φ,Φ ≫ +

(
µz

µ

))
Φz +

+

((
≪ Φz,Φ ≫
≪ Φ,Φ ≫ +

≪ Φz,Φ ≫
≪ Φ,Φ ≫ +

(
µz

µ

))
η − ηz

)
Φ.

From (10) we know that
µz

µ
= −η. Also, η =

≪ Φz,Φ ≫
≪ Φ,Φ ≫

, so that

≪ Φ,Φ ≫ µHz = Φzz − ηΦz −
≪ Φz,Φ ≫
≪ Φ,Φ ≫ Φz +

(
≪ Φz,Φ ≫
≪ Φ,Φ ≫ η − ηz

)
Φ. (39)

Calculating the symmetric product, ≪ ·, · ≫ between (39) and µ ≪
Φ,Φ ≫ H = Φz − ηΦ, we have that

≪ Φ,Φ ≫2 ⟨H,Hz⟩µ2 = ≪ Φz,Φzz ≫ −η(≪ Φz,Φz ≫ + ≪ Φ,Φzz ≫)−

− ≪ Φz,Φ ≫
≪ Φ,Φ ≫ ≪ Φz,Φz ≫ .

Now using that 0 = ≪ Φ,Φz ≫z = ≪ Φz,Φz ≫ + ≪ Φ,Φzz ≫ in the

above equation, we get

≪ Φ,Φ ≫2 ⟨H,Hz⟩µ2 =
1

2
≪ Φz,Φz ≫z −

≪ Φz,Φ ≫
≪ Φ,Φ ≫

≪ Φz.Φz ≫ .

(40)

From (21) and ≪ Φ,Φ ≫= 2(1− ab)(1− ab), we can verify that

≪ Φz,Φ ≫
≪ Φ,Φ ≫

= −
(
bF̂1(a,b) + aF̂2(a,b)

)
, (41)

where F̂i is given in (15). Finally, substituting (37) and (41) into (40), we

obtain
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≪ Φ,Φ ≫2 µ2⟨H,Hz⟩ = −2 (azzbz + azbzz) + 2
(
bF̂1 + aF̂2

)
(−2azbz) =

= −2

(
bz

(
azz +

2bazaz

1− ab

)
+ az

(
bzz +

2abzbz

1− ab

))
.

Taking the product of the above equation with ⟨H,H⟩ and using (38),

we get(
bz

(
azz +

2bazaz

1− ab

)
+ az

(
bzz +

2abzbz

1− ab

))
⟨H,H⟩ = 2azbz⟨H,Hz⟩,

which proves the theorem.

□

Let S be a spacelike surface in L3. We may identify L3 with the subset

of L4 given by {(x1, x2, x3, x4) ∈ L4 : x3 = 0}. So S can be considered

as a spacelike surface in L4 and, in this case, we denote it by Š and we

may assume that b(z) = a(z) in (14). In analogous way, any surface S in

R3 can be viewed as a surface Ŝ in R3 ≡ {(x1, x2, x3, x4) ∈ L4 : x4 = 0}
and in this case we may assume that b(z) = −a(z) in (14). Now we will

use formula (35) to obtain, in a new way, the integrability conditions for a

spacelike surface in L3 and a surface in R3 with prescribed nonvanishing

mean curvature h and Gauss map a.

The vectors A and B given in (25) and (26), are future directed lightlike

vectors such that ⟨A,B⟩ = −2|1 − ab|2 < 0, therefore are linearly inde-

pendent wherever a(z) and b(z) describe the Gauss map Φ of a spacelike

surface S in L4. It is easy to see that ⟨Φ,A⟩ = 0 and ⟨Φ,B⟩ = 0. Thus,

{A,B} is a basis for (TpS)
⊥. Moreover, H ∈ (TpS)

⊥ and then we can

write H in the form

H =
⟨H,B⟩A+ ⟨H,A⟩B

⟨A,B⟩
.

Hence

⟨H,H⟩ = 2⟨H,A⟩⟨H,B⟩
⟨A,B⟩

. (42)
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1st case: If b(z) = a(z), we know that Φ(z) = (1 + a2, i(1 − a2), 0, 2a)

locally represents the Gauss map of a spacelike surface Š in L3 ⊂ L4. In

this case, the mean curvature vector H = Ȟ is timelike and parallel to

the classical Gauss map Ň : M2 → H2
0 (−1) of Š, where H2

0 (−1) = {x ∈
L3 : ⟨x, x⟩ = −1}. From (42) we have that

⟨Ȟ, Ȟ⟩ = −⟨Ȟ, Ǎ⟩⟨Ȟ, B̌⟩
(1− |a|2)2

,

with Ǎ = B̌ = (2Re(a), 2Im(a), 0, |a|2 + 1). It is well-known that

Ň(z) =
1

1− |a|2
(
2Re(a), 2Im(a), 0, 1 + |a|2

)
. (43)

Hence from (43), we have that

Ǎ = (1− |a|2)Ň , B̌ = (1− |a|2)Ň .

Therefore,

⟨Ȟ, Ȟ⟩ = −⟨Ȟ, Ň⟩2 = −h2,

where h is the mean curvature of Š. Substituting b(z) = a(z) in (35), we

have

−2h2az

(
azz +

2aazaz
1− |a|2

)
= −2hhz(az)

2 ⇔

haz

(
h

(
azz +

2aazaz
1− |a|2

)
− hzaz

)
= 0.

Since h = 0 if and only if az = 0, the above equation implies that

h

(
azz +

2aazaz
1− |a|2

)
= hzaz.

This equation is a complete integrability condition for the existence of a

spacelike surface with prescribed nonvanishing mean curvature and Gauss

map in L3 and was firstly obtained by Akutagawa and Nishikawa [1].

2nd case: If b(z) = −a(z), we know that Φ(z) = (1− a2, i(1 + a2), 2a, 0)

locally represents the Gauss map of spacelike surfaces Ŝ in R3 ⊂ L4. In
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this case, the mean curvature vector H = Ĥ is spacelike and parallel to

the classical Gauss map N̂ : M2 → S2(1) of Ŝ. It is well-known that

N̂(z) =
1

1 + |a|2
(
2Re(a), 2Im(a), |a|2 − 1, 0

)
. (44)

Now from (42) we have that

⟨Ĥ, Ĥ⟩ = −⟨Ĥ, Â⟩⟨Ĥ, B̂⟩
(1 + |a|2)2

,

with Â = −B̂ = (2Re(a), 2Im(a), |a|2 − 1, 0). Hence from (44) it follows

that

Â = (1 + |a|2)N̂ , B̂ = −(1 + |a|2)N̂ .

Therefore,

⟨Ĥ, Ĥ⟩ = ⟨Ĥ, N̂⟩2 = h2,

where h is the mean curvature of Ŝ. Substituting b(z) = −a(z) in (35),

we get

−2h2az

(
azz −

2aazaz
1 + |a|2

)
= −2hhz(az)

2 ⇔

haz

(
h

(
azz −

2aazaz
1 + |a|2

)
− hzaz

)
= 0.

Since h = 0 if and only if az = 0, the above equation implies that

h

(
azz −

2aazaz
1 + |a|2

)
= hzaz.

This is a complete integrability condition for the existence of a surface

with prescribed nonvanishing mean curvature and Gauss map in R3 and

was firstly obtained by Kenmotsu in [9].

As an immediate consequence of Theorem 4.1 we have the following

Corollary 4.2. Under the hypothesis of Theorem 4.1, if the mean curva-

ture h = ⟨H,H⟩ is nonvanishing for every point of M2, then

S1(a,b) + S2(a,b) = (log⟨H,H⟩)z , (45)

where z is a local conformal parameter on M2.
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Observe that since ⟨H,H⟩ is a real function, then (log⟨H,H⟩)zz ∈ R.
Hence, (45) implies that

Im{(S1(a,b))z + (S2(a,b))z} = 0 ⇔ Im{T1(a,b) + T2(a,b)} = 0.

Therefore, the equation (45) implies the equation (20) of Theorem 3.3.

We can give another interesting consequence of ( the proof ) Theorem

4.1. From equation (38) it follows that

µ2 =
−4azbz

⟨H,H⟩ ≪ Φ,Φ ≫2

wherever ⟨H,H⟩ ̸= 0. In other words, the integration factor µ can be

given explicitly by

µ2 =
−az · bz

⟨H,H⟩|1− ab|4
. (46)

Proposition 4.3. Let S be a spacelike surface in L4 whose Gauss map is

given locally by (14). If the mean curvature vector H is nonvanishing nor

lightlike, then the surface S can be obtained explicitly by

X(z) = 2Re

∫ z

z0

µ (1 + ab, i(1− ab),a− b,a+ b) dw+X(z0), (47)

where µ is given by (46).

5 Sufficient conditions for a map to be a Gauss

map

We will show now that the conditions (19) and(45) are also sufficient for

the existence for spacelike surface with prescribed Gauss map and nonzero

mean curvature. Therefore, it will also holds the converse of Proposition

4.3. That is, given an arbitrary map of a simply connected Riemann

surface into the quadric Q2
1, locally represented by Φ(z), as in (14), via

the pair of functions (a(z),b(z)), such that they satisfy the conditions

F 1F2 = F1F 2, ⟨V,V⟩ ≠ 0 and S1+S2 = (log h)z, where h : M2 → R \ {0}
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is a smooth function, then (47) defines a spacelike surface immersed in

L4 with locally Gauss map given by Φ, ⟨H,H⟩ = h and induced metric

ds2 = 4|µ|2|1− ab|2|dz|2 given, using (46), by

ds2 =

(
4|az||bz|

|⟨H,H⟩||1− ab|2

)
|dz|2.

To prove these results we need two lemmas.

Lemma 5.1. Let U be a simply connected open set of C and let

Φ : U → C4 be a C2 map. Then there exists a spacelike surface S given

by X : U → L4 such that Xz = Φ if, and only if Im(Φz) = 0.

Proof:We know thatXzz =
λ2

2 H ∈ R4. Hence, if there existsX : U → L4

such that Xz = Φ it follows that Im(Φz) = 0.

Conversely, the condition Im(Φz) = 0 implies that the system{
Xu = 2ReΦ

Xv = −2ImΦ

is integrable and the solution is given by X(z) = 2
∫ z

Φdw.

□

Lemma 5.2. If the system Xz = µΦ, with

µ2 =
−az · bz

h|1− ab|4
, Φ(z) = (1+ab, i(1−ab),a−b,a+b), h : C → R\{0}

satisfies S1(a,b) + S2(a,b) = (log h)z, then

Xzz = µV, (48)

where V = F1B + F2A.

Proof: Putting P = h(1 − ab)2(1 − ab)2, we can write µ2 = −az · bz

P
.

Thus,

−2µzµ =

(
az bz

)
z
P−

(
az bz

)
Pz

P2
,
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and since (az)z = azz and hz = hz we have that

− 2µzµ =

(
azz bz + az bzz

)
P− az bz Pz

P2
, (49)

Pz = hz|1− ab|4 + h
(
2|1− ab|2(1− ab)(−azb− abz) + (50)

+ 2|1− ab|2(1− ab)(−azb− abz)
)
.

Substituting (50) in (49) we have that

−2µzµP
2 = |1− ab|4

(
h

((
bz azz +

2b az az bz(1− ab)

|1− ab|2

)
+

+

(
az bzz +

2a bz bz az (1− ab)

|1− ab|2

))
− az bz hz

)
+ (51)

+ az bz

(
2hbaz(1− ab)|1− ab|2

)
+

+ az bz

(
2habz(1− ab)|1− ab|2

)
,

−2µzµP
2 = |1− ab|4

(
h

(
bz

(
azz +

2b az az
(1− ab)

)
+

+ az

(
bzz +

2a bz bz

(1− ab)

))
− az bz hz

)
+ (52)

+az bz

(
2hbaz(1− ab)|1− ab|2

)
+ az bz

(
2habz(1− ab)|1− ab|2

)
.

By hypothesis S1(a,b) + S2(a,b) = (log h)z hence,

µµz = − 1

h|1− ab|6
(
b bz(1− ab)|az|2 + a bz(1− ab)|bz|2

)
. (53)

On the other hand,

µXzz = µµzΦ+ µ2Φz, (54)

Φz = az(b,−ib, 1, 1) + bz(a,−ia,−1, 1). (55)
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Substituting (53) and (55) in (54), yields

µX1
zz = − az bz

h|1− ab|4

(
az

(1− ab)
· 2Re(b) +

bz

(1− ab)
· 2Re(a)

)
,

µX2
zz = − az bz

h|1− ab|4

(
az

(1− ab)
· 2Im(b) +

bz

(1− ab)
· 2Im(a)

)
,

µX3
zz = − az bz

h|1− ab|4

(
az

(1− ab)
· (1− |b|2) + bz

(1− ab)
· (|a|2 − 1)

)
,

µX4
zz = − az bz

h|1− ab|4

(
az

(1− ab)
· (1 + |b|2) + bz

(1− ab)
· (|a|2 + 1)

)
.

Thus, in agreement with the definitions of F1, F2,A,B and V we have that

µXzz = µ2

(
az

(1− ab)
· B +

bz

(1− ab)
· A
)
,

that is,

Xzz = µV.

□

Theorem 5.3. Let M2 be a simply connected Riemann surface and

G : M2 → Q2
1 be a smooth map given locally by Φ(z) = Φ(a(z),b(z))

as in (14) and let h : M2 → R \ {0} be a smooth function. Then there

exists a spacelike surface S given by a conformal immersion X : M2 → L4

with generalized Gauss map G and mean curvature vector H satisfying

⟨H,H⟩ = h, if and only if Φ and h satisfy:

1) F1F2 = F1F2, azbz ̸= 0;

2) S1(a,b) + S2(a,b) = (log h)z.

Moreover, S is given explicitly by

X(z) = 2Re

∫ z

z0

µ (1 + ab, i(1− ab),a− b,a+ b) dw +X(zo), (56)

with µ2 = − az · bz

h|1− ab|4
.
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Proof: The necessity of conditions 1) and 2) is an immediate consequence

of Theorem 3.3 and Corollary 4.2.

Conversely, suppose that Φ = Φ(a,b) and h satisfy 1) and 2). To

prove that Φ locally represent the generalized Gauss map of some spacelike

surface S given by the immersion X : M2 → L4 we need to show that

Xz = µΦ for some function µ : M2 → C∗. Therefore, we need to prove

that the system

Xz = µ(1 + ab, i(1− ab),a− b,a+ b), µ2 = − az · bz

h|1− ab|4
(57)

is integrable.

Now by Lemma 5.2, it follows that

Xzz = µV

On the other hand, the equation F1F2 = F1F2 implies that

VjVk ∈ R, 1 ≤ j, k ≤ 4. (58)

Set Vj = ρje
iθj , Vk = ρke

iθk , hence VjVk = ρjρke
i(θj−θk) is a real number

if, and only if, θj ≡ θk(modπ). Putting θ(z) = θj0 , for some j0 between 1

and 4, we have that V = eiθR, with R = (R1, R2, R3, R4) ∈ L4, so

arg(Vj) = θ(modπ), ∀ j. (59)

Since FkVj = FkVj for all j = 1, 2, 3, 4 and k = 1, 2 we also have that

arg(Vj) = arg(Fk)(modπ). (60)

From (59) and (60) it follows that θ = arg(Fk)(modπ), and this implies

that

2θ = arg(F1F2)(modπ). (61)

On the other hand, from expression of µ given in (57) we get that

2arg(µ) = arg(F1F2)(modπ). (62)
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Suppose that µ is written in the form µ = ρe−iα, that is arg(µ) = α.

Then from (61) and (62) we conclude that θ ≡ α(modπ). Then

V = eiαR. (63)

Thus, Xzz = µV ⇔ Xzz = ρR. Therefore, by Lemma 5.1 the system

(57) is integrable and has the solution:

X(z) = 2Re

∫ z

z0

µ(1 + ab, i(1− ab),a− b,a+ b)dw +X(z0),

µ2 = − az · bz

h|1− ab|4
.

Let H be the mean curvature vector of the spacelike surface S given by

X(z) above. It remains to show that ⟨H,H⟩ = h. From Corollary 4.2, it

follows that

S1(a,b) + S2(a,b) = (log⟨H,H⟩)z.

Since ⟨H,H⟩ and h are nonzero real numbers we have that

(log⟨H,H⟩)z = (log h)z ⇔
(
log

⟨H,H⟩
h

)
z

= 0 ⇒ ⟨H,H⟩ = ch,

where c is a nonzero constant. By a homothety of L4, we obtain ⟨H,H⟩ =
h. This completes the proof of the Theorem.

□

Example 5.4. Consider M2 = C,

a(z) =
√
ke

z + z

2t , b(z) =
k√
k
e
−
z + z

2t , h =
1− t2

4t4
,

where z = u + iv ∈ C and k =
1− t

1 + t
, with t ∈ (−1, 1) \ {0}. Since

az =
a(z)

2t
, bz = −b(z)

2t
and |1 − ab|4 = (1 − k)4, from (57) we have

that

µ2 =
k

4t2h

(
1 + t

2t

)4

=
k(1 + t)4

24t2(1− t2)
⇒ µ =

1 + t

4t
.
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Moreover,

Φ(z) =

(
2

1 + t
,

2t

1 + t
i, a(z)− k

a(z)
, a(z) +

k

a(z)

)
.

It follows that

Φ(z) =
2t

1 + t

(
1

t
, i,

√
1− t2

t
sinh

z + z

2t
,

√
1− t2

t
cosh

z + z

2t

)
.

Thus,

Xz =
1

2

(
1

t
, i,

√
1− t2

t
sinh

z + z

2t
,

√
1− t2

t
cosh

z + z

2t

)
.

Therefore,

Xt(u, v) =
( u

t
, −v,

√
1− t2 cosh

u

t
,
√

1− t2 sinh
u

t

)
.

Letting e1 := Xu and e2 := Xv, from H = 1
2

(
∇e1e1

)⊥
= 1

2(Xuu)
⊥ =

1
2Xuu, we conclude that H =

√
1− t2

2t2
(0, 0, cosh

u

t
, sinh

u

t
). Hence,

⟨H,H⟩ = 1− t2

4t4
.
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