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SINGULAR HOLONOMY OF

SINGULAR RIEMANNIAN

FOLIATIONS WITH SECTIONS

M. M. Alexandrino

Abstract

In this paper we review some author’s results about sin-

gular holonomy of singular riemannian foliation with sections

(s.r.f.s for short) and also some results of a joint work with

Töben and a joint work with Gorodski. We stress here that

the condition that the leaves are compact, used in some of

these results, can be replaced by the condition that the leaves

are closed embedded. We also briefly recall some of Töben’s

results about blow-up of s.r.f.s. Then we use this technique to

get conditions under which a holonomy map can be extended

to a global isometry.
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1 Introduction

A singular riemannian foliation F on a complete riemannian mani-

foldM is said to admit sections if each regular point ofM is contained

in a complete totally geodesic immersed submanifold Σ that meets

every leaf of F orthogonally and whose dimension is the codimension

of the regular leaves of F (see Definition 2.1).

Typical examples of a singular riemannian foliation with section

(s.r.f.s for short) are the partition formed by the orbits of a polar

action, partition formed by parallel submanifolds of an isoparamet-

ric submanifold and partition formed by parallel submanifolds of an

equifocal submanifold (see definitions in Section 2). Others exam-

ples can be constructed by suspension of homomorphism, suitable

changes of metric and surgery.

The property that s.r.f.s are equifocal (see Definition 2.8 and The-

orem 2.9) allow us to extend the (regular) normal holonomy map of

regular leaves to the so called singular holonomy map which is also

defined on singular points (see Proposition 2.10).

Singular holonomy and the Slice Theorem (see Theorem 2.3) give

us a complete description of a s.r.f.s on a neighborhood of a singular

point.

On the other hand, singular holonomy turned out to be a useful tool

to study global properties of s.r.f.s (e.g. see Corollary 3.2, Theorem

4.14 and Theorem 4.15).

In this paper we review some author’s results about singular holon-

omy and also some results of a joint work with Töben and a joint

work with Gorodski. We stress here that the condition that the

leaves are compact, used in some of these results, can be replaced

by the condition that the leaves are closed embedded (see Theorem

4.4, Theorem 4.14 and Theorem 4.15 ). From this new remark we
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also infer a new result (see Corollary 4.13). Finally, we briefly recall

some of Töben’s results about blow-up of s.r.f.s (see Theorem 5.1

and Proposition 5.5). Then we use this technique to get conditions

under which a holonomy map can be extended to a global isometry

(see Proposition 5.8).

This paper is organized as follows. In Section 2, we review some

facts about s.r.f.s and fix the notation. In Section 3 we recall an

author’s result conerning to Molino’s conjecture and orbits of Weyl

pseudogroups (see Theorem 3.1). In Section 4 we discuss the relation

between the holonomy of a s.r.s.f and the fundamental group of the

space. In particular, we prove Theorem 4.4 and reformulate previous

results. Finally, in Section 5 we review Töben’s results about blow-up

of s.r.f.s and prove Proposition 5.8.

2 Facts about s.r.f.s.

In this section, we recall some results about s.r.f.s. that will be used

in this text. Details can be found in [2]. Throughout this section, we

assume that F is a singular riemannian foliation with sections on a

complete riemannian manifoldM ; we start by recalling its definition.

Definition 2.1. A partition F of a complete riemannian manifold

M by connected immersed submanifolds (the leaves) is called a sin-

gular riemannian foliation with sections of M (s.r.f.s., for short) if

it satisfies the following conditions:

a. F is singular, i.e. the module XF of smooth vector fields on

M that are tangent at each point to the corresponding leaf

acts transitively on each leaf. In other words, for each leaf L

and each v ∈ TL with footpoint p, there exists X ∈ XF with

X(p) = v.
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b. The partition is transnormal, i.e. every geodesic that is perpen-

dicular to a leaf at one point remains perpendicular to every

leaf it meets.

c. For each regular point p, the set Σ := expp(νpLp) is a complete

immersed submanifold that meets all the leaves and meets them

always orthogonally. The set Σ is called a section.

Remark 2.2. The concept of s.r.f.s was introduced in [2] and contin-

ued to be studied by me in [1, 3, 4], by Töben in [17, 18], by Töben

and I in [5], by Lytchak and Thorbergsson in [12] and recently by

Gorodski and I in [6]. In [9] Boualem dealt with a singular rieman-

nian foliation F on a complete manifoldM such that the distribution

of normal spaces of the regular leaves is integrable. It was proved in

[4] that such an F must be a s.r.f.s. and, in addition, the set of

regular points is open and dense in each section.

A typical example of s.r.f.s is the partition formed by the orbits

of a polar action. An isometric action of a compact Lie group G

on a complete riemannian manifold M is called polar if there exists

a complete immersed submanifold Σ of M that meets all G-orbits

orthogonally and whose dimension is equal to the codimension of a

regular orbit.

Another typical example of a s.r.f.s is the partition formed by par-

allel submanifolds of an isoparametric submanifold N of a euclidean

space. A submanifold N of a euclidean space is called isoparametric

if its normal bundle is flat and the principal curvatures along any

parallel normal vector field are constant. Theorem 2.3 below shows

how s.r.f.s. and isoparametric foliations are related to each other. In

order to state this theorem, we need the concepts of slice and local

section. Let q ∈ M , and let Tub(Pq) be a tubular neighborhood
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of a plaque Pq that contains q. Then the connected component of

expq(νPq)∩Tub(Pq) that contains q is called a slice at q and is usu-

ally denoted by Sp. A local section σ (centered at q) of a section Σ is

a connected component Tub(Pq) ∩ Σ (which contains q).

Theorem 2.3 ([2]). Let F be a s.r.f.s. on a complete riemannian

manifold M. Let q be a singular point of M and let Sq a slice at q.

Then

a. Denote Λ(q) the set of local sections σ centered at q Then Sq =

∪σ∈Λ(q) σ.

b. Sx ⊂ Sq for all x ∈ Sq.

c. F|Sq is a s.r.f.s. on Sq with the induced metric from M .

d. F|Sq is diffeomorphic to an isoparametric foliation on an open

subset of Rn, where n is the dimension of Sq.

From (d), it is not difficult to derive the following corollary.

Corollary 2.4. Let σ be a local section. Then the set of singular

points of F that are contained in σ is a finite union of totally geodesic

hypersurfaces. These hypersurfaces are mapped by a diffeomorphism

to the focal hyperplanes contained in a section of an isoparametric

foliation on an open subset of a euclidean space.

We will call the set of singular points of F contained in σ the

singular stratification of the local section σ. Let Mr denote the set

of regular points in M. A Weyl Chamber of a local section σ is the

closure in σ of a connected component ofMr∩σ. One can prove that

a Weyl Chamber of a local section is a convex set.

Theorem 2.3 also implies that a s.r.f.s can be locally trivialized by

a transnormal map, whose definition we recall now.
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Definition 2.5 (Transnormal Map). Let Mn+q be a complete rie-

mannian manifold. A smooth map F = (f1 · · · fq) : Mn+q → Rq is

called transnormal if

(0) F has a regular value,

(1) for each regular value c there exist a neighborhood V of F−1(c)

in M and smooth functions bi j on F (V ) such that

⟨grad fi(x), grad fj(x)⟩ = bi j ◦ F (x), for every x ∈ V,

(2) there is a sufficiently small neighborhood of each regular level

set such that [grad fi, grad fj] is a linear combination of

grad f1, · · · , grad fq, with coefficients being functions of F, for

all i and j.

This definition is equivalent to saying that F has a regular value

and for each regular value c there exists a neighborhood V of F−1(c)

inM such that F |V→ F (V ) is an integrable Riemannian submersion,

where the Riemannian metric gi j of F (V ) is the inverse matrix of

[bi j].

Remark 2.6. Recall that each isoparametric submanifold in an eu-

clidian space can always be described as a regular level set of an

isoparametric polynomial map (see Terng[15] or Terng and Palais

[14]). On the other hand, the regular leaves of an analytic transnor-

mal map on a complete analytic riemannian manifold are equifocal

manifolds and leaves of a s.r.f.s (see [1]).

Proposition 2.7. The plaques of a s.r.f.s. are always level sets of a

transnormal map.
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In [16], Terng and Thorbergsson introduced the concept of equifo-

cal submanifolds with flat sections in symmetric spaces in order to

generalize the definition of isoparametric submanifolds in euclidean

space. Next we review the slightly more general definition of equifocal

submanifolds in riemannian manifolds.

Definition 2.8. A connected immersed submanifold L of a complete

riemannian manifold M is called equifocal if it satisfies the following

conditions:

a. The normal bundle ν(L) is flat.

b. L has sections, i.e. for each p ∈ L, the set Σ := expp(νpLp) is a

complete immersed totally geodesic submanifold.

c. For each parallel normal field ξ on a neighborhood U ⊂ L, the

derivative of the map ηξ : U → M defined by ηξ(x) := expx(ξ)

has constant rank.

The next theorem relates s.r.f.s. and equifocal submanifolds.

Theorem 2.9 ([2]). Let L be a regular leaf of a s.r.f.s. F of a com-

plete riemannian manifold M .

a. Then L is equifocal. In particular, the union of the regular

leaves that have trivial normal holonomy is an open and dense

set in M provided that all the leaves are compact.

b. Let β be a smooth curve of L and ξ a parallel normal field to L

along β. Then the curve ηξ ◦ β belongs to a leaf of F .

c. Suppose that L has trivial holonomy and let Ξ denote the set of

all parallel normal fields on L. Then F = {ηξ(L)}ξ∈Ξ.
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The above theorem allows us to define the singular holonomy map,

which will be very useful to study F .

Proposition 2.10 (Singular holonomy map). Let F be a s.r.f.s. on a

complete riemannian manifold M and q0 and q1 two points contained

in a leaf Lq. Let β : [0, 1] → Lp be a smooth curve contained in a

regular leaf Lp, such that β(i) ∈ Sqi , where Sqi is the slice at qi for

i = 0, 1. Let σi be a local section contained in Sqi which contains β(i)

and qi for i = 0, 1. Finally let [β] denote the homotopy class of β.

Then there exists an isometry φ[β] : U0 → U1, where the source U0

and target U1 are contained in σ0 and σ1 respectively, which has the

following properties:

1) q0 ∈ U0

2) φ[β](x) ∈ Lx for each x ∈ U0.

3) dφ[β]ξ(0) = ξ(1), where ξ(s) is a parallel normal field along

β(s).

An isometry as in the above proposition is called the singular

holonomy map along β.

We remark that, in the definition of the singular holonomy map,

singular points can be contained in the domain U0. If the domain U0

and the range U1 are sufficiently small, then the singular holonomy

map coincides with the usual holonomy map along β.

Theorem 2.3 establishes a relation between s.r.f.s. and isoparamet-

ric foliations. Similarly as in the usual theory of isoparametric sub-

manifolds, it is natural to ask if we can define a (generalized) Weyl

group action on σ. The following definitions and results deal with

this question.
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Definition 2.11 (Weyl pseudogroup W ). The pseudosubgroup gen-

erated by all singular holonomy maps φ[β] such that β(0) and β(1)

belong to the same local section σ is called the generalized Weyl pseu-

dogroup of σ. Let Wσ denote this pseudogroup. In a similar way, we

define WΣ for a section Σ. Given a slice S, we define WS as the set

of all singular holonomy maps φ[β] such that β is contained in the

slice S.

Remark 2.12. Regarding the definition of pseudogroups and orb-

ifolds, see Salem [13, Appendix D].

Proposition 2.13. Let σ be a local section. Then the reflections in

the hypersurfaces of the singular stratification of the local section σ

leave F|σ invariant. Moreover these reflections are elements of Wσ.

By using the technique of suspension, one can construct an exam-

ple of a s.r.f.s. such thatWσ is larger than the pseudogroup generated

by the reflections in the hypersurfaces of the singular stratification

of σ. On the other hand, a sufficient condition to ensure that both

pseudogroups coincide is that the leaves of F have trivial normal

holonomy and be compact. So it is natural to ask under which con-

ditions we can garantee that the normal holonomy of regular leaves

are trivial. This question will be answered in Section 4.

3 Molino’s conjecture and singular holon-

omy

In this section we review an author’s result concerning to Molino’s

conjecture.
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In [13] Molino proved that, if M is compact, the closure of the

leaves of a (regular) riemannian foliation form a partition ofM which

is a singular riemannian foliation. He also proved that the leaf closure

are orbits of a locally constant sheaf of germs of (transversal) Killing

fields. If the foliation is a singular riemannian foliation and M is

compact, then Molino was able to prove (see [13] Theorem 6.2 page

214) that the closure of the leaves should be a transnormal system,

but as he remarked, it remains to prove that the closure of the leaves

is in fact a singular foliation. In [4] we proved the Molino’s conjecture,

when F is a s.r.f.s. In addition we studied the singular holonomy of

F and in particular the tranverse orbits of the closure of a leaf. In

this work was not assumed that M should be compact.

Theorem 3.1 ([4]). Let F be a s.r.f.s. on a complete riemannian

manifold M. Then

a) the closure of the leaves of F form a partition of M which is

a singular riemannian foliation,i.e, {L}L∈F is a singular rie-

mannian foliation.

b) Each point q is contained in an homogenous submanifold Oq

(possible with dimension 0). If we fix a local section σ that con-

tains q, then Oq is a connected component of an orbit of the

closure of the Weyl pseudogroup of σ.

c) If q is a point of the submanifold L, then a neighborhood of

q in L is the product of the homogenous submanifold Oq with

plaques with the same dimension of the plaque Pq.

d) Let q be a singular point and T the intersection of the slice

Sq with the singular stratum that contains q. Then the normal

connection of T in Sq is flat.
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e) Let q be a singular point and T defined as in Item d). Let v be

a parallel normal vector field along T, x ∈ T and y = expx(v).

Then Oy = ηv(Ox).

One can construct examples that illustrate the above theorem by

means of suspension of homomorphisms (see Example 3.4). In fact,

the suspension technique is very useful to construct examples of

s.r.f.s. with nonembedded leaves, with exceptional leaves and also

inhomogeneous examples. Other techniques to construct examples

of s.r.f.s on nonsymmetric spaces are suitable changes of metric and

surgery (see [5] for details).

Corollary 3.2. Let F be a s.r.f.s. on a complete manifold M and q

a singular point. Let T denote the intersection of the slice Sq with the

stratum that contains q. Suppose that T = {q}. Then all the leaves of

F are closed.

Remark 3.3. According to the slice theorem (see Theorem 2.3) the

restriction of the foliation F to the slice Sq is diffeomorphic to an

isoparametric foliation F̃ on an open set of a euclidean space. There-

fore the condition that T is a point is equivalent to saying that a

regular leaf of F̃ is a full isoparametric submanifold.

Example 3.4. In what follows we construct a s.r.f.s such that the

intersection of a local section with the closure of a regular leaf is an

orbit of an action of a subgroup of isometries of the local section.

This isometric action is not a polar action. This implies that there

exists a s.r.f.s F such that the partition formed by the closure of the

leaves of F is a singular riemannian foliation without sections.

First, define an homomorphism ρ as
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ρ : π1(S
1, q0) → Iso(R2 ×C×C)

n → ((x, z1, z2) → (x, e(i n k) · z1, e(i n k) · z2))

where k is an irrational number. Set M̃ := R × (R2 ×C ×C) and

define an action of π1(S
1, b0) on M̃ by

[α] · (b̂, t) := ([α] · b̂, ρ(α−1) · t),

where [α] · b̂ denotes the deck transformation associated to [α] applied

to a point b̂ ∈ R. Let M := M̃/ ∼ be the orbit space, Π : M̃ → M

the canonical projection and P̂ : R → S1 the covering map. Finally

define a map P :M → S1 as follows

P : M → S1

Π(b̂, t) → P̂ (b̂)

It is possible to prove that M is a total space of a fiber bundle,

which has P as the projection over the basis S1. Besides the fiber of

this bundle is R2 ×C ×C and the structural group is given by the

image of ρ.

Now let F̂0 be the singular foliation of codimension 5 onR2×C×C

whose leaves are the product of points in C × C with circles in R2

centered at (0, 0). It is easy to see that the foliation F̂0 is a singular

riemannian foliation with sections.

Finally set F := Π(R×F̂0). It turns out that F is s.r.f.s. such that

the intersection of the section Π(0×R×C×C) with the closure of

a regular leaf is an orbit of an isometric action on the section. This

isometric action is not a polar action, since the isometric action

S1 ×C×C → C×C

(s, z1, z2) → (s · z1, s · z2)

is not a polar action.



SINGULAR HOLONOMY OF S.R.F.S 35

4 holonomy and fundamental group of

M

In this section we review a result of a joint work with Töben [5],

where we discuss the relation between holonomy of a s.r.f.s F on M

and the fundamental group of M . We stress here that the condition

that the leaves are compact, which was used in [5], can be replaced by

the condition that the leaves are embedded and closed (see Theorem

4.4). This remark allow us to generalize a previus result (see Theorem

4.14) and infer a new one(see Corollary 4.13). We also briefly recall

a result of a joint work with Gorodski [6] (see Theorem 4.15).

4.1 Transversal Frame Bundle of a s.r.f.s

In [13] Molino associated an O(k)-principal bundle, the orthogonal

transverse frame bundle to a regular riemannian foliation (M,F) of

codimension k. A fiber of this bundle over a point p inM is defined as

the set of orthonormal k-frames in νpLp, where Lp is the leaf through

p. Proposition 4.1 generalize this notion for a s.r.f.s. of codimension

k. Its restriction to the regular stratum Mr will coincide with the

orthogonal transverse frame bundle in the sense of Molino. We will

use this bundle to review the proof of Theorem 4.4 and Theorem

4.12.

Proposition 4.1 ([5]). Let F be a s.r.f.s on a complete riemannian

manifold M.

a) There exists a continuous principal O(k)-bundle E over M that

is associated to the s.r.f.s. F . The restriction of E over Mr

(denoted by Er) coincides with the usual orthogonal transverse
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frame bundle of the riemannian foliation Fr(the restriction of

F to Mr).

b) There exists a singular C0-foliation F̃ on E. The restriction

of F̃ to Er coincides with the usual parallelizable foliation F̃r

on Er, which is a foliation with trivial holonomy whose leaves

cover the leaves of Fr.

c) There exist C0 holonomy map associated to F̃ ; hence we can

define a Weyl pseudogroup WΣ̃.

d) There exist C0local trivializations of F̃ .

e) If the sections of F are flat, the bundle E, the foliation F̃ ,

holonomy maps and trivializations are smooth.

Before we sketch the construction of the bundle E, we present a

very simple example.

Example 4.2. Consider M := R2 foliated by circles centered at the

origin. We denote it by F . The only singular leaf is the origin and the

sections are the lines through the origin. Excising the singular leaf we

obtain a regular riemannian foliation Fr of Mr := R2 −{(0, 0)}. Let
Er be the orthogonal transverse frame bundle (in the sense of Molino)

associated to Fr. It is not difficult to see that Er = M1
r ⨿ M−1

r ,

where M i
r := (R2 −{(0, 0)})×{i} for i = 1,−1. We can identify M1

r

(respectively M−1
r ) with the unit normal field outward (respectively

inward) oriented. Set E =M1 ∪M−1, where M i :=M i
r ∪ ({(0, 0)}×

{i}). We will define E as the transverse frame bundle associated to

F . It is obvious that the restriction of E to π−1(Mr) is the orthogonal

tranverse frame bundle Er. The set E can also be regarded as a set

of equivalence classes, where the equivalence is defined as follows.

Let (ζ ip, Ci) for i = 1, 2 be a pair of a vector tangential to some
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local sections σ through p with footpoint p ∈M and Weyl Chamber

Ci in σ that contains p. Then (ζ ip, Ci) are defined to be equivalent

if there exists a rotation φ (a holonomy map) such that φ(C1) =

φ(C2) and φ∗ζ
1 = φ∗ζ

2. We say that p̃ := [(ζp, C)] belongs to M1

(respectively M−1) if a representative (ζp, C) induces the outward

(respectively inward) orientation of Fr by parallel transport along

the Weyl chamber and the circles. Note that if p is not (0, 0) then

there exists only one Weyl chamber C that contains p and hence

this new definition coincides with the definition of a vector ζp with

footpoint p, when p is regular.

Sketch of construction of the Transversal Frame Bundle

E.

Let F be a s.r.f.s. on a complete riemannian manifold M. Let

(ζp, C) be a pair of an orthonormal k-frame ζ with footpoint p tan-

gential to a local section σ and the germ of a Weyl chamber C of σ

at p. We identify (ζ1p , C1) and (ζ2p , C2) if there is a holonomy map

φ ∈ WSp (which fixes p) that maps C1 to C2 as germs in p and ζ1p to

ζ2p at first order, where WSp is the set of all holonomy map φ[β] such

that β is contained in the slice Sp. In other words, the equivalence

class [(ζp, C)] consists of the WSp-orbit (φ∗ζp, φ(C)), φ ∈ WSp . We

call an equivalence class [(ζp, C)] transverse frame, and the set E of

transverse frames transverse frame bundle.

Let π : E → M be the footpoint map. The fiber Fq = π−1(q)

is equal to the set of transverse frames [(ζq, C)]. There is a natural

right action of O(k) on E by [(ζq, C)] · g := [(ζq · g, C)]. This action

is well-defined and simply transitive on the fiber. Note that in each

equivalence class there is only one representative with a given Weyl

chamber.

Given a transverse frame q̃ = [(ζq, C)] over a point q it is possible to

use parallel transport and equifocality of F to find a neighborhood
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U of q in M and a map ς : U → π−1(U) such that ς(q) = q̃ and

π ◦ ς(x) = x for x ∈ U . With the cross section ς we can define a

trivialization of E|U as follows.

ϕ : U ×O(k) → E|U
(x, g) 7→ ς(x) · g. (4.1)

Let E|U take the induced topology via ϕ. One has to show that

this topology on E is coherently defined, i.e., the transition from one

trivialization to another trivialization is a homeomorphism. This

follows from the next lemma.

Lemma 4.3. Consider two cross-sections ςi : Ui → E with Ui∩Uj ̸=
∅ and the corresponding trivializations ϕi : Ui×O(k) → E|Ui. Define

h : U1 ∩ U2 → O(k) by ς1(x) = ς2(x) · h(x). Then

a. ϕ−1
2 ◦ ϕ1(x, g) = (x, h(x) · g).

b. h is constant along the plaques in U1 ∩ U2.

c. The map h : U1 ∩ U2 → O(k) is continuous at all points and

differentiable at all regular points. If the sections are flat, h is

locally constant.

Finally we define a singular foliation F̃ on E as follows: Let ϕ :

U × O(k) → E|U be a trivialization and Px for x ∈ U the plaque of

F in U . We define F̃ |U by the partition P̃ϕ(x,g) := ϕ(Px, g). Since

the transition map h is constant along the plaques, F̃ is well-defined

on E. We define a leaf L̃ through a point x as the set of endpoints of

continuous paths contained in plaques that start in x. The restriction

of F̃ to the bundle Er = E|Mr over the regular stratum Mr is the

standard foliation described in [13].
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4.2 Main result

In [5] Töben and I proved that the holonomy of the leaves of a s.r.f.s

F on a complete manifold M is trivial, if the leaves are compact and

M is simply connected. We stress here that the condition that the

leaves are compact is too strong. It is enought to assume that the

leaves are embedded and closed.

Theorem 4.4. Let F be a s.r.f.s. on a simply connected riemannian

manifold M . Suppose also that the leaves of F are embedded and

closed. Then each regular leaf has trivial holonomy.

Proof. In this proof we need the concept of fundamental group of

a pseudogroup, which we briefly recall below (for details see Salem

[13, Appendix D]).

We start by recalling the definition of a W -loop of a pseudogroup

W on a C0 manifold Σ. A W -loop with base point x0 ∈ Σ is defined

by

a. a sequence 0 = t0 < · · · < tn = 1,

b. continuous paths ci : [ti−1, ti] → Σ, 1 ≤ i ≤ n,

c. elements wi ∈ W defined in a neighborhood of ci(ti) for 1 ≤
i ≤ n such that c1(0) = wncn(1) = x0 and wici(ti) = ci+1(ti),

where 1 ≤ i ≤ n− 1.

Two W -loops are in the same homotopy class if one can be ob-

tained from the other by a series of subdivisions, equivalences and

deformations. The homotopy classes of W -loops based at x0 ∈ Σ

form a group π1(W,x0) called fundamental group of the pseudogroup

W at the point x0.
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Remark 4.5. If the orbit space Σ/W is a connected orbifold, then

π1(W,x) = π(Σ/W, ρ(x)), where ρ : Σ → Σ/W is the natural projec-

tion.

The proof of Theorem 4.4 is basically the same proof of Theo-

rem 1.6 of [5] apart from the modified Lemma 4.6 and Lemma 4.7.

Therefore we only sketch its main steps. For details (e.g. the proofs

of Lemma 4.10 and Lemma 4.11) see [5].

Let L be a regular leaf, p ∈ L and α a curve in L such that

α(0) = p = α(1). Let ζ(t) be the parallel transport of an orthonormal

frame ζ in p along α. Note that ζ(t) is contained in a regular leaf of

the singular foliation F̃ in E.

We want to show that ζ(0) = ζ(1).

Since M is simply connected we have a homotopy G : [0, 1] ×
[0, 1] →M with

a. G(0, t) = α(t) for all t ∈ [0, 1].

b. G(s, 0) = G(s, 1) = p for all s.

c. G(1, t) = p for all t.

We define p̃ := ζ(0). Let π : E → M be the canonical projection of

the transversal frame bundle E of F . We can lift G to a homotopy

G̃ : [0, 1]× [0, 1] → E with

a. G̃(0, t) = ζ(t) for all t.

b. G̃(s, 0) = p̃ for all s.

c. G̃(1, t) = p̃ for all t.

d. π ◦ G̃(s, 1) = p for all s.
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Let Σ be the section of F that contains p and define Σ̃ := π−1(Σ).

Let ρ̃ : E → E/F̃ be the natural projection.

Lemma 4.6. Let L̃ be the lift of a regular leaf L. Then L̃ is closed

and embedded in the frame bundle Er.

Proof. First we prove that L̃ is embedded. Let x̃ ∈ L̃ and set

x = π(x̃). Let U be a neighborhood of x such that U ∩ L has only

one connected component. Then

π−1(U) ∩ L̃ = π−1(U ∩ L) ∩ L̃ (4.2)

Note that the holonomy of L if finite, because the leaves of F are

closed and embedded. Since the holonomy of L is finite, L̃ meets

π−1(x) only a finite number of times. This fact and Equation 4.2

impy that L̃ is embedded.

Now we have to prove that L̃ is closed. Let {x̃n} be a sequence

contained in L̃ that converge to a point x̃. Since L is closed we

conclude that x̃ ∈ π−1(L). Set x = π(x̃). Let U be a neighborhood

of x such that U ∩ L has only one connected component. As before,

we can note that π−1(U) ∩ L̃ has only a finite numbers of connected

component. This fact and the fact that the sequence {x̃n} ⊂ L̃

converge to x̃ imply that x̃ ∈ L̃.

2

Lemma 4.7. ρ̃ : Σ̃r → Er/F̃ is a covering map, where Σ̃r = Σ̃∩Er.

Proof. It is easy to verify that ρ̃ : Σ̃r → Er/F̃ is surjective. Now

the result follows from Lemma 4.6 and the claim that we will prove

below.
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Claim 4.8. Let F be a s.r.f.s with trivial holonomy and assume that

the leaves are closed and embedded. Let Lp be a regular leaf and

define Tubϵ(Lp) := ∪x∈LpDx, where Dx := expx(Bϵ(0)) for a ball

Bϵ(0) ⊂ νxL. Then there exists an ϵ > 0 such that

a) for each x ∈ Lp and y ∈ Dx we have Dx ∩ Ly = {y}.

b) The map expx : Bϵ(0) → Dx is a diffeomorphism.

Since L is embedded and has trivial holonomy we can find an

ϵ > 0 such that Dp is contained in a normal neiborhood of p and

Dp ∩ Ly = {y} for each y ∈ Dp.

a) Suppose that there are two points y1 and y2 that belong to

Dx ∩ Ly. Then there are two vectors ξ1 and ξ2 ∈ νLx such that

expx(ξi) = yi for i = 1, 2. Since the holonomy of Lp is trivial, we can

extend ξi to a global parallel normal field. Now using the fact that

F is equifocal and that Dp is contained in a normal neiborhood of p,

we conclude that expp(ξ1(p)) and expp(ξ2(p)) are two different points

contained in Dp ∩ Ly and this contradicts our choise of ϵ.

b) We conclude that the map expx : Bϵ(0) → Dx is a bijection, by

the same argument used in the proof of Item a). Therefore it sufficies

to prove that the map expx : Bϵ(0) → Dx is a local diffeomorphism.

We can extend a vector ξ ∈ νLx to a global parallel normal field.

Gluing germs of holonomy maps along the curve γp(t) = expp(tξ),

(0 ≤ t ≤ 1), we can construct a local isometry φ : Up → Ux where

Ux (respectively Up) is a neighborhood of the curve γx (respectively

γp) in the section that contain x (repectively p). The existence of the

local isometry φ implies that the vector ξ(x) is not a critical point

of the map exp⊥
x . The arbitrarity of choise of the vector ξ(x) implies

that exp⊥
x |Bϵ(0) is a local diffeomorphism.

2
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We define R(s, t) = (1 − t, 1 − s) and γ0 := G̃ ◦ R(0, ·). G̃ ◦ R
is a homotopy between γ0 and the constant curve γp̃ ≡ p̃. We have

γ0(0) = p̃ and π ◦ γ0 ≡ p. These facts imply that γ0 and γp̃ are

contained in Σ̃r.

It is easy to check that

Lemma 4.9. γ0 is a WΣ̃r
-loop based at p̃ and in particular a WΣ̃-loop

based at p̃.

Using the holonomy map and trivializations of F̃ , we can project

the homotopy G̃ ◦ R to WΣ̃ -loop deformations on Σ̃ and prove the

next lemma.

Lemma 4.10. γ0 and the trivial WΣ̃-loop γp̃ belong to the same ho-

motopy class of π1(WΣ̃, p̃).

Finally reflecting W -loops in the walls of Weyl chambers it is pos-

sible to prove the lemma below.

Lemma 4.11. Consider two WΣ̃-loops δ0 and δ1 based at p̃ that be-

long to the same homotopy class of π1(WΣ̃, p̃). Suppose that δ0 and

δ1 are contained in Σ̃r. Then δ0 and δ1 belong to the same homotopy

class of π1(WΣ̃r
, p̃).

Lemmas 4.9, 4.10, 4.11 and the fact that π1(WΣ̃r
, p̃) = π1(Er/F̃ , ρ(p̃))

(see Remark 4.5) imply that ρ ◦ γ0 and the constant curve ρ ◦ γp̃
are homotopic in Er/F̃ fixing endpoints. The lift of this homotopy

along the covering ρ̃ : Σ̃r → Er/F (see Lemma 4.7) to the curve

γ0 in Σ̃r is a homotopy to a constant curve fixing endpoints. Thus

ζ(0) = γ0(0) = γ0(1) = ζ(1).

2
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4.3 Some applications

Theorem 4.12 ([5]). Let F be a s.r.f.s. on a simply connected rie-

mannian manifold M . Assume that the sections are flat. Then each

regular leaf has trivial holonomy.

Proof. If the sections of F are flat, E is a smooth bundle and

F̃ is a (smooth) singular foliation. Let ς : U → E be the cross-

section with respect to q̃, which was used in the construction of the

bundle E (see Proposition 4.1).We can define a distribution H on E

by Hq̃ := Tq̃ς(U). It is not difficult to check that this distribution is

integrable. This implies that E is foliated by submanifolds {M̃x̃} and

for each x̃ ∈ E the map π : M̃x̃ → M is a covering map. For each

manifold M̃x̃ the lift of F along π coincides with F̃ |M̃x̃. This is exactly

what happens in Example 4.2. The covering map π : M̃x̃ → M is

a diffeomorphism if M is simply connected. This implies that the

regular leaves of F have trivial holonomy.

2

Note that, in the above result, we do not assume that the leaves

are embedded or closed.

Corollary 4.13. Let F be a s.r.f.s on a complete riemannian mani-

fold M. Suppose that the cardinality of the fundamental group π1(M)

is equal to n. Assume that one of the two conditions below is satisfied

a. The leaves of F are embedded and closed.

b. The sections are flat.

Then the cardinality of the holonomy of F is lower or equal to n.

Proof. Let M̃ be the riemannian covering space of M and π : M̃ →
M be the riemannian covering map. Denote F̃ as the lift of the
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foliation F . Let x0 be a regular point and consider a loop β ⊂ Lx0

with β(0) = x0 = β(1). Finally define β̃ as the leaft of β such that

β̃(0) = x0. We claim that

φ[β] ◦ π = π ◦ φ̃[β̃] (4.3)

In fact we can find a partition 0 = t0 < · · · < tn = 1 such that βi :=

β|[ti−1,i,ti] is contained in a distinguished neighorhood of a foliation

chart of F . We can also assume that βi is contained in a neighborhood

U such that π−1(U) is a disjoint union of open subsets Uα such that

π : Uα → U is a diffeomorphism. Clearly

φ[βi] ◦ π = π ◦ φ̃[β̃i]
. (4.4)

for each i. Assume by induction that

φ[βi◦···◦β1] ◦ π = π ◦ φ̃[β̃i◦···◦β̃1]
. (4.5)

Therefore

φ[βi+1◦···◦β1] ◦ π = φ[βi+1] ◦ φ[βi◦···◦β1] ◦ π
Eq.4.5
= φ[βi+1] ◦ π ◦ φ̃[β̃i◦···◦β̃1]

Eq.4.4
= π ◦ φ̃[β̃i+1]

◦ φ̃[β̃i◦···◦β̃1]

= π ◦ φ̃[β̃i+1◦···◦β̃1]
,

and this prove Equation 4.3.

On the other hand, it follows from Theorem 4.4 and Theorem

4.12 that the holonomy of F̃ is trivial. Thus there exist only n − 1

holonomy φ̃[β̃] between x̃0 and the others points x̃1 . . . x̃n−1 ∈ π−1(x0).

This fact and Equation 4.3 imply the result.

2

In [5] Töben and I proved the existence of fundamental domains

in each section of a s.r.f.s. when the leaves are compact and M is
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simpy connected. Due to Theorem 4.4 we can reformulate our result

as follows.

Theorem 4.14. Let F be a s.r.f.s. on a simply connected riemannian

manifold M . Suppose also that the leaves of F are closed embedded.

Then

a. M/F is a simply connected Coxeter orbifold.

b. Let Σ be a section of F and let Π :M →M/F be the canonical

projection. Denote by Ω a connected component of the set of

regular points in Σ. Then Π : Ω → Mr/F and Π : Ω →
M/F are homeomorphisms, whereMr denotes the set of regular

points in M . In addition, Ω is convex, i.e. for any two points p

and q in Ω, every minimal geodesic segment between p and q

lies entirely in Ω.

The existence of fundamental domain turns out to be a useful

tool to study s.r.f.s. Indeed, this was one of the techniques used by

Gorodski and I in [6] to prove that the leaves of a s.r.f.s are pre image

of a transnormal map, when the leaves are compact, the sections are

flat and M is simply connected (for the definition of transormal map

see Definition 2.5). Due to Theorem 4.14, we can reformulate our

result as follows.

Theorem 4.15. Let F be a singular riemannian foliation with sec-

tions on a complete simply connected riemannian manifold M . As-

sume that the leaves of F are closed embedded and that F admits a

flat section of dimension n. Then the leaves of F are given by the

level sets of a transnormal map F :M → Rn.

The above theorem generalizes previous results of Carter andWest [10],

Terng [15] and Heintze, Liu and Olmos [11] for isoparametric subman-
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ifolds. It can also be viewed as a converse to the main result in [1],

and as a global version of Proposition 2.7

5 Blow-up and extension of the holon-

omy map

In [17] Töben used the blow up technique to study equifocal sub-

manifolds (which he called submanifold with parallel focal structure).

He gave a necessary and sufficient condition for a closed embedded

equifocal submanifold to induce a s.r.f.s (see [3] for an alternative

proof).

The aim of this section is twofold. First we we will briefly recall

some of Töben’s results about blow-up of s.r.f.s (see Theorem 5.1 and

Proposition 5.5). Then we will use this technique to get conditions

under which a holonomy map can be extended to a global isometry

(see Proposition 5.8).

We start by recalling the blow-up technique.

Theorem 5.1 (Töben [17]). Let F be a s.r.f on a complete rieman-

nian manifold M. Then

a) Set M̂ := {TpΣ| p ∈ N,Σ is a section of F through p}. Then
M̂ carries a natural differentiable structure, for which the in-

clusion into the Grassmann bundle Gk(TM) is an immersion.

Moreover, M̂ has a natural riemannian/ totally geodesic bifo-

liation (F̂ , F̂⊥), with respect to the pull-back metric. We have

F̂⊥ = {TΣ| Σ is a section of F}.

b) The footpoint map π̂ : (M̂, F̂) → (M,F) is foliated and maps

each horizontal leaf of F̂⊥ isometrically to the corresponding

section Σ of F .
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Remark 5.2. The result above is a strengthening of Boualem’s result

[9]. He stated it for some differentiable structure and some metric.

Töben proved it for the natural differential structure and natural

metric. Morover he did not need that the leaves were relatively com-

pact, as assumed by Boualem.

In order to study the singular holonomy of F , Töben considered the

universal covering space of M̂ , which turns out to be diffeomorphic

to L̃× Σ̃ as we recall below.

Lemma 5.3 ([7]). Let (F ,F⊥) be the bifoliation on M̂ defined in

Theorem 5.1. Let x̂0 a point of M̂ , β̂ : [0, 1] → M̂ be a curve

contained in the leaf L̂x̂0 ∈ F̂ and γ̂ : [0, 1] → M̂ a curve contained

in the leaf Σ̂x̂0 ∈ F̂⊥ such that γ̂(0) = β̂(0) = x̂0. Then there exists

a unique continuou map Ĥ = Ĥ(β̂,γ̂) : [0, 1]× [0, 1] → M̂ with

a. Ĥ(·, 0) = β̂.

b. Ĥ(0, ·) = γ̂.

c. Ĥ(·, t) is contained in a leaf of F̂ .

d. Ĥ(s, ·) is contained in a leaf of F̂⊥.

The continuous map Ĥ is called rectangle with initial vertical (re-

spectively horizontal) curve β̂ (respectively γ̂).

Remark 5.4. For a curve β : [0, 1] → M in a regular leaf of F and

a curve γ : [0, 1] → M in a section, both starting in a regular point

x0, we can define the lift β̂(t) := Tβ(t)Σβ(t) and γ̂(t) := Tγ(t)Σγ(0).

Clearly π̂ ◦ β̂ = β and π̂ ◦ γ̂ = γ. As remarked in [17], the above

lemma is also true for a s.r.f.s F . If we write H(β,γ) for the rectangle

with initial vertical (respectively horizontal) curve β (respectively γ)

we can note that H(β,γ) = π̂ ◦ Ĥ(β̂,γ̂).
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We recall that the universal cover M̃ of a manifold M is equal to

the set of equivalence of curves starting from a fixed point x0, where

the equivalence is given by homotopy fixing endpoints. Therefore,

for a regular point x0 we have

L̃ = {[β] | β is vertical and β(0) = x0},

Σ̃ = {[γ] | γ is horizontal and γ(0) = x0},˜̂
M = {[µ] | µ is a curve in M̂ and µ(0) = x̂0 = Tx0Σx0}.

Now consider the manifold L̃ × Σ̃ provided with the natural bifo-

liation and the covering space
˜̂
M provided with the pull-back bi-

foliation of the covering map
˜̂
M → M̂. It follows from Blumen-

thal and Hebda [8] that the map Φ : L̃ × Σ̃ → ˜̂
M, defined as

([β], [γ]) → [t → Ĥ(β̂,γ̂)(t, t)], is a bifoliated diffeomorphism (i.e.,

foliated with respect to both pairs of foliations). We conclude that

Ψ : L̃× Σ̃ → M̂

([β], [γ]) → Ĥ(β̂,γ̂)(1, 1)

is a bifoliated universal covering map of M̂ . Define ψ : L̃× Σ̃ → M

as ψ := π̂ ◦Ψ.
The above discution and Theorem 5.1 imply the next proposition.

Proposition 5.5 ([17]). The map Ψ is the universal covering map,

and it is bifoliated with respect to the natural bifoliation of L̃ × Σ̃

and to (M̂ ; F̂ , F̂⊥). The map ψ is foliated with respect to the vertical

foliation on L̃× Σ̃ and (M ;F), and its restriction to a horizontal leaf

is a riemannian covering to a section.
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Corollary 5.6 ([17]). Let F be a s.r.f.s on a complete riemannian

manifold M. Then the sections have the same riemannian univer-

sal cover. Similarly the regular leaves of F have the same universal

cover.

Using Theorem 5.1 and Proposition 5.5, Töben proved the next

result.

Proposition 5.7 ([17]). Let F be a s.r.f.s on a complete riemannian

manifold M. Assume that the sections are embedded. Then there

exists a section Σ such that its Weyl pseudogroup WΣ is in fact a

group.

Now we infer from Theorem 5.1 and Lemma 5.3 that the each

holonomy map can be extended to a global isometry, if the sections

are embedded and if there exists a singular point q such that the leaf

passing through this point is just q.

Proposition 5.8. Let F be a s.r.f.s on a complete riemannian man-

ifold M. Assume that the sections of F are embedded and that there

is a leaf which is point q, i.e., Lq = {q}. Let φ[β] : σ0 → σ1 be a

holonomy map where σ0 (respectively σ1) is a local section of a sec-

tion Σ0 (respectively Σ1). Then there exists an isometry φ : Σ0 → Σ1

such that φ|σ0 = φ[β] and φ(x) = Lx.

Proof. First we note that the leaves of F̂⊥ are embedded, since the

sections of F are embedded. Then we define L̂q̂ := (π̂)−1(q). The

fact that Lq = {q} implies that each leaf of F̂⊥ meets L̂q̂ once and

only once. This implies that the holonomy of the leaves of F̂⊥ are

trivial. Now the result follows from the lemma below.
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Lemma 5.9. If the leaves of F̂⊥ are embedded and have trivial holon-

omy, then each holonomy map of F admits an extension to a global

isometry.

Proof. It sufficies to prove that for each loop γ ⊂ Σx0 with γ(0) =

γ(1) = x0 := β(0), the continuation of the germ of φ[β] along γ leads

back to the initial germ.

Let β̂ (respectively γ̂) be the lift of the curve β (respectively γ)

defined in Remark 5.4. Note that γ̂ is also a loop, because there exists

only one point x̂0 such that π̂(x̂0) = x0. Let Ĥ denote the rectangle

with initial vertical (respectively horizontal) curve β̂ (respectively γ̂)

(see Lemma 5.3).

We can find partitions 0 = s0 < · · · < sn = 1 and 0 = t0 <

· · · tn = 1 so that Ĥ|[si−1,si]×[tj−1,tj ] is contained in a distinguished

neighorhood of a foliation chart of F̂ . Set βi = β|[si−1,si] and let Σi

denote the section which contains β(si).

Define a holonomy map φj
1 : σ0 j → σ1 j such that

a. φ0
1 = φ[β1],

b. φj
1|σ0 j−1∩σ0 j

= φj−1
1 |σ0 j−1∩σ0 j

,

where σ0 j are local sections of Σ0 centered at γ(tj) and σ1 j are local

sections of Σ1.

We want to prove

φn
1 |σ0n∩σ0 0 = φ0

1|σ0n∩σ0 0 . (5.1)

We note that each holonomy map φj
1 is associated to an holon-

omy map φ̂j
1 : σ̂0 j → σ̂1 j of the regular foliation F̂ , where σ̂i j is a

neigborhood of Σ̂i (the leaf of F̂⊥ which contains β̂(si)) such that

a. π̂(σ̂i j) = σi j,
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b. π̂ ◦ φ̂j
1 = φj

1 ◦ π̂.

Note that σ̂0n ∩ σ̂0 0 ̸= ∅ since γ̂ is a loop.

To prove Equation 5.1 it sufficies to prove

φ̂n
1 |σ̂0n∩σ̂0 0 = φ̂0

1|σ̂0n∩σ̂0 0 . (5.2)

Now Equation 5.2 follows direct from te fact that the holonomy of

F̂⊥ is trivial and that Ĥ|[si−1,si]×[tj−1,tj ] is contained in a distinguished

neighborhood of a foliation chart of F̂ .
By induction we can prove that

φn
i |σ0n∩σ0 0 = φ0

i |σ0n∩σ0 0 . (5.3)

Defining φj = φj
n ◦ · · · ◦ φ

j
1, we conclude that

φn|σ0n∩σ0 0 = φ0|σ0n∩σ0 0 = φ[β]|σ0n∩σ0 0 . (5.4)

Equation 5.4 implies that the continuation of the germ of φ[β] along

γ leads back to the initial germ. This completes the proof.

2
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