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ON THE LIFE AND WORK OF

FRANCESCO MERCURI

M. H. Noronha I. I. Onnis

1 Introduction

Noronha, the first student supervised by Prof. Francesco Mer-

curi, and the last, Onnis, have written this article. Mercuri’s other

doctoral students include Yuriko Baldin, Fausto Souza, Christiam

Figueroa, Helvecio de Castro, Jose Adonai Seixas, Guillermo Lobos,

Ryuichi Fukuoka, Newton Santos, Martha Dussan, J. C. Almeida de

Lima, and Leonardo Biliotti. Besides honoring our advisor by pre-

senting this brief biography and some of his contributions to Math-

ematics in the area of Differential Geometry, we want to thank him

- on behalf of all of his students - for his guidance, for everything

he has taught us, and for being an example of a professor who cares

deeply for his students.

The first section of this article follows Mercuri’s graduate student

days in Chicago and as a faculty member at UNICAMP, Brazil. The

mathematical section describes some of the work he has done with

collaborators and students. These are not presented chronologically

and are not intended to cover all his work. We only want to high-
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light his creativity and talent for generating examples and finding

connections among different aspects of a mathematical topic, as well

as his remarkable generosity in sharing his ideas and the breadth of

his mathematical knowledge.

2 On the life of Francesco Mercuri

2.1 From Rome to Brazil, via Chicago

Francesco Mercuri was born in Rome on July 7, 1946, the son of

Marcella Grossetti, a druggist born in Rome, and Vincenzo Mercuri,

an engineer born in the southern Italian region of Calabria (“almost

Africa” as Francesco likes to joke). The eldest of four brothers, he

spent his childhood in the San Giovanni district with his family, until

he completed elementary school.

In 1956, Mercuri moved to his paternal grandmother’s house to

begin secondary school, and lived there until completing his studies

at Augusto Righi, the scientific high school. This school, located in

a central district of Rome, was founded in 1946, just after the end

of World War II, and is still considered one of the best schools in

the city. During his high school years, a special person, Mrs. Diana

Benincasa, his mathematics teacher, contributed decisively to his fu-

ture choice for the course of studies in mathematics. As he says, “ I

was deeply influenced by her enthusiasm and the pleasure she showed

talking mathematics”. In 1964 Mercuri returned to his parents’ home

and began his studies in mathematics at the University of Rome, to-

day known as Università La Sapienza. In July 1969, he concluded

his university studies (magna cum laude) defending a bachelor’s the-

sis titled “Teoria di Morse e applicazioni,” under the supervision of
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Claudio Procesi, one of the most influential Italian mathematicians.

(Procesi is now a member of the Abel prize committee and was re-

cently elected vice president of the International Mathematical Union

for 2007-2010.) At that time, Procesi had just returned to the Uni-

versity of Rome from the University of Chicago where he completed

his Ph.D. under the supervision of Israel Nathan Herstein. About

Procesi, Mercuri says, “He is a brilliant mathematician, he knows

about everything. He brought fresh air to the institution, new ideas

and he attracted many students. He supervised dissertations in quite

different areas such as Algebra, Algebraic Geometry, and Differential

and Algebraic Topology. This period left an important mark on the

mathematics at the University of Rome.”

Influenced by Procesi’s experience, many of his students from the

University of Rome decided to go abroad for a Ph.D. program, which

Italy lacked at that time. Sponsored by Procesi and Herstein and

with a fellowship from the University of Chicago, Mercuri went to

Chicago to study Differential Topology with Prof. Richard K. Lashof.

“Besides being two top mathematicians, Procesi and Lashof share two

other important features: They are enchanting persons, sometimes

in different ways, and they have a global approach to Mathematics.

Their attitudes surely had a great influence on my mathematical

development,” Mercuri says.

Mercuri remembers the Chicago days with much affection. He tells

his friends many anecdotes about his life there, but few can be re-

ported here. One was that he often practiced the most popular sport

in Chicago at the time: Changing residences. “Every six months I

moved, and almost always my roommates were non-mathematicians.”

One of his hobbies, known and appreciated by many, is cooking. How-

ever, during the Ph.D. period, he found practicing this art very diffi-

cult since, according to him, none of his friends excelled in domestic
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activities and never wanted to wash the dishes.

“The atmosphere at the University of Chicago was extremely ex-

citing. Also, besides Mathematics, I had a quite active social life,” he

says. For instance, in the doctoral years, Mercuri founded a soccer

team called “I Meio,” which means “the best ones” in the Roman

dialect. People of varied nationality composed the team: Italian,

Brazilian, English and Spanish. “I Meio won the university cham-

pionship easily”, he remembers. Today Mercuri no longer plays any

sport, but very much enjoys watching them, especially Soccer and

Formula One.

During his mathematical studies at the University of Chicago, Mer-

curi started to work on some problems in Riemannian Geometry, but

in 1972 he had to interrupt his doctoral studies to return to Italy to

fulfill military service in Orvieto, a city in the Umbria region. He likes

to say that the Italian army could not do without him. When he fin-

ished 15 months in the army, in November 1973, the academic year at

the University of Chicago had already started, so the fellowship was

unavailable for that year. From November 1973 until October 1974,

he developed research activities and taught Differential Geometry as

a “Professore Incaricato” at the Lecce University.

In September 1974 he decided to give up his position in Italy and

return to Chicago to finish his Ph.D. This decision was considered

totally crazy by some friends, since in a short time he would have

become an associate professor, a stable position, through a test where

only his curriculum would have been evaluated and a few publications

would have been enough to pass.

Before going back to Chicago, Mercuri attended the mathemat-

ical summer school called “Corso C.I.M.E. (Centro Internazionale

Matematico Estivo)” held in June 1974 in Varenna, Italy. He met

W. Klingenberg, a professor at the University of Bonn, who was a lec-
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turer at that meeting. After some fruitful conversations, Klingenberg

suggested that he should work on a problem about closed geodesics.

In this connection, Mercuri explains that although Klingenberg was

not his official advisor, he considered Mercuri (as well as Manfredo

P. do Carmo) as his own student and his suggestions were extremely

important in Mercuri’s thesis.

The problem that interested Klingenberg and many other mathe-

maticians concerned the existence of infinitely many closed geodesics

on a compact Riemannian manifold (the problem is still open in its

full generality). In 1972, Katok had produced an example of a Finsler

metric on the sphere S2, arbitrarily closed to the standard Rieman-

nian metric, with only two closed geodesics. So it would be interesting

to extend the results known for the Riemannian case, in particular

the critical point theory, to the Finsler case trying to understand the

differences. When Mercuri went back to the University of Chicago

in September 1974, he talked to Lashof about the problem suggested

by Klingenberg, commenting that it looked too easy. Lashof briefly

answered, “Klingenberg is an excellent and experienced mathemati-

cian!” A year later, in 1975, Mercuri defended his Ph.D. thesis, titled

Closed geodesics on Finsler manifolds, but officially the Ph.D. degree

was not awarded until 1976.

2.2 The Brazilian period

Some Brazilian mathematicians whom he met in Chicago invited

Mercuri to visit the State University of Campinas (UNICAMP) in

Brazil. He decided to accept this invitation, because it would have

been very difficult at that time to find a good position in Italy. He

arrived in Campinas in January 1976. The director of IMECC, the

Institute of Mathematics, Statistics and Computer Science, was then
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Professor Ubiratan D’Ambrosio, who had significant international

experience and was trying to start a center of excellence. Through

his international contacts he was able to attract many young Ph.D.s

from various countries. Mercuri’s initial plan was to stay in Brazil

just two or three years, publish a few papers, and return to Italy when

the job situation improved. But he had two important experiences:

He saw the possibility to collaborate with the creation of a mathe-

matics department with high quality research and he met Elizabeth

(“Betty”), whom he wed in July 1977. “She is a great woman and

gave me a lot of support, motivation, and two wonderful children,

Elena and Vincenzo Leonardo,” he says. So he decided to stay in

Brazil.

Since he didn’t yet speak Portuguese, Mercuri (affectionately called

“Franco”) initially taught some graduate classes in English, but soon

he was also teaching basic undergraduate courses. Everybody re-

members his lectures: a neat blackboard, clear speech with numerous

examples and counterexamples, mention of recent results and open

problems, but also a language which he calls “portuliano”-Portuguese

with many Italian words. He says that once a dear friend of his,

Richard Pfister, asked his wife Betty which language Francesco used

to speak to his children. Betty answered, “Neither Italian nor Por-

tuguese, but the language you are listening to!”

In the early 1980’s Mercuri was the graduate program coordina-

tor of the Mathematics Department. These were very exciting years,

with a large group of relatively young professors trying to organize a

high-quality program. There were many different ideas of directions

to take, many discussions, and finally the program was structured.

Nowadays this program is, together with that of IMPA, the best-

ranked program in Brazil. Mercuri credits the arrival of Professor

Djairo Guedes de Figueiredo, a world leading mathematician, as fun-
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damental. The program attracts students from various countries. As

a result, Mercuri has supervised students from Chile, Peru, Colombia

and Italy, besides Brazilian students.

At the beginning of the 1990’s there were many students in Differ-

ential Geometry at UNICAMP and at the University of São Paulo.

Mercuri, together with some colleagues from USP, started a joint

seminar in Differential Geometry, which is still active and is con-

sidered a basic meeting point for graduate students and researchers

from throughout the state. The seminar frequently hosts lecturers

from other institutions in Brazil and abroad.

For his academic activities Mercuri was awarded the Zeferino Vaz

prize in 1997, the highest prize at UNICAMP, and later, in March

2005, the Ordem Nacional do Merito Cientifico prize, one of the high-

est at the national level.

Mercuri officially retired in 2003, but he still teaches, supervises

students, and is active in research. The only difference is that he is

no longer involved in administration and it is easier for him to travel.

Besides his participation in international congresses, his friends and

collaborators in Brazil and abroad often invite him for seminars, joint

research work, and to lecture mini-courses. Everybody enjoys his

lectures. They are clear, well organized, and the results he presents

are always interesting, current, and relevant to Differential Geometry.

He goes directly to the heart of the problem, in the simplest way,

making people believe that all is easy!

He never returned to Chicago but goes to Italy every year. There,

besides doing Mathematics, he visits his family and friends and enjoys

beautiful places, good company, food and....a good glass of wine!
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3 An Overview of Mercuri’s Mathemat-

ical work

3.1 The closed geodesics problem

It is a classical question in Riemannian Geometry if there are al-

ways infinitely many closed geodesics (geometrically distinct and non

trivial) on any compact Riemannian manifold. A positive answer was

given, under additional condition on the topology of the manifold, by

Gromoll and Mayer in [14]. They proved:

Theorem 3.1. Let M be a compact simply connected Riemannian

manifold. If the rational cohomology of M is not generated, as a ring,

by only one element, then M admits infinitely many non constant

geometrically distinct closed geodesics.

Remark Also, a positive answer, under a “generic” condition on the

metric, was given in [17].

In [18] Katok produced an example of a Finsler metric on S2,

arbitrarily close to the standard Riemannian metric, with only two

closed geodesics. In order to understand the difference between the

Riemannian and the Finsler case, Mercuri studied in his doctoral

thesis at the University of Chicago the critical point theory for the

closed geodesics problem for Finsler metrics. His thesis was partially

published in [19]. Unfortunately, as he says, he was able to prove

the Palais-Smale condition for the Finsler energy, one of the main

points in the theory. The “unfortunately” is referred to the fact

that the result does not show any difference between the two cases.

When he arrived in Brasil he stopped working on the problem, for

reasons that will be clear later on, but the problem remained in his
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mind. After some time he proposed to a student of his, F. Souza,

to prove the Gromoll-Mayer Theorem for the Finsler case. Souza

did it in his Doctoral thesis with the help of a Morse Theory with

low differentiability (a peculiarity of the Finsler case) that Mercuri

established in [25]. It is worth mentioning that the difference between

the Riemannian and Finsler case is still not completely clear, despite

the fact that quite a few papers have been published on the subject

recently.

In his last paper (see [6]), in collaboration with his former stu-

dent L. Biliotti and his colleague P. Piccione, Mercuri went back

to the problem of existence of closed geodesics, this time for semi-

Riemannian metrics. Here the situation is quite different because

the energy functional is not bounded below, does not satisfy the

Palais-Smale condition, and the Morse index is infinite. However,

with the help of previous work on the Morse Index Theorem and via

the Maslow index (see [26]) and under additional hypotheses on the

metric, they were able to prove a Gromoll-Mayer type theorem.

3.2 Positively curved submanifolds of Euclidean

spaces

When Mercuri arrived in Brazil, one of the most popular topics

of research was the geometry of submanifolds of space forms. He

started soon to be interested in the subject, combining his knowledge

of Morse Theory, his favorite subject in mathematics, with a long

standing interest: The topology of positively curved manifolds.

He was strongly influenced by a beautiful paper by J. D. Moore,

(see [19]). Moore proved that an orientable compact submanifold of

an Euclidean space with positive sectional curvature and codimen-

tion two is an homotopy sphere. This theorem generalizes a previous
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result of A. Weinstein, [34]), and is based on the seminal work of

Chern and Lashof on minimal absolute total curvature of subman-

ifolds of Euclidean spaces, ([9]), and on a Theorem of Gallot and

Meyer on compact and simply connected manifolds of nonnegative

curvature operator ([13]). Mercuri, in collaboration with his student

Y. Baldin, generalized Moore’s result for the case of nonnegative sec-

tional curvature, proving in [3] the following Theorem:

Theorem 3.2. Let M be a compact connected Riemannian manifold

of dimension n ≥ 3, with nonnegative sectional curvature and f :

M → Rn+2 an isometric immersion. Then:

1. If the sectional curvature at some point is positive, M is an

homotopy sphere.

2. If M is simply connected then either M is an homotopy sphere

or M is the product of two spheres and f is the product of two

convex embeddings.

3. If M is not simply connected, then M is diffeomorphic to the

product of a compact manifold with a circle or n = 3 and M is

a finite quotient of S3.

One of the main points was the equivalence between positive sec-

tional curvature and positive curvature operator. Recall that the

curvature operator of a Riemannian manifold with curvature tensor

R is the operator:

R : Λ2(TpM) → Λ2(TpM), ⟨R(X∧Y ), Z∧W ⟩ = ⟨R(X, Y )W,Z⟩,

where Λ2(TpM) is the space of exterior 2-forms. It is clear that pos-

itive curvature operator implies positive sectional curvature, but the

converse is not always true. But for codimension two submanifolds

of Euclidean spaces, the converse holds (see [34]).
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Mercuri then started looking for conditions under which the posi-

tivity of the curvature operator is equivalent to the positivity of the

sectional curvature. The simplest case is the following:

Definition 3.3. A Riemannian manifold is said to have pure cur-

vature operator if for every p ∈ M there is an orthonormal basis

{X1, ..., Xn} of the tangent space such that the 2-forms Xi ∧Xj are

eigenvectors of the curvature operator R.

Although very restrictive, the condition of pure curvature oper-

ator holds for various classes of Riemannian manifolds such as all

3-manifolds, locally conformally flat manifolds, and for submanifolds

of space forms with flat normal connection. For the case of manifolds

with pure nonnegative curvature operator, Mercuri, Derdzinski, and

a former student Noronha proved that if M is compact and simply

connected, then it is the Riemannian product of Real Cohomology

Spheres (see [10]). It is worth pointing out here, that this simple re-

sult is a consequence of major theorems proved in the 1980’s such as

the Micallef-Moore Theorem for manifolds of positive isotropic cur-

vature ([29]), Hamilton’s Ricci flow for nonnegative operators ([15]),

and the solution of the Frankel conjecture by Siu-Yau ([33]).

Mercuri wrote an excellent survey paper (see [21]) where he beauti-

fully describes how the results in [29], [15], [33] can be put together to

give a complete classification of manifolds of nonnegative curvature

operator.

Also in the 1980’s a new and important notion of curvature was

introduced. In [29], Micallef and Moore introduced the concept of

curvature on totally isotropic two-planes for manifolds of dimension

≥ 4. We will call it, for brevity, isotropic curvature. This curvature

plays a role in the study of stability of harmonic 2-spheres similar

to the one that the sectional curvature does in the study of stability
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of geodesics. In fact, studying the index of harmonic 2-spheres in a

compact Riemannian manifold M , Micallef and Moore proved that if

M has positive isotropic curvature then the homotopy groups πi(M)

vanish for 2 ≤ i ≤ [n/2]. Therefore, if π1(M) is finite then the Betti

numbers βi(M) are zero for 1 ≤ i ≤ n− 1.

For nonnegative isotropic curvature, the situation is more complex.

A topological classification for compact and simply connected man-

ifolds with nonnegative isotropic curvature exits only in dimension

4: It is either homeomorphic to a sphere, or biholomorphic to the

complex projective space CP2 or is a product of two surfaces where

one of them is homeomorphic to a sphere. For higher dimensions

there are only partial results. Mercuri and Noronha worked in the

case of hypersurfaces, proving the following result (see [22]):

Theorem 3.4. Let f : Mn → Rn+1, n ≥ 4, be an isometric immer-

sion of a compact manifold M with nonnegative isotropic curvature.

Then the homology groups Hi(M,Z) = 0 for 2 ≤ i ≤ n − 2 and the

fundamental group π1(M) is a free group on β1 elements. Moreover,

for for any natural number β there exist a compact hypersurface with

nonnegative isotropic curvature, with β1 = β.

This result shows that compact hypersurfaces with nonnegative

isotropic curvature look very much like conformally flat hypersurfaces

(see next subsection). In fact, the examples constructed to show that

any β appears as the first Betti number of a compact hypersurface

with nonnegative isotropic curvature are conformally flat. Actually,

Mercuri and Noronha proved in the same paper the following result

for compact conformally flat manifolds:

Theorem 3.5. Let Mn, n ≥ 4, be a compact conformally flat man-

ifold with nonnegative isotropic curvature. Then either M is flat or

βi(M) = 0 for 3 ≤ i ≤ n− 3. Moreover if β2(M) ̸= 0 then either M



ON THE LIFE AND WORK OF FRANCESCO MERCURI 13

is flat or is isometrically covered by the product of a hyperbolic plane

with an (n− 2)-sphere with its standard metric.

The result above combined with Moore’s result on conformally flat

submanifolds of Euclidean spaces (see [30]) gives us the following:

Corollary 3.6. Let f : Mn → Rn+p, 2 ≤ p ≤ n/2 − 1, be an iso-

metric immersion of a compact, orientable conformally flat manifold

M with nonnegative isotropic curvature. Then Hi(M ;Z) = 0 for

p ≤ i ≤ n− p.

3.3 Conformally flat and cohomogeneity one hy-

persurfaces of the Euclidean space

In 1983, Mercuri spent the (Brazilian) summer at IMPA, Rio de

Janeiro. At that time, do Carmo and Dajczer where working on

conformally flat hypersurfaces of Euclidean spaces. There was an

incomplete classification of those hypersurfaces, essentially due to

Kulkarni, and, studying the local problem, do Carmo and Dajczer

found new examples. Mercuri then decided to apply Morse Theory

to those results in order to obtain global descriptions of those hyper-

surfaces. In collaboration with do Carmo and Dacjzer, the following

result was obtained:

Theorem 3.7. Let Mn, n ≥ 4 be a compact, conformally flat man-

ifold and f : Mn → Rn+1 an isometric immersion. Then M is

the union of umbilical pieces, connected by tubes, diffeomorphic to

[0, 1]× Sn−1, foliated by (n− 1)-dimensional round spheres.

Standard examples of conformally flat hypersurfaces are the hy-

persurfaces of revolution. Do Carmo and Dajczer caracterized those

hypersurfaces in terms of the structure of the second fundamental
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form (see [7]). Later on, Podestà and Spiro characterized them in

terms of the intrinsic geometry (see [32]). Recall that a Riemannian

manifold is said to be of cohomogeneity k with respect to a closed

subgroup G of its isometry group, if G acts effectively and isometri-

cally with principal orbits of codimension k. The result of Podestà

and Spiro states that a compact cohomogeneity one hypersurface M

of dimension n ≥ 4 with the property that the principal orbits are

umbilical in M is a hypersurface of revolution.

The crux of their proof is that the umbilicity of the orbits implies

the constancy of their sectional curvature. In a joint work with As-

perti and Noronha, the converse was proved, that is, if the principal

orbits have constant sectional curvature then they are umbilical sub-

manifolds of M and therefore, if M is compact and of dimension at

least 4, M is a hypersurface of revolution.

With another former student, J. A. Seixas, Mercuri studied in [28],

the case of complete hypersurfaces. It turns out that Podesta-Spiro’s

theorem does not hold in this case. This can be easily seen by consid-

ering suitable non totally geodesic isometric immersions of Rn into

Rn+1. However, with the assumptions that the group G is compact

and the connected components of the flat part are bounded, Mercuri

and Seixas were able to get the same conclusion, namely, that if the

principal orbits are umbilical submanifolds then M is a hypersurface

of revolution.

As remarked above, hypersurfaces of revolution are conformally

flat and of cohomogeneity one. It was then natural to ask if those

two conditions imply that the hypersurface is of revolution. The

answer is negative as shown by the following example: Consider the

group G = SO(2)×SO(n−1) acting in the standard way on Rn+1 =

R2×Rn−1. In the {e1, en+1} plane take a circle, centered in (λ, 0), λ >

0, and of radius r < λ. Letting G act on this circle we obtain a
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compact conformally flat cohomogeneity one hypersurface, which is

not of revolution. The question is completely answered in the result

below proved by Mercuri and Noronha in [23].

Theorem 3.8. Let f : Mn → Rn+1 be an isometric immersion of a

compact, cohomogeneity one conformally flat Riemannian manifold,

n ≥ 4. Then Mn is of revolution or, up to normalizations, is the

example discussed above.

Besides hypersurfaces of revolution, there are other hypersurfaces

of cohomogeneity one. For example we can consider a group G ⊆
SO(n + 1) acting on Rn+1 with cohomogeneity two. Those groups

are classified and the quotient space is an angular sector in a 2-plane

in Rn+1. Taking a curve in this sector, with suitable conditions on

the boundary, and letting G act on this curve, we obtain an hypersur-

face of cohomogeneity one. Those examples were called the standard

examples (in particular hypersurfaces of revolution are standard ex-

amples for G = SO(n)). In a recent joint paper with Podestá, Seixas,

and Tojeiro, (see [27]) cohomogeneity one hypersurfaces of the Eu-

clidean space were completely classified. They proved:

Theorem 3.9. Let f : Mn → Rn+1 be an isometric immersion of

a complete cohomogeneity one Riemannian G-manifold, G compact.

If n ≥ 5 and the connected components of the flat part are bounded

or, if n ≥ 3 and M is compact, then either f is rigid, or f(M)

is a hypersurface of revolution. In either case, f(M) is one of the

standard examples described above.

3.4 Minimal surfaces

The study of minimal surfaces is a very popular theme of research

in Brazil. A few years ago, in one of his visit to Fortaleza, Mercuri
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started working with J. L. M. Barbosa in a classical problem of min-

imal surfaces. Ossermann had shown in the 1960’s that the Gauss

map of a complete non flat minimal surface of finite total curvature in

R3 omits at most 3 points on the unit sphere and it was soon conjec-

tured that it could not omit more than 2 points. Ossermann’s proof

relies on the Weierstrass representation formula for minimal surfaces

in R3 (see below) and on the calculations of the Euler characteris-

tic of a Riemann surface in terms of zeros and poles of holomorphic

functions and their differentials. Mercuri found a new proof of Osser-

mann’s Theorem which uses only topological properties of complete

minimal surfaces of finite total curvature. This proof was not consid-

ered sufficiently interesting, at that time, and was left on the side. A

few years later Mercuri suggested to one of his student, R. Fukuoca,

to look again at this problem and at his proof. Mercuri and Fukuoca

soon realized that the ideas behind that proof could be extended to

the case of higher dimensional minimal hypersurfaces. Immediately

after, in a joint work with Barbosa and Fukuoca, the so called hyper-

surfaces of finite geometric type were introduced. They constitute a

class of hypersurfaces of Euclidean spaces that, from the Differential

Topology viewpoint, have the same properties of complete minimal

surfaces of finite total curvature. In [5], the authors proved the ana-

logue of Ossermann’s theorem for surfaces of finite geometric type

as well as other results for higher dimensional minimal hypersurfaces

of finite geometric type, which gave a topological characterization of

even dimensional catenoids.

At the same time there was a growing interest in the study of sur-

faces of 3-dimensional homogeneous manifolds. Mercuri, in a joint

work with his student C. Figueroa and his colleague R. Pedrosa,

classified the surfaces of constant mean curvature in the Heisenberg

group that are invariant for 1-parameter subgroups (see [12]). This,
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together with the work of U. Abresch and H. Rosenberg on the gen-

eralized Hopf differentials (see [1]), led to the solution of the isoperi-

metric problem for the Heisenberg group. They also found families of

complete minimal surfaces that are graphs on the orthogonal comple-

ment of the center. This naturally led to the question of classifying

complete minimal graphs in the style of the Bernstein Theorem 1.

Such a classification has recently been obtained by I. Fernandez and

P. Miura in [11].

Mercuri continued his work on minimal surfaces in 3-dimensional

homogeneous manifolds. In collaboration with S. Montaldo and M.

P. Piu, he obtained a Weierstrass type formula for minimal surfaces

in Riemannian manifolds (see [20]).

The (local version of) the Weierstrass representation formula for

minimal surfaces in R3 states that, if Ω ⊂ C is a simply connected

domain and f : Ω → Rn is a conformal minimal immersion, then

the complex tangent vector ∂f/∂z :=
∑

ϕi∂/∂xi has the following

properties:∑
|ϕi| > 0, (i.e. f is an immersion),

∑
ϕ2
i = 0, (i.e. f is conformal),

∂ϕi/∂z = 0 (i.e. f is minimal).

Conversely, given functions ϕi : Ω → C with the above properties,

then the map:

f : Ω → R3, fi(z) = 2Real

∫ z

z0

ϕidz,

is a conformal minimal immersion.

In the case that the ambient space is a general Riemannian mani-

fold with metric gij, the same structure works, if the above conditions

1The classical Bernstein Theorem states that, in R3, a complete minimal

graph is linear.
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on the ϕi’s are replaced by the following:∑
gijϕiϕj > 0,

∑
gijϕiϕj = 0, ∂ϕi/∂z + Γi

klϕkϕl = 0,

were the Γi
kl’s are the Christoffel symbols of the Riemannian connec-

tion of the manifold.

In addition to bringing the theory of holomorphic functions to

the subject, the Weierstrass representation is a powerful machine

to produce examples of minimal surfaces, provided that one finds

solutions for the PDE involved. Such solutions are not easy to find

if the ambient space is a general Riemannian manifold. However, in

the case of special ambient spaces such as the Heisenberg group H3

and H2 ×R, where H2 is the hyperbolic plane, Mercuri, Montaldo,

and Piu (see [20] were able to find explicit solutions and hence, by

integrating these solutions, they found examples of minimal surfaces

in those spaces.

Also, in [24], Mercuri and Onnis used the Weierstrass representa-

tion described above to give a positive answer to the Björling problem

in 3-dimensional Lie groups:

Theorem 3.10. Let M be a 3-dimensional Lie group with a left

invariant metric, γ : [0, 1] → M a real analytic curve and N : [0, 1] →
TM , an analytic vector field along γ and normal to it. Then there

exist ϵ > 0 and a conformal minimal immersion Γ : [0, 1]× (−ϵ, ϵ) →
M such that Γ(t, 0) = γ(t) and N is the normal to Γ along γ.
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et Appl. 54, (1975), 285-304.

[14] Gromoll, D.; Mayer, W., Periodic geodesics on compact Rieman-

nian manifolds, J. Diff. Geo. 3 (1969), 493-510.

[15] Hamilton, R., Four-manifolds with positive curvature operator,

Proc. AMS 70 (1978), 72-76.

[16] Katok, A. B., Ergotic perturbations of degenerate integrable

Hamiltonian systems Math. USSR, Izvestija 7, (1973), 535-571.

[17] Klingenberg, W.; Takens, F., Generic properties of geodesic

flows, Math. Ann. 197 (1972), 323–334.

[18] Kobayashi, S., Compact homogeneous hypersurfaces,

Trans.A.M.S. 88, (1958), 137-143.

[19] Mercuri, F., The critical points theory for the closed geodesics

problem, Math. Z., 156, (1977), 231-245.

[20] Mercuri, F.; Montaldo, S.; Piu, P., A Weierstass representation

formula for minimal surfaces in H3 and H2 ×R, Acta Math.

Sin. 22 (2006), 1603-1612.

[21] Mercuri, F.; Noronha, M. H., On the topology of complete Rie-

mannian manifolds with nonnegative curvature operator, Rendi-
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