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Abstract

In this paper we discuss the convergence of numerical algo-

rithms for computing the solutions of the Helmholtz equation.

At the continuous level two different methods have been pro-

posed inspired by the idea of reducing the search of the desired

solutions to a least squares problem for the periodically forced

wave equation. The functional to be minimized proposed in

[5] turns out be coercive only for non-trapping obstacles while

the variant introduced in [2] is coercive, independently of the

geometry of the domain under consideration. This paper is
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devoted to analyze the behavior of each of these approaches

under numerical discretizations. We prove that, in order for

the functional in [5] to be uniformly coercive at the numer-

ical level with respect to the mesh-size parameter one needs

to introduce numerical schemes with artificial numerical vis-

cosity, an impose a non-trapping condition to the obstacle.

In contrast, the method proposed in [2] is more robust since

convergence of numerical solutions is guaranteed for standard

conservative numerical schemes and without any geometric

condition on the obstacle.

1 Introduction

This article is devoted to revisit, from a numerical analysis point

of view, two methods, inspired by control theoretical ideas, for the

computation of the outgoing solution of the Helmholtz equation in

an exterior domain (the complement of an obstacle) that yields a

harmonic, in time, solution at a single frequency, representing wave

scattering about a body at the given frequency. The applications

include acoustic, electromagnetic and geophysical wave propagation.

These methods were introduced, respectively, by Bristeau, Glowin-

ski and Periaux in [5] and Bardos and Rauch in [2]. Both of them use

a least square approach and design quadratic functionals for the pe-

riodically forced wave equation whose minimizers yield the solution

of the Helmholtz equation one is looking for.

In this article we analyze the same issue but considering also the

effect of introducing a numerical scheme for approximating the wave

equation, something that is necessary to conduct numerical experi-

ments in practice.

The analysis we develop in this paper is intimately related to previ-

ous work on the control and stabilization of numerical approximation
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schemes for the wave equation. We refer to [28] for a survey on this

topic. To be more precise, our analysis follows very closely previous

work on stabilization that we summarize now.

When considering numerical discretization schemes for wave equa-

tions, it is well known that most of them do not preserve the property

of uniform (with respect to the mesh-size) decay property of the solu-

tions of the continuous wave equation with damping as t→ ∞. This

is due to spurious high frequency numerical solutions that generate

wave packets that propagate at a vanishing group velocity, that take

too long to reach the boundary where the dissipative mechanism is

localized and which, consequently, is not efficient enough to guaran-

tee the uniform exponential decay. In view of this in [25] and [26]

we introduced a dissipative numerical scheme with artificial numer-

ical viscosity that preserves the decay properties of the continuous

wave equation. That scheme succeeds in yielding the uniform expo-

nential decay since the numerical viscosity term damps out the high

frequencies, while the low frequency components are damped by the

dissipative properties inherited by the numerical scheme out of the

continuous wave model.

Our analysis confirms that, in what concerns numerical approxima-

tions too, the functional introduced in Ê[2] is more robust than the

originally introduced one [5]. More precisely, the discrete functionals

corresponding to Ê[2] are uniformly coercive without any geomet-

ric condition on the obstacle and for conservative numerical schemes

while the functional in [5] needs of viscous numerical schemes and

non-trapping conditions on the obstacle.

In this paper we address the problem for a monocromatic forcing

term. But the methods we develop, based on the time-dependent

wave equation may be also appropriate for forcing terms involving

many frequencies.
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We refer to [27] for a survey of the state of the art on the numer-

ical methods for the Helmholt equations, in which special attention

is paid to the appropriate choice of the absorbing boundary condi-

tions. This is often done also by the method of Perfectly Matching

Layers (PML), see [3], [4], [7] and [16]. We also refer to [8] for a

rigorous analysis of the PML method both for the continuous and

semi-discrete wave equation in 1 − d along the lines of the methods

developed in the present article.

The analysis of this paper could be extended in various directions:

• Other numerical methods: Here we deal with finite-difference

space semi-discretizations but the same issues arise in what

concerns full discretization schemes, finite elements, etc. In

fact, the original numerical approach proposed in [5] was based

on the finite element method for discretizing the space laplacian

and a fully discrete scheme in time. We refer to [28] for a survey

article on the numerical aspects of control of wave equations, a

topic which is very closely related to the one addressed here.

At this respect the work [11] is worth metionning. There, the

methods in [5] are adapted to a mixed finite element formula-

tion of the wave equation.

• Two-grid filtering: Here we have used numerical viscosity to

damp out the high frequency spurious numerical components.

But, at the level of the control of the wave equation ([9], [21]),

and also for what concerns the numerical approximation of

nonlinear Schrödinger equations ([14]), the same goal can be

achieved by making a two-grid preconditionning of the initial

data, without modifying the numerical scheme that can in this

way be kept to be conservative. The efficiency of this two-grid
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preconditionning method is also to be investigated at the level

of the numerical approximation of the Helmholtz equation.

2 Problem formulation and preliminar-

ies

We address the problem of the numerical computation of the out-

going periodic solutions of a periodically driven wave equation. To

be more precise, let Ω be a connected open subset of Rd, d ⩾ 1,

whose complement is bounded. Denote by Γint the boundary of

Ω : Γint = ∂Ω. As we shall see, this notation makes sense since,

for computational purposes, the domain Ω has to be cut-off, i.e. it

has to be replaced by ΩR = Ω∩BR (where BR stands for the ball of

radius R), for some R >> 1, in which case one generates an exterior

boundary Γext = ∂BR as well.

We consider the wave equation{
utt −∆u = eiωtf(x) in Ω, t > 0

u = 0 on ∂Ω, t > 0.
(2.1)

We are interested on the time-periodic solution of (2.1) of the form

u = eiωtw(x) (2.2)

where w = w(x) solves the Helmholtz equation{ (
∆+ ω2

)
w = −f(x) in Ω

w = 0 on ∂Ω.
(2.3)

This paper is devoted to revisit the methods introduced by [5] and

[2] for the computation of (2.2) from a numerical analysis point of

view. These methods are based on a least square formulation of the
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problem and use the existing results on the control and stabilization

of the wave equation.

The first step in the application of these methods is, as we men-

tioned above, cutting-off the domain Ω to transform it into a bounded

domain ΩR. The previous wave (2.1) and Helmholtz (2.3) equations

are then considered in ΩR. But to make the system complete, they

have to be complemented with suitable boundary conditions on the

external boundary Γext = {x : |x| = R}. The most natural ones are

the so-called absorbing boundary conditions.

The wave equation obtained in this way then reads:
utt −∆u = eiωtf(x) in ΩR, t > 0

u = 0 on Γint, t > 0
∂u

∂ν
+ γ(x)∂tu = 0 on Γext, t > 0,

(2.4)

with γ a smooth and strictly positive function defined on Γext. Here

and in the sequel ν stands for the unit normal vector to the boundary.

Similarly, the Helmholtz equation reads
(
∆+ ω2

)
w = −f in ΩR

w = 0 on Γint

∂w

∂ν
+ iωγ(x)w = 0 on Γext.

(2.5)

Before going further we recall some basic properties of the solutions

of the wave equation (2.4) in the absence of external forces, i. e.

f ≡ 0. Let us introduce the energy of solutions of (2.4):

ER(t) =
1

2

∫
Ω

[∣∣ut∣∣2 + ∣∣∇u∣∣2]dx. (2.6)

When f ≡ 0, we have the energy dissipation law

dER(t)

dt
= −

∫
Γext

γ(x)
∣∣∂tu∣∣2dσ. (2.7)
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Assuming that γ ≥ γ0 > 0 a.e. on Γext, it is easy to see that

ER(t) → 0 as t→ ∞ (2.8)

for every solution of (2.4) with f ≡ 0. But the uniform exponential

decay of the semigroup concerns the stronger condition about the

existence of positive constants C > 0 and α > 0 such that

ER(t) ≤ Ce−αtER(0), ∀t > 0 (2.9)

for all solution of (2.4) with f ≡ 0.

In [2] it was proved that the coercivity of the functional introduced

in [5] (see (2.11) below) requires the uniform decay property (2.9),

but they also indicated that such a property does not hold when the

boundary Γint is trapping. This is due to the fact that, when Γint is

trapping, there are Gaussian beam solutions (see [22] and [23]) that

never reach the exterior boundary and, therefore, are very weakly

dissipated.

In [5] an alternate functional was proposed whose coercivity only

requires the strong stability property (2.8), which holds without any

further geometric conditions.

In the sequel, to make the problem under consideration precise, we

briefly recall the definition of these two functionals.

We consider the initial value problem associated to (2.4). Taking

into account that we look for solutions of (2.4) of the form u =

eiωtw(x) it is sufficient to take initial data of the form u(0) = ψ and

ut(0) = iωψ. We thus consider the system
utt −∆u = eiωtf(x) in ΩR, t > 0

u = 0 on Γint, t > 0
∂u

∂ν
+ γ(x)∂tu = 0 on Γext, t > 0

u(x, 0) = ψ(x), ut(x, 0) = iωψ(x) in ΩR.

(2.10)
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The functional proposed in [5] is as follows. Take T = 2π/ω and

set

J(ψ) =
1

2

∫
ΩR

[∣∣∇(
u(x, T )− ψ(x)

)∣∣2 + ∣∣ut(x, T )− iωψ(x)
∣∣2]dx.
(2.11)

Obviously, whenever ψ determines the initial datum of the 2π/ω-

periodic solution of (2.10) (or, in other words, the solution of the

Helmholtz equation (2.5)) this immediately produces a minimizer of

J whose value is then zero. Minimizing J over ψ ∈ VR where

VR =

{
ψ ∈ H1(ΩR) : ψ

∣∣∣
Γint

= 0

}
(2.12)

is therefore a natural way of looking for the 2π/ω-periodic solution of

(2.10) and, consequently, for the solution of the Helmholtz equation

(2.5).

However, as proved in [2], for the functional J to be coercive, i.e.

to guarantee that

J(ψ) ≥ c ∥ ψ − w ∥2H1(ΩR), ∀ψ ∈ VR, (2.13)

for some c > 0, for all ψ ∈ VR, w being the solution of (2.5), one

needs the uniform exponential decay property (2.9) of the semigroup

generated by (2.10). But, as we mentioned above, this is related to

the geometry of Γint and, more precisely, to the condition of being

non-trapping.

In [2], to avoid these geometric restrictions, the authors introduced

a variant of J which has the advantage of being coercive under the

strong stability condition (2.8), which holds regardless what the ge-

ometry of Γint is. The functional J̃ in [2] is as follows:

J̃(ψ) =
1

2

∫ T

0

∫
ΩR

[∣∣eiωt∇ψ(x)−∇u(x, t)
∣∣2+∣∣iωeiωtψ(x)−ut(x, t)∣∣2]dxdt.

(2.14)
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Once more, the minimum value of this functional is achieved when

ψ ≡ w, w being the solution of (2.5).

In [2], without any geometric condition on Γint, it was proved that

J̃(ψ) ≥ c ∥ ψ − w ∥2H1(ΩR), ∀ψ ∈ VR, (2.15)

for some c > 0. Obviously, this coercivity property is essential to

guarantee the convergence of any descent algorithm for the mini-

mization of J̃(ψ).

In practice, these functionals have to be minimized not on the basis

of the continuous wave equation (2.4) whose solutions can not be

computed, but rather on the solutions of a numerical approximation

scheme.

This paper is devoted to discuss how the nature of the discretiza-

tion schemes we employ can affect the efficiency of the minimization

method, distinguishing the functionals J and J̃ . As in the continuous

case, the uniform (on the mesh-size parameter) coercivity property

of the corresponding discrete functionals will strongly influence the

efficiency of the minimization method. As we shall see, this topic is

closely related to the existing literature on the stabilization of the

numerical approximation schemes for the wave equation that states

that: For most numerical schemes, the strong stability property (2.8)

is kept under numerical discretizations, but the exponential decay

rate fails to be uniform on the mesh-size parameter. As we shall see,

this suffices to prove the uniform (with respect to the mesh-size pa-

rameter h) coercivity of a discrete version of the functional J̃ on the

discretized wave equation that we shall denote by J̃h. But the sit-

uation changes when considering the functional J that requires the

use of viscous numerical schemes (see [25], [26]) and non-trapping

conditions on Γint.

The rest of this article is organized as follows. Section 3 is devoted
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to analyze the functional J introduced in [5]. In a first subsection

we discuss the strong stability and the lack of uniform exponential

decay of the conservative semi-discrete wave equation. We conclude

the impossibility of using a discrete version of the functional J to

obtain a numerical approximation of the solution of the Helmholtz

equation. We then consider a viscous numerical scheme, show its

uniform exponential decay under a star-shaped geometric condition

on Γint, and derive the convergence of the minimizers of the corre-

sponding discrete versions of the functional J for T large enough, i.

e. for ω small enough. The case of large ω remains open. In Section

4 we address the functional J̃ introduced in [2]. We derive the con-

vergence as h → 0 of the minimizers of the corresponding discrete

functionals J̃h for the standard conservative scheme and without any

geometric assumption on the domain.

3 Analysis of the functional J

3.1 Decay for the conservative scheme with bound-

ary dissipation

We consider a finite-difference approximation of the wave equation

(2.10). To simplify the presentation we consider the case of two space

dimensions (d = 2). For, given h > 0, we replace the domain ΩR by a

finite-difference approximation Ωh
R whose boundary Γh

R is constituted

by mesh-points of the form

xj, k = (jh, kh), j, k ∈ N. (3.1)

We denote by uj, k, γj, k, fj, k, ψj, k the approximation of the functions

u, γ, f and ψ on these mesh points. We decompose the boundary
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of Ωh
R into two subsets Γh

int and Γh
ext corresponding to the approxi-

mation of Γint and Γext, respectively. By ∆h we denote the 5-point

approximation scheme for the Laplacian so that

−∆huj, k =
1

h2

[
4uj, k − uj+1, k − uj−1, k − uj, k+1 − uj, k−1

]
. (3.2)

Then, we consider the following numerical approximation scheme of

(2.10):
u′′j, k −∆huj, k = eiωtfj, k in Ωh

R, t > 0

uj, k = 0 on Γh
int, t > 0

∂uj, k
∂νh

+ γj, ku
′
j, k = 0 on Γh

ext, t > 0

uj, k(0) = ψj, k; u
′
j, k(0) = iωψj, k in Ωh

R.

(3.3)

Here and in the sequel when saying that an identity holds in a set we

refer to the fact that it holds for all indexes (j, k) such that xj, k is in

that set. The time derivative is denoted by a prime, i. e. u′j, k stands

for the time-derivative of uj, k. In the sequel, in order to simplify the

notation, we will avoid the index R for denoting the domain and its

boundaries, both the interior and the exterior one.

By ∂uj, k/∂ν
h we denote the discrete normal derivative. For most

boundary points we have

∂uj, k
∂νh

=
1

h

[
uj, k − uj′, k′

]
(3.4)

where
(
j′, k′

)
stands for the neighboring index in the direction per-

pendicular to the boundary. For instance when the index (j, k) cor-

responds to a point of the boundary xj, k that lies on an horizontal

subset of the boundary, then
(
j′, k′

)
=

(
j, k + 1

)
when the domain

is in the upper side of the boundary and
(
j′, k′

)
=

(
j, k − 1

)
if it is

in the lower one. Note also that the boundary points that lie on a

convex corner of the domain do not enter on the five-point scheme
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when written on the interior nodes. Thus, no boundary conditions

are needed on those points. However, the interpretation of the dis-

sipative boundary condition on the points of Γh
ext corresponding to

concave corners needs to be slightly modified since, in this case, there

are two interior neighbors and the value of the solution on that node

enters on the equation satisfied on the two neighboring ones (see

Figure 1).

Figure 1: Node 2 at a concave corner. It enters on the discrete

scheme on the two neighboring nodes denoted by ×.

In that case one sees that the right definition of the normal deriva-

tive to guarantee the dissipativity of the system (3.3) is of the form

∂uj, k
∂νh

=
1

h

[
(uj, k − uj′, k′) + (uj, k − uj̃, k̃)

]
(3.5)

where (j′, k′) and (j̃, k̃) stand for the two neighboring nodes of (j, k).

The energy for the semi-discrete system (3.3) with the definition

(3.4) and (3.5) of the normal derivatives is given by

Eh(t)=
h2

2

 ∑
(j, k)∈Ωh

int

∣∣u′j, k∣∣2+ ∑
(j, k)∈Ωh

x

∣∣∣uj+1, k − uj, k
h

∣∣∣2+ ∑
(j, k)∈Ωh

y

∣∣∣uj, k+1 − uj, k
h

∣∣∣2
 .

(3.6)
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The first sum runs over the set of interior indexes. The other two

run over the sets Ωh
x and Ωh

y and involve the discrete derivatives in the

variables x and y respectively. The sets Ωh
x and Ωh

y are constituted by

the indexes such that the segments [j, j+1]×{h} and {j}× [k, k+1]

respectively cover the whole discrete domain Ωh.

It is easy to see that the energy Eh(t) satisfies the law

dEh(t)

dt
= h2

∑
(j, k)∈Ωh

int

fj, ke
iωtu′j, k − h

∑
(j, k)∈Γh

ext

γj, k
∣∣u′j, k∣∣2. (3.7)

In particular, in the absence of external source, i.e. when fj, k ≡ 0,

we have
dEh(t)

dt
= −h

∑
(j, k)∈Γh

ext

γj, k
∣∣u′j, k∣∣2, (3.8)

which is the discrete version of the energy dissipation law (2.7).

The following results hold:

Theorem 3.1.. In the absence of external source, i.e. when fj, k ≡ 0,

the following asymptotic properties hold true as t→ +∞:

(a) For every initial datum and h > 0:

Eh(t) → 0, as t→ ∞, (3.9)

(b) The decay rate is not uniform on the parameter h: In other

words, there are no positive constants C > 0 and α > 0 such that

Eh(t) ≤ Ce−αtEh(0), (3.10)

for all t > 0, all solution of (3.3) and all h > 0.

We shall come back to the proof of this Theorem later on but it

is first convenient to comment on its important consequences on the

solutions of (3.3):
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(a) In view of (3.9), for all h > 0, because the dynamical system

(3.3) is finite-dimensional, there exist Ch > 0 and αh > 0 such that

Eh(t) ≤ Che
−αhtEh(0), ∀t > 0 (3.11)

for all solution of (3.3) with fj, k ≡ 0. Obviously this does not imply

that the constants Ch and αh are uniform on h. In fact, as indicated

in the second statement of Theorem 3.1, they are not uniform on h.

(b) According to (3.11), for all fj, k and h > 0 there exists a 2π/ω-

periodic solution of (3.3). However, in view of the fact that the expo-

nential stability properties (3.11) are not independent of h, one can

not derive uniform bounds on the energy of these periodic solutions.

The time-periodic solution of (3.3) can be found by minimizing a

discrete version of the functional J in (2.11). It can be written in the

form

Jh(ψ)=
h2

2

∑
(j, k)∈Ωh

int

∣∣u′j, k(T )− iωψj, k

∣∣2
+
h2

2

∑
(j, k)∈Ωh

x

∣∣∣(uj+1, k(T )− uj, k(T )
)
−
(
ψj+1, k − ψj, k

)
h

∣∣∣2
+
h2

2

∑
(j, k)∈Ωh

y

∣∣∣(uj, k+1(T )− uj, k(T )
)
−
(
ψj, k+1 − ψj, k

)
h

∣∣∣2,
(3.12)

with T = 2π/ω.

Following the arguments in [2], it can be seen that Jh is coercive

because of the exponential decay property (3.11). But, the function-

als Jh may not be proved to be uniformly coercive because of the lack

of uniform exponential decay stated in (b) of Theorem 3.1. Conse-

quently, when the uniform coercivity property fails, minimizing the

functionals Jh might not be an efficient algorithm for approximating
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the minimizer of J , since the Γ-convergence of Jh towards J can not

be guaranteed.

Proof of Theorem 3.1. We sketch it briefly.

Proof of (a). Using La Salle’s invariance principle the decay prop-

erty (3.9) is equivalent to showing that the only solution of (3.3) with

fj, k ≡ 0 for which the dissipated quantity vanishes, i.e.

u′j, k ≡ 0, ∀(j, k) ∈ Γh
ext, (3.13)

is the trivial one u ≡ 0.

The problem is then reduced to proving the following discrete

unique-continuation property: Let u = uj, k be a discrete solution

of 
u′′j, k −∆huj, k = 0 in Ωh

R, t > 0

uj, k = 0 on Γh
int, t > 0

∂uj, k
∂νh

= u′j, k = 0 on Γh
ext, t > 0,

(3.14)

then uj, k ≡ 0.

This result can be proved arguing as in [6]. Indeed, the fact

u′j, k = 0 on Γh
ext and ∂uj, k

/
∂νh = 0, implies that u′j, k vanishes on

all the interior nodes which are neighbors of Γh
ext. For doing this we

observe that the fact that ∂uj, k
/
∂νh = 0 on the boundary implies

that ∂u′j, k
/
∂νh = 0 as well. Taking the time-derivative of the semi-

discrete wave equation satisfied on all those nodes one can show that

u′j, k vanishes on the next layer of interior nodes too. Iterating this

argument one can prove that u′j, k = 0 for all node (j, k). Conse-

quently uj, k(t) = vj, k is time-independent. It is then easy to see

that vj, k = 0 for all node (j, k) since vj, k satisfies the following dis-

crete elliptic equation with Dirichlet boundary conditions both on
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the interior and the exterior boundaries: ∆hvj, k = 0, in Ωh
int

vj, k = 0, on Γh
R ∪ Γh

ext.

Obviously, the unique solution of this discrete elliptic equation is the

trivial one. Consequently, uj, k = 0, as we wanted to prove.

Of course, this proof yields the strong stability property (3.9) but

it does not yield any estimate on the exponential decay rate.

Proof of (b). The fact that (3.10) does not hold was already pointed

out in [26]. In fact, the uniform exponential decay property (3.10)

fails even in 1 − d. This is due, not to the dissipative boundary

conditions we have considered, but rather to the structure of the

numerical scheme we have employed to discretize the wave equation.

Indeed, this scheme generates spurious high frequency solutions that

travel at a group velocity of the order of h. Therefore there is no

uniform time T > 0 and constant C > 0 such that the following

boundary observability property holds:

Eh
0 ≤ C

∫ T

0

[
h

∑
(j, k)∈Γh

ext

∣∣∣∂uj, k
∂νh

∣∣∣2]dt. (3.15)

It turns out that an uniform observability inequality of the form

(3.15) with T > 0 and C > 0 independent of h is equivalent to a

uniform exponential decay property (3.10). Accordingly the later

fails too.

2

3.2 The functional J for the conservative scheme

As mentioned above, the uniform coercivity of Jh is related to the

uniform exponential decay property (3.10). For the sake of complete-

ness we briefly sketch the argument.
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As observed in [2], the functional Jh can be rewritten in the form

Jh(ψ) =
1

2
∥ [eiωT I − Sh(T )]v ∥2h (3.16)

where v = ψ − wh. Here I stands for the identity operator, Sh for

the semigroup generated by the semi-discrete system with f ≡ 0

and ∥ · ∥h for the norm associated with the discrete energy Eh.

Moreover, here, when writing Lv (with L = eiωT I − Sh(T )) we are

in fact refering to Lṽ, where ṽ is the vector valued initial datum

ṽ = (v, iωv) =
(
ψ − wh, iω(ψ − wh)

)
. Similarly, Lv is vector valued,

its two components being the two components of the state. Finally,

wh stands for the solution of the discrete version of (2.5), i.e.

(
∆h + ω2

)
wj,k = −fj,k in Ωh

R

wj,k = 0 on Γh
int

∂wj,k

∂νh
+ iγwj,k = 0 on Γh

ext.

(3.17)

As pointed out in [2], it follows that there exists ch > 0 such that

Jh(ψ) ≥ ch ∥ ψ − wh ∥2h, (3.18)

if and only if eiωT does not belong to the spectrum of Sh(T ). Ob-

viously a sufficient condition for this to hold for all ω, T and f is

that ∥ Sh(T ) ∥h→ 0 as T → ∞, which is equivalent to (3.11). But

in order for the coercivity inequality (3.18) to be uniform, i.e. for it

to hold with a uniform coercivity constant c > 0 independent of h,

further properties are required. A natural condition for proving the

uniform coervity would be the uniform (with respect to h) exponen-

tial decay property (3.10). We know however that such a uniform

decay property is not true, even if the solutions of the continuous

wave equation decay exponentially to zero under the non-trapping
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geometric condition on Γh
int. This is due to the existence of high fre-

quency wave packets propagating with group velocity of the order of

the mesh size, on which the boundary damping term has a very weak

effect (see [28], [8]).

Consequently, minimizing Jh on the solutions of the conservative

semi-discrete scheme is not an efficient way of approximating the

solution of the Helmholtz equation.

3.3 The functional J for the viscous scheme

Following [25] and [26], in order to overcome the lack of uniform

exponential stability properties of the scheme (3.3) it is natural to

introduce a viscous variant of it. Of course, this method may only

work under a non-trapping condition on Γ. It reads as follows

u′′j, k −∆huj, k − h2∆hu
′
j, k = eiωtfj, k in Ωh, t > 0

uj, k = 0 on Γh
int, t > 0

∂uj, k
∂νh

+ γj, ku
′
j, k = 0 on Γh

ext, t > 0

uj, k(0) = ψj, k, u
′
j, k(0) = iωψj, k on Ωh

int.

(3.19)

In fact the only difference between the previous scheme (3.3) and

the new one (3.19) is the addition of the numerical viscosity term in

the interior. Indeed, the discretization scheme ∂2t − ∆h of the wave

operator ∂2t − ∆ has been replaced in (3.16) by the viscous version

∂2t −∆h − h2∆h∂t.

For the solutions of this viscous semi-discrete scheme the energy



ON THE NUMERICAL APPROXIMATION OF THE HELMHOLTZ 285

dissipation law reads:

dẼh(t)

dt
= h2

∑
(j, k)∈Ωh

int

fj, ke
iωtu′j, k − h

∑
(j, k)∈Γh

ext

γj, k
∣∣u′j, k∣∣2

−h4
[ ∑
(j, k)∈Ωh

x

∣∣∣u′j+1, k − u′j, k
h

∣∣∣2+ ∑
(j, k)∈Ωh

y

∣∣∣u′j, k+1 − u′j, k
h

∣∣∣2],(3.20)
the new energy being

Ẽh(t) =
h2

2

 ∑
(j, k)∈Ωh

int

∣∣u′j, k∣∣2 + ∑
(j, k)∈Ωh

x

∣∣∣uj+1, k − uj, k
h

∣∣∣2

+
∑

(j, k)∈Ωh
y

∣∣∣uj, k+1 − uj, k
h

∣∣∣2
+

h2

2

 ∑
(j, k)∈Γh

ext

γj, k
∣∣u′j, k∣∣2

 .(3.21)
In particular, when the forcing term vanishes, i.e. fj, k = 0, we have

dẼh(t)

dt
= −h

∑
(j, k)∈Γh

ext

γj, k
∣∣u′j, k∣∣2

−h4
[ ∑
(j, k)∈Ωh

x

∣∣∣u′j+1, k − u′j, k
h

∣∣∣2+ ∑
(j, k)∈Ωh

y

∣∣∣u′j, k+1 − u′j, k
h

∣∣∣2].(3.22)
This energy dissipation law clearly reflects the effect of the added nu-

merical viscosity term that provides a second dissipative mechanism

which is effective everywhere in the domain Ωh
int.

Remark: We could consider the same viscous numerical approxima-

tion scheme but with different dissipative boundary conditions. More

precisely, in (3.19) we could take the boundary condition

∂uj, k
∂νh

+ h2
∂u′j, k
∂νh

+ γj, ku
′
j, k = 0 on Γh

ext, t > 0

on the exterior boundary instead of the one in (3.19).
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In that case the energy to be considered is Eh as in (3.6) and the

energy dissipation law (3.22) remains unchanged. Very likely the

decay property of the energy Eh for the viscous scheme with these

new boundary conditions are similar to those of Ẽh. But this issue

is to be further investigated.

Let us now discuss the decay properties of system (3.19), and more

precisely of the energy Ẽh. Before doing that it is convenient to recall

the main features of the decay property of the continuous dissipa-

tive wave equation (2.10). The energy of the solutions of the wave

equation decays exponentially in a bounded domain Ω provided the

damping mechanism is effective on a subset of the boundary of the

form

Γ(x0) = {x ∈ ∂Ω : (x− x0) · ν(x) > 0},

x0 being any point of Rd and ν = ν(x) the unit outward normal to

the domain Ω. The same holds when the damping term is effective

in a neighborhood in Ω of a subset of the boundary of the form Γ(x0)

(see [15] and [29]).

In the present setting, when the domain limited by Γint is star

shaped with respect to a point x0, for the domain ΩR the subset

Γ(x0) of its boundary coincides with Γext. Accordingly the multiplier

method yields the exponential decay for (2.10) with damping on Γext

only.

Note that the condition on the domain limited by Γint to be star-

shaped is natural since it excludes the existence of trapped rays that

never reach the exterior boundary Γext, in which case the exponential

decay properties would fail. Note however that the sharp necessary

and sufficient condition for the exponential decay property to hold

is the so-called Geometric Control Condition (GCC) (see [1]). The

subset Γ(x0) as above is a particular case in which this condition

holds and can be handled by multipliers. However, multipliers do
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not allow proving the decay under the most general GCC.

In what concerns the viscous semi-discrete scheme (3.19), the uni-

form exponential decay of its solutions was proved in [26] in the 1−d
case. In [20] the problem of stabilization was considered for a simi-

lar model in which the boundary damping term was replaced by an

interior one localized in a neighborhood of the boundary, i.e. the

model in which the Dirichlet boundary conditions are considered ev-

erywhere on the boundary of the domain and the equation is replaced

by

u′′j, k −∆huj, k − h2∆u′j, k + 1ωhu′j, k = 0 (3.23)

where 1ωh stands for the characteristic function of a subset ωh of

Ωh constituting a neighborhood of Γh
ext. The results in [20], derived

using discrete multiplier techniques, allow showing that the solutions

of (3.23) satisfy the uniform, with respect to h, exponential decay

property (3.10) provided the bounded domain limited by Γint is star-

shaped. However, as in the continuous case, the result may not be

achieved under the most general sharp condition of the obstacle being

non-trapped. This would require the use of microlocal tools that so

far have not been sufficiently developed at the discrete level to yield

such an optimal result.

It is very likely that, combining the techniques in [20] and [26], the

uniform, with respect to h > 0, exponential decay property for (3.19)

with fj, k = 0, will hold under the assumption on the set limited by

Γint being star-shaped. But the details of the proof are still to be

completed. Once the uniform exponential property (3.10) has been

proved, one can immediately prove the following results, for ω small

enough, i. e. for T > 0 large enough such that

||Sh(T )|| ≤ ρ < 1, (3.24)

for all h > 0, Sh(·) being the semigroup generated by the semi-
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discrete viscous scheme:

1. System (3.19) posesses a 2π/ω-periodic solution for all h > 0.

Moreover, the energies of these periodic solutions are uniformly

bounded with respect to h.

2. These discrete periodic solutions converge, as h → 0, to the

time-periodic solution of the continuous wave equation (2.4).

Convergence holds in the energy spaces when considering the

piecewise multi-linear and continuous extension of the discrete

solutions to the continuous domain.

3. The time-periodic solutions of the discrete system (3.19) can

be found by minimizing the functionals Jh in (3.12).

4. Consequently, the functionals Jh Γ-converge to the functional

J in (2.11) associated to the wave equation (2.10).

Whether the same is true for all ω is an open problem. Indeed,

according to (3.16), the problem is reduced to showing a uniform

lower bound of the form

||(eiωT I − Sh(T ))v||h ≥ c||v||h, (3.25)

with c > 0 independent of h. Under the assumption that T is large

enough, and in view of (3.24), this condition holds since

||(eiωT I − Sh(T ))v||h ≥ ||v||h − ||Sh(T )v||h ≥ (1− ρ)||v||h, (3.26)

with 0 < ρ < 1 as indicated above. But, obviously, this argument

fails when T is small, i. e. when ω is large. The arguments in [2]

(see Theorem 3) show that, for each h > 0, due to the exponential

decay of the energy of solutions, there exists ch > 0 such that

||(eiωT I − Sh(T ))v||h ≥ ch||v||h, (3.27)
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but a lower uniform bound on ch can not be directly deduced. This

is an interesting open problem.

3.4 Conclusion

As a consequence of the results of this section we conclude that, in

order to guarantee the uniform coercivity of the functional Jh, one

needs to employ the viscous scheme (3.16), under the assumption

that the domain limited by Γint is star-shaped. Even in that case the

problem is open for large values of ω.

Let us summarize some of the open problems that appeared along

this section:

� To prove the uniform coercivity of the functionals Jh for the

viscous numerical scheme under the sharp geomeric condition

of the obstacle being non-trapping.

� To address the case where ω is large.

4 Analysis of the functional J̃

In the previous section we have seen that for using the discrete ver-

sions Jh of the functional J to efficiently solve the Helmholtz equation

one needs to use a viscous numerical scheme and to assume that the

region limited by Γint is star-shaped.

This section is devoted to analyze the possible use of the functional

J̃ in (2.14).

As we shall see, from an analytical point of view this functional is

more robust since its uniform coercivity is fulfilled not only for the

viscous system but for the conservative one as well and without any

geometric restrictions on the obstacle.
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4.1 Uniform coercivity

As mentioned above, in [2] it was shown that the coercivity of this

functional can be achieved more easily at the continuous level since

it is related to the strong stability (2.8) of each individual trajectory

and does not need the exponential decay of the norm of the semigroup

(2.9). It is therefore natural to analyze whether its discrete versions

J̃h are uniformly (with respect to h) coercive for the conservative

scheme (3.3) and without any geometric assumption on Γint and any

restriction on the frequency ω.

The key observation in [2] was that

J̃(ψ) ≥ T

2
∥ (I −K)(ψ − w) ∥2, (4.1)

where K is the linear operator

Kv :=
1

T

∫ T

0

e−iωsS(s)vds, (4.2)

S being the semigroup associated to (2.4) with f ≡ 0. Thus, for

the coercivity of J̃ it suffices to prove that the norm of the operator

K is strictly smaller than 1. The latter is a consequence of the

compactness of the operator K and the fact that ∥ K(ψ) ∥< 1 for

all ψ such that ∥ ψ ∥= 1. This holds since Kv is a convex linear

combination of the elements {e−iωtS(t)ψ, t ∈ [0, T ]} that belong to

the unit ball of the energy space. By strict convexity ∥ Kv ∥< 1

unless this set is reduced to a single vector. In that case S(t)ψ = eiωtψ

for t ∈ (0, T ) and this holds if and only if ψ is an eigenvector of the

generator of the semigroup with eigenvalue iω. But, because of the

decay of each individual solution as t → ∞, this possibility can be

immediately excluded.

The same argument can be applied to prove the coercivity of the

corresponding discrete functionals J̃h and this may be done uniformly

on h. These functionals read as follows:



ON THE NUMERICAL APPROXIMATION OF THE HELMHOLTZ 291

Jh(ψ) =
h2

2

∑
(j, k)∈Ωh

int

∫ T

0

∣∣u′j, k(t)− iωeiωtψj, k

∣∣2dt
+
h2

2

∑
(j, k)∈Ωh

x

∫ T

0

∣∣∣(uj+1, k(t)− uj, k(t)
)
− eiωt

(
ψj+1, k − ψj, k

)
h

∣∣∣2dt
+
h2

2

∑
(j, k)∈Ωh

y

∫ T

0

∣∣∣(uj, k+1(t)− uj, k(t)
)
− eiωt

(
ψj, k+1 − ψj, k

)
h

∣∣∣2dt.
(4.3)

This functional can be defined for both schemes and it is, indeed, a

discrete version of the functional J̃ . These functionals are coercive

for both schemes since each individual trajectory tends to zero as

t → ∞. Moreover, they are uniformly coercive as stated in the

following Theorem:

Theorem 4.1.. The functionals J̃h are uniformly (with respect to h)

coercive both for the conservative scheme (3.3) and the viscous one

(3.19), without any geometric assumption of the interior boundary

Γint.

Remark. In view of this Theorem we see that the uniform coercivity

of the functionals J̃h holds much more easily than that of Jh since the

uniform (with respect to h) exponential decay of the semigroups Sh is

not needed. This makes the functional J and its discrete version to be

more robust because of their uniform (with respect to the mesh-size)

coercivity.

Proof of Theorem 4.1. Let us now sketch the proof of the uniform,

with respect to h, coercivity of J̃h. Let us denote by Sh the semigroup

generated by any of the two numerical schemes under consideration.

Distinctions will be made later, when needed. We also denote by Kh

the corresponding operators as in (4.2), associated to Sh.
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We have to show that there exists 0 < ρ < 1 such that

∥ Khv ∥h≤ ρ ∥ v ∥h, (4.4)

for all h > 0 and v. We argue by contradiction. If (4.4) does not

hold, there exists a sequence of mesh-sizes h → 0 and a sequence of

data vh such that {
∥ Khvh ∥h→ 1,

∥ vh ∥h= 1.
(4.5)

As we shall see the two facts in (4.5) are in contradiction. To see this

we first show that Khvh are relatively compact in the energy space

H1(ΩR)×L2(ΩR). In fact, to make the meaning of this statement pre-

cise we consider the piecewise multi-linear and continuous extension

of Khvh to the domain ΩR that we shall denote as P1Khvh. Note also

that, since the systems under consideration are second order in time,

the vectors Khvh have two components, the first one corresponding

to the state and the second one to its time derivative.

Assuming for the moment that this compactness result holds, we

can extract a subsequence, still denoted by the index h, such that

(P1(vh), P1(vh,t))⇀ (v, vt) weakly in L2(0, T ;H1(ΩR)× L2(ΩR))

(4.6)

and

(P1(Khvh), P1(Khvh,t)) → (Kv,Kvt) strongly in L2(0, T ;H1(ΩR)×L2(ΩR)),

(4.7)

where K stands for the operator associated to the continuous wave

equation (2.4).

In view of (4.5) we deduce that{
∥ Kv ∥= 1,

∥ v ∥≤ 1
(4.8)
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and these two facts are in contradiction since the norm of the operator

K associated with the continuous wave equation is strictly smaller

than one, as shown in [2] and sketched above.

Let us now conclude by showing the compactness of

(P1(Khvh), P1(Khvh,t)) in the energy space H1(ΩR) × L2(ΩR). By

definition

Khvh =
1

T

∫ T

0

e−iωtSh(t)vh dt, (4.9)

that can be characterized by the equation

Ah(Khvh) =
iω

T

∫ T

0

e−iωtSh(t)vh dt+
1

T

(
e−iωTSh(T )− I

)
vh, (4.10)

Ah being the generator of the semi-discrete semigroup.

The right hand side terms in (4.10) are uniformly bounded in the

discrete energy space. Thus Khvh are uniformly bounded in the do-

mains of the operators Ah. It is then sufficient to show that this

guarantees the compactness of the P1 extensions in the continuous

energy space.

As stated in the Theorem, this is true both for the dissipative and

the conservative numerical schemes without any geometric restriction

on Γint.

For the sake of completeness we now prove the compactness of

Khvh for the conservative semi-discrete scheme. To do it we first

consider the continuous equation (2.4) and characterize Kv as the

solution of an elliptic equation.

We have
−∆(Kv) + ω2Kv = − 1

T
e−iωt[iωv + vt]

∣∣∣T
0

in Ω

Kv = 0 on Γint

∂ν(Kv) + iωγKv = − γ

T
e−iωtv

∣∣∣T
0

on Γext.

(4.11)
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To be more precise, this elliptic equation characterizes the first

component of Kv. The second one, that we denote by K2v can be

characterized as

K2v =
1

T

∫ T

0

e−iωsvt(s)ds =
iω

T

∫ T

0

e−iωsv(s)ds+
e−iωtv(t)

T

∣∣∣T
0
.

(4.12)

Note that the fact that the trajectory t→ v(t) is bounded in H1(ΩR)

implies that K2v lies in H1(ΩR) as well. This guarantees the com-

pactness with values in L2(ΩR).

The same can be said about the discrete versions K2
hvh. The

fact that the solutions
(
vh, vh, t

)
are uniformly bounded in the dis-

crete energy spaces implies immediately that P1(K
2
hvh) are uniformly

bounded in H1(ΩR) and this guarantees the relative compactness in

L2(ΩR).

The discrete functions Khvh can be characterized as in (4.11) by

replacing the continuous Laplacian ∆ by its discrete counterpart and

the Neumann boundary conditions accordingly:


−∆hKhvj, k − ω2Khvj,k = − 1

T
e−iωt[iωvj,k + v′j,k]

∣∣∣T
0

in Ωh

Khvj,k = 0 on Γh
int

∂Khvj, k
∂νh

+ iωγj,kKhvj,k = −γj,k
T
e−iωtvj,k

∣∣∣T
0

on Γh
ext.

(4.13)

It is then sufficient to check the relative compactness of P1(Khvh)

in H1(ΩR), Khvh being characterized as the solutions of (4.13).

At the continuous level such a result would be easy to prove since

Kv, solution of (4.11), belongs to H2(ΩR) by elliptic regularity.

In what concerns the discrete problems, taking into account that

P1(Khvh) is a piecewise multilinear extension of Khvh its gradient

may be discontinuous. Thus, it does not make sense to search for
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uniform estimates in H2. We may however look for compactness in

H1. To do it we argue as follows. We first observe that, as a conse-

quence of the uniform discrete energy estimates for vh, P1(Khvh) is

uniformly bounded in H1(ΩR). By extracting subsequences we pass

weakly to the limit in H1(ΩR). It is then easy to identify the limit

as Kv, v being the limit solution of the continuous wave equation

and K the corresponding operator in (4.11). To conclude that the

sequence actually converges strongly it is sufficient to check the con-

vergence of the H1-norms. At this point it is useful to use the fact

that the continuous H1-norm of P1(Khvh) coincides with the discrete

H1-norm of Khvh that we simply denote as ||Khvh||1,h. In view of

the variational formulation of (4.13) we have

||Khvh||21,h = ω2||Khvh||20,h −
1

T
(e−iωt[iωvj,k + v′j,k]

∣∣∣T
0
, Khvj,k)0,h

−(iωγj,kKhvj,k +
γj,k
T
e−iωtvj,k

∣∣∣T
0
, Khvj,k)Γh

ext
(4.14)

where ||·||0,h and (·, ·)0,h stand, respectively, for the discrete L2-norms

and scalar products and (·, ·)Γh
ext

for the L2-scalar product on Γext. It

is not hard to see that the weak convergence in H1 allows passing to

the limit in the right hand side term of (4.14). In the limit we get the

corresponding continuous term which, by the variational formulation

of (4.11), yields

||Kv||2H1(ΩR) = ω2||Kv||2L2(ΩR) −
1

T
(e−iωt[iωv + vt]

∣∣∣T
0
, Kv)L2(ΩR)

−(iωγKv +
γ

T
e−iωtv

∣∣∣T
0
, Kv)Γext . (4.15)

Consequently, we deduce that

||Khvh||21,h → ||Kv||2H1(ΩR).

Taking into account that, as mentioned above,

||Khvh||21,h = ||P1(Khvh)||2H1(ΩR) this concludes the proof of the con-
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vergence of norms and, consequently, of the strong convergence of

P1Khvh to Kv in H1(Ω). This completes the proof of Theorem 4.1.

The convergence of the terms on the right hand side of (4.14)

towards those in (4.15) can be easily deduced from the weak con-

vergence in H1(ΩR). The first two are consequence of the strong

convergence of Khvh and vh towards Kv and v in L2(ΩR). This is

due to the compact embedding from H1(ΩR) into L
2(ΩR). The last

one holds because of the compactness of traces in L2(Γext).

The proof can be developed similarly for the viscous scheme as

well.

4.2 Conclusion

As a consequence of the results of this section we conclude that

the functional J̃h can be used efficiently for numerical computations

in a much more flexible setting. In particular one can use both the

conservative and the viscous schemes (3.16), without any geometric

assumption on the domain limited by Γint and any restriction on the

size of ω.

This is in contrast with the results of the previous section on the

functional Jh that needed both, the star-shaped condition on Γint,

and the use of the scheme with the added numerical viscosity term.

5 Concluding remarks

The analysis in this paper shows that the functional J̃h is more ro-

bust than J with respect to numerical discretizations since the later

one requires specific viscous numerical schemes and non-trapping con-

ditions on the obstacle, that the first one does not need.

It is however worth mentioning that the numerical experiments

conducted in [5] using the functional J showed to be very efficient

also when Γint was trapping. This could be related to the fact that
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the forcing terms under consideration are monocromatic and that,

consequently, the high frequency spurious effects are not determinant.

In the literature on the exact controllability of the numerical ap-

proximation schemes for the wave equation there is an analytical re-

sult showing that this may happen. Indeed, according to the results

in [18] about the controllability of the semi-discrete wave equation,

despite the fact that boundary controls for the 1 − d semi-discrete

equations do not converge for all initial data, they do it when the

Fourier expansion of the data to be controlled is truncated conve-

niently. But the results in [18] only concern the 1− d case and there

is a lot to be done in this context to extend it to multi-dimensional

problems and to analyze the possible connections with the good nu-

merical performance of the functional J .
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