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Abstract

In this article we consider the quasi linear evolution Car-

rier equation when the non-linear term depends on the po-
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1 Introduction

As an alternative model for small vibrations of an elastic string

with fixed ends α and β in the one dimensional case was introduced

in 1945 by Carrier [3]. Namely,

utt −
(
P0 + P1

∫ β

α

u2dx
)
uxx = 0, (1.1)

where u = u(x, t) is the displacement of the string and P0, P1 are

associated with variations of tensions at each point x of the string.

Today this model is known as the Carrier’s equation. The Eq.(1.1) it

was gotten through a numeric outline as a approach of the very well

known Kirchhoff equation.

The n−dimensional case, i.e., n = 2, 3, · · · , of Eq.(1.1) is given by

u′′ −M(

∫
Ω

u2dx)∆u = 0, (1.2)

where M is a real valued function, Ω is an open and bounded set

of Rn and −∆ is the usual Laplace operator. Assuming a nonlinear

internal damping acting in (1.2) a mixed problem with the Dirichlet

boundary conditions was studied by Frota at al [5], and with acoustic

boundary conditions by Frota & Goldstein [6]. In both works global

solvability and stability of the energy were established inside a cylin-

drical domain. An abstract framework in a Hilbert space for Eq.(1.1)

can be write as

u′′ −M(u2)Au = 0, (1.3)

where A denotes the unbounded operator defined by the triplet

{V, H, ((·, ·))} with V, H real separable Hilbert spaces and ((·, ·))
is the inner product of V. The local solution for the Cauchy problem
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of (1.3) was proved by Cousin at al [4]. Recently, Rabello & Vieira

[11] studied, inside one dimensional noncylidrical domain

QT =
⋃

0<t<T

]α(t), β(t)[×{t},

the following Carrier’s equation with variable coefficients

utt −M
(
x, t,

∫ β(t)

α(t)

u2dx
)
uxx = 0. (1.4)

Local solutions and uniqueness were established through a suitable

diffeomorphism, which allows do a variable change and to investi-

gate the equation (1.4) in a cylinder. Finally, we mention the paper

Medeiros at al [9] in which contains an excellent survey on the Carrier

and Kirchhoff equations.

In this work we consider the initial-boundary value problem for

the n-dimensional approach of Carrier equation with linear damping

given by

u′′(x, t)−M
(
x, t,

∫
Ω

|u(x, t)|2dx
)
∆u(x, t) + δu′(x, t) = 0. (1.5)

where δ is a positive real constant.

Our goals in this article are, initially, in Section 2, to establish the

existence of global weak and strong solutions, and the asymptotic

behavior of the energy for Eq.(1.5) in a cylinder Q = Ω×]0, T [ of

Rn+1, where Ω is an open and bounded set in Rn with C1 boundary

Γ. The lateral boundary of Q is denoted by Σ. With the results

obtained in Section 2 we will present the study in Section 3, for

the moving domain Q̂, which will be defined there. The method

we will employ to solve the initial-boundary problem for (1.5) in Q̂,

consists in transforming it into a cylindrical problem by means of a

perturbation of equation (1.5) adding a singular term depending on

a parameter ϵ > 0 which is destined to tend to zero. This method

was idealized by Lions [7] and is called by him penalty method.



182 J. Ĺımaco and H. R. Clark

2 Carrier equation in a cylindrical do-

main

§ 2.1. Existence of weak solutions. We use the standard nota-

tion for functional spaces, namely, Lp(Ω), 1 ≤ p ≤ ∞ is the Lebesgue

space, Hm(Ω) is the Sobolev space of order m and D(Ω) is the space

of C∞ functions in Ω with compact support and with the Schwartz

notion of convergence. By Hm
0 (Ω) denotes the closure of D(Ω) in

Hm(Ω). Besides, we also work with the spaces Lp(0, T ;Hm(Ω)) for

1 ≤ p ≤ ∞ and Lp(0, T ;L2(Ω)). To complete this exposition on

functional spaces, see for instance, Brézis [2] or Lions [8].

The goal here is to study the initial-boundary value problem

u′′(x, t)−M
(
x, t,

∫
Ω

|u(x, t)|2dx
)
∆u(x, t) + δu′(x, t) = 0 in Q,(2.1)

u(x, t) = 0 on Σ, (2.2)

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω, (2.3)

where Q = Ω×]0, T [ is a cylindrical domain. With the results ob-

tained in this Section we will conclude the investigation, in Section

3 for the moving domain case. Concerning with the function M of

the equation (2.1), assume the hypotheses:

M(x, t, λ) is C1 − real function in the variables x ∈ Ω, t ≥ 0, λ ≥ 0,

M(x, t, λ) ≥ m0 > 0,∣∣∇M
∣∣ ≤ K1|λ|p,

∣∣∣∂M
∂t

∣∣∣ ≤ K2|λ|p and
∣∣∣∂M
∂λ

∣∣∣ ≤ K3|λ|p−1 for p ≥ 1.

(2.4)

Throughout Section 2, we will represent by Kj for j = 1, 2, 3, . . . , 19

real positive constants.

Definition 2.1. A weak solution of the initial-boundary value problem
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(2.1)-(2.3) is a real valued function u = u(x, t) defined in Q such that

u ∈ L∞(0, T ;H1
0 (Ω)), u′ ∈ L∞(0, T ;L2(Ω)) for T > 0, (2.5)

−
∫ T

0

∫
Ω
u′(x, t)v(x)θ′(t)dxdt+∫ T

0

∫
Ω
M

(
x, t, |u(t)|2

) [
∇u(x, t) · ∇v(x)

]
θ(t)dxdt+∫ T

0

∫
Ω

[
∇M

(
x, t, |u(t)|2

)
· ∇u(x, t)

]
v(x)θ(t)dxdt+ (2.6)

δ

∫ T

0

∫
Ω
u′(x, t)v(x)λ(t)dxdt = 0 for all v ∈ H1

0 (Ω), θ ∈ D(0, T ).

Moreover, u satisfies the initial conditions

u(x, 0) = u0(x) and u′(x, 0) = u1(x).

Theorem 2.1. Suppose u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω) and

K6[H(0)]p <
m0δ

8
, (2.7)

where the function H(t) and the constant K6 are defined in (2.20) and

(2.22) respectively. Then there exists at least one weak solution of the

initial-boundary value problem (2.1)-(2.3), provided that the hypothesis

(2.4) holds.

Proof. We employ the Faedo-Galerkin approximate method with the

hilbertian basis (wj)j∈N, which is formed by vectors of the Sobolev space

H1
0 (Ω). Thus, for eachN ∈ N we look for a function uN (x, t) =

N∑
j=1

gjN (t)wj(x) in VN ,

solution to the approximate initial value problem
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∫
Ω
u′′N (x, t)w(x, t)dx+

∫
Ω
M

(
x, t, |uN (t)|2

) [
∇uN (x, t) · ∇w(x, t)

]
dx+∫

Ω

[
∇M

(
x, t, |uN (t)|2

)
·∇uN (x, t)

]
w(x, t)dx+δ

∫
Ω
u′N (x, t)w(x, t)dx=0,(2.8)

uN (x, 0) = u0N (x) −→ u0(x) in H1
0 (Ω),

u′N (x, 0) = u1N (x) −→ u1(x) in L2(Ω),

for all w ∈ VN . Now, we will get estimates for the solution uN of (2.8).

For a sake of simplicity, henceforth, we will write u instead of uN .

Estimate I. Setting w = u′ in (2.8) yields

1

2

d

dt

∣∣u′(t)∣∣2 + 1

2

∫
Ω
M

(
x, t, |u(t)|2

) d

dt
|∇u(x, t)|2dx+∫

Ω

[
∇M

(
x, t, |u(t)|2

)
· ∇u(x, t)

]
u′(x, t)dx+ δ

∣∣u′(t)∣∣2 = 0.

(2.9)

Analysis of the second and third terms in (2.9) gives

1

2

∫
Ω
M

(
x, t, |u(t)|2

) d

dt
|∇u(x, t)|2dx =

1

2

d

dt

[ ∫
Ω
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2 dx

]
−

1

2

∫
Ω

∂

∂t
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2 dx−[ ∫

Ω

∂

∂λ
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2 dx

](
u′(t), u(t)

)
.

(2.10)

Thanks to the hypothesis (2.4) the second and the third terms on the right-

hand side of (2.10) can be upper bounded by using usual inequalities as

follows:

1

2

∫
Ω

∂

∂t
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2 dx−[ ∫

Ω

∂

∂λ
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2 dx

](
u′(t), u(t)

)
≤

1

2
K2|u(t)|2p |∇u(t)|2 +K3|u(t)|2p−1 |∇u(t)|2

∣∣u′(t)∣∣ .
(2.11)
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Similarly, the third term of (2.9) is upper bounded by∫
Ω

[
∇M

(
x, t, |u(t)|2

)
· ∇u(x, t)

]
u′(x, t)dx ≤

K1|u(t)|2p|∇u(t)| |u′(t)| ≤ KK1|u(t)|2p−1|∇u(t)|2 |u′(t)|,
(2.12)

where we have used in (2.11) and (2.12) the Cauchy-Schwarz and Sobolev

inequalities and K is the continuous embedded constant of H1
0 (Ω) into

L2(Ω). Taking into account (2.10)-(2.12) into (2.9) yields

1

2

d

dt

{ ∣∣u′(t)∣∣2 + ∫
Ω
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2 dx

}
+ δ

∣∣u′(t)∣∣2 ≤
K4|∇u(t)|2

{
|u(t)|2p−1|u′(t)|+ |u(t)|2p

}
,

(2.13)

where K4 = K3 +KK1 +
1
2K2.

Estimate II. Setting w = u in (2.8) we get

d

dt

(
u′(t), u(t)

)
−

∣∣u′(t)∣∣2 + ∫
Ω
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2dx+∫

Ω

[
∇M

(
x, t, |u(t)|2

)
· ∇u(x, t)

]
u(x, t)dx+

δ

2

d

dt
|u(t)|2 = 0.

(2.14)

By using (2.4) in the third and the fourth terms of (2.14) we get

1

2

∫
Ω
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2dx ≥ m0

2
|∇u(t)|2, (2.15)∫

Ω

[
∇M

(
x, t, |u(t)|2

)
· ∇u(x, t)

]
u(x, t)dx ≤

K1|u(t)|2p|∇u(t)||u(t)| ≤ KK1|u(t)|2p|∇u(t)|2. (2.16)

Therefore, from (2.15) and (2.16) we modify (2.14) to obtain

d

dt

{(
u′(t), u(t)

)
+

δ

2
|u(t)|2

}
−
∣∣u′(t)∣∣2 + m0

2
|∇u(t)|2+

1

2

∫
Ω
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2dx ≤

KK1|u(t)|2p|∇u(t)|2.

(2.17)
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If we multiply (2.17) by
δ

4
and the resulting expression we add to (2.13)

yields

1

2

d

dt

{ ∣∣u′(t)∣∣2 + δ

2

(
u′(t), u(t)

)
+∫

Ω
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2 dx+

δ2

4
|u(t)|2

}
+

3δ

4
|u′(t)|2+

δ

8

∫
Ω
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2dx+ (2.18)

|∇u(t)|2
{m0δ

8
−K4 |u(t)|2p−1

∣∣u′(t)∣∣−K5 |u(t)|2p
}
≤ 0,

where K5 = K4 +
KK1δ

4
. By using (2.18) we denote by γ(t) and H(t),

respectively, the functions

γ(t) = K4 |u(t)|2p−1
∣∣u′(t)∣∣+K5 |u(t)|2p , (2.19)

H. (t) = |u′(t)|2 + δ
2

(
u′(t), u(t)

)
+ δ2

4 |u(t)|
2+∫

Ω
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2dx.

(2.20)

As ∣∣∣δ
2
(u′(t), u(t))

∣∣∣
R
≤ 1

2
|u′(t)|2 + δ2

8
|u(t)|2,

then we obtain from definition of H that

H(t) ≥ 1

2

∣∣u′(t)∣∣2 + δ2

8
|u(t)|2 +

∫
Ω
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2dx. (2.21)

From (2.21) we get

∣∣u′(t)∣∣ ≤ [2H(t)]1/2 and |u(t)| ≤ [8H(t)]1/2

δ
.

From this and (2.19) there exists a positive real constant K6 such that

γ(t) ≤ K6[H(t)]p, with K6 =
8p

2δ2p

(
K4δ + 2K5

)
. (2.22)
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Next, we will prove that γ(t) < m0δ/8 for all t ≥ 0. In fact, suppose it

is not true. As γ(0) ≤ K6[H(0)]p < m0δ/8, then by continuity of γ there

exists t∗ such that

γ(t) <
m0δ

8
for all 0 ≤ t < t∗ and γ(t∗) =

m0δ

8
.

Integrating (2.18) from 0 to t∗ yields H(t∗) ≤ H(0). From this, γ(t∗) ≤
K6[H(t∗)]p

< m0δ/8. This contradicts γ(t
∗) = m0δ/8. Thus, γ(t) < m0δ/8 for all 0 ≤

t. Therefore, we get H(t) ≤ H(0) for all t ≥ 0. From this, inequality

(2.21), hypothesis (2.4) and returning the notation uN we can write

(uN ) is bounded in L∞ (
0, T ;H1

0 (Ω)
)
,

(u′N ) is bounded in L∞ (
0, T ;L2(Ω)

)
.

(2.23)

The estimate (2.23) is sufficient to take the limit in the approximate sys-

tem (2.8). In fact, we will need strong convergence because of the nonlin-

ear term M(x, t, λ). As the injection of H1
0 (Ω) into L2(Ω) is continuous

and compact, then (2.23) enables us to apply a compactness result, see

for example Aubin [1] or Lions [8], and thus we can extract a subsequence

(uµ)µ∈N, of the sequence (uN )N∈N, such that

uµ −→ u strongly in L2(0, T ;L2(Ω)). (2.24)

Now, setting N = µ in the approximate system (2.8), we will analyze the

limit µ → ∞. In fact, initially by (2.23)2 we have

−
∫ T

0

∫
Ω
u′µ(t)v(x)θ

′(t)dxdt → −
∫ T

0

∫
Ω
u′(t)v(x)θ′(t)dxdt as µ → ∞(2.25)

for all v ∈ H1
0 (Ω)), θ ∈ D(Ω)), T > 0 and for the case T → ∞.

Next consider the convergence in the nonlinear terms of (2.8). First, it

will be shown that∫ T

0

∫
Ω
M(x, t, |uµ(t)|2)

[
∇uµ(t) · ∇v(x)

]
θ(t)dxdt →∫ T

0

∫
Ω
M(x, t, |u(t)|2)

[
∇u(t) · ∇v(x)

]
θ(t)dxdt

(2.26)
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for all v ∈ H1
0 (Ω)), θ ∈ D(Ω)), T > 0 and for the case T → ∞. In fact,

by (2.23)1 we have (∇uµ) is bounded in L2(0, T ;L2(Ω)) for all T > 0.

Thus, we can extract a subsequence (∇uµ) of (∇uN ) such that ∇uµ ⇀

ζ weakly in L2(0, T ;L2(Ω)). Besides, we also have uµ ⇀ u weakly in

L2(0, T ;L2(Ω)). Thus, uµ ⇀ u in D′(Ω× (0, T )). Therefore, ∇uµ ⇀ ∇u

in D′(Ω× (0, T )), which implies ζ = ∇u in D′(Ω× (0, T )). From this

∇uµ ⇀ ∇u weakly in L2(0, T ;L2(Ω)) as µ → ∞.

Also from (2.23)1 we have∫ T

0
|uµ(t)− u(t)|2 dt → 0 as µ → ∞. (2.27)

From hypothesis (2.4) and estimate (2.23)1 we have

∣∣M (
x, t, |uµ(t)|2

)
−M

(
x, t, |u(t)|2

)∣∣
R =

∣∣∣ ∫ |uµ(t)|2

|u(t)|2

∂

∂λ
M(x, t, λ)dλ

∣∣∣
R
≤

K3

∣∣∣ ∫ |uµ(t)|2

|u(t)|2
|λ|p−1 dλ

∣∣∣
R
≤ K3K7

∣∣|uµ(t)|2 − |u(t)|2
∣∣
R ≤ CK3K7 |uµ(t)− u(t)| .

From this and denoting by C̃ the constant C̃ = CK3K7, which is inde-

pendent of µ and t ≥ 0 even as t → ∞, we obtain∣∣M (
x, t, |uµ(t)|2

)
−M

(
x, t, |u(t)|2

)∣∣
R ≤ C̃ |uµ(t)− u(t)| . (2.28)

Now, observe that∫ T

0

∫
Ω

{
M(x, t, |uµ(t)|2)

[
∇uµ(t)·∇v(x)

]
−

M(x, t, |u(t)|2)
[
∇u(t)·∇v(x)

]}
θ(t)dx dt =∫ T

0

∫
Ω

[
M(x, t, |uµ(t)|2)−M(x, t, |u(t)|2)

][
∇uµ(t) · ∇v(x)

]
θ(t)dx dt+∫ T

0

∫
Ω
M

(
x, t, |u(t)|2

) {[
∇uµ(t)−∇u(t)

]
· ∇v(x)

}
θ(t)dx dt.
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From this and (2.28) we get∫ T

0

∫
Ω

{[
M(x, t, |uµ(t)|2)−M(x, t, |u(t)|2)

][
∇u(t) · ∇v(x)

]
θ(t)

}
dx dt ≤

C̃

∫ T

0
|uµ(t)− u(t)| |∇uµ(t)| |∇v(x)||θ(t)|dt ≤

C̃ |∇uµ(t)|L∞(0,T ;L2(Ω))

(∫ T

0
|uµ(t)− u(t)|2 dt

)1/2(∫ T

0
|θ(t)∇v(t)|2dt

)1/2
.

By using (2.23)1, (2.27) in the last inequality and observing that

M(x, t, |u(t)|2)∇v(x)θ(t) ∈ L2(0, T ;L2(Ω)),

we obtain∣∣∣ ∫ T

0

∫
Ω
M(x, t, |uµ(t)|2)

[
∇uµ(t) · ∇v(x)

]
θ(t)dxdt−∫ T

0

∫
Ω
M(x, t, |u(t)|2)

[
∇u(t) · ∇v(x)

]
θ(t)dxdt

∣∣∣
R
→ 0 as µ → ∞.

Thus, we get (2.26). The third term in (2.8) is also obtained by using

the hypotheses (2.4) and arguing as in the precedent case. The term with

linear damping is similar to the case (2.29). That is,∫ T

0
(u′µ(t), v(x))θ(t)dt →

∫ T

0
(u′(t), v(x))θ(t)dt as µ → ∞

for all v ∈ H1
0 (Ω)), θ ∈ D(Ω)) for all T > 0 and for the case T → ∞.

Taking into account all these convergence into (2.8) we obtain a solution

of problem (2.1)-(2.3) in the sense of the Definition 2.1

2

§ 2.2 Exponential decay. We initially will show the exponential

decay estimate for the energy associate with the approximate solutions

uN . The estimates obtained in (2.23) allows us to conclude the same

result for the solution u.

Theorem 2.2. Assuming all hypotheses of Theorem 2.1, the energy E(t)

of system (2.1)-(2.3) satisfies

E(t) ≤ K11 exp {−K10 t} for all t ≥ 0, (2.29)
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where

E(t) =
1

2

∫
Ω

( ∣∣u′(x, t)∣∣2 +M
(
x, t, |u(t)|2

)
|∇u(x, t)|2

)
dx, (2.30)

K10 and K11 are positives real constants defined in (2.37) and (2.38)

respectively.

Proof. Note that 0 ≤ H(t) ≤ H(0). Thus, from (2.7) and (2.22) we

obtain

γ(t) ≤ m0δ

8
for all t ≥ 0. (2.31)

From (2.31), (2.18) and (2.20) we have

d

dt
H(t) +K8

∫
Ω

( ∣∣u′(x, t)∣∣2 +M
(
x, t, |u(t)|2

)
|∇u(x, t)|2

)
dx ≤ 0, (2.32)

where K8 = δ/4. Again, from (2.20) we can write

H(t) ≤
∫
Ω

[(
1 +

δ

2

) ∣∣u′(x, t)∣∣2 + Kδ

8

(
1 + δ

)
|∇u(x, t)|2+

M
(
x, t, |u(t)|2

)
|∇u(x, t)|2

]
dx.

(2.33)

From (2.4)2 we have∫
Ω
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2dx ≥ m0

∫
Ω
|∇u(x, t)|2dx. (2.34)

Taking into account (2.34) in (2.33) yields

H(t) ≤
∫
Ω

{(
1 +

δ

2

) ∣∣u′(x, t)∣∣2+[ Kδ

8m0

(
1 + δ

)
+ 1

]
M

(
x, t, |u(t)|2

)
|∇u(x, t)|2

}
dx.

(2.35)

From this and denoting by K9 = max
{
1 +

δ

2
,

Kδ

8m0

(
1 + δ

)
+ 1

}
we get

1

K9
H(t) ≤

∫
Ω

( ∣∣u′(x, t)∣∣2 +M
(
x, t, |u(t)|2

)
|∇u(x, t)|2

)
dx. (2.36)
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Thus, from (2.32) and (2.36) we can write

d

dt
H(t) +K10H(t) ≤ 0 for all t ≥ 0 where K10 =

K8

K9
. (2.37)

As u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω), then from (2.37) we have

H(t) ≤ K11 exp {−K10t} for all t ≥ 0, (2.38)

where K11 depends on of the initial data.

Finally, from (2.38), (2.21), (2.30) and Banach-Steinhauss theorem we

obtain (2.29). This way we have the desired proof of Theorem 2.2

2

§ 2.3 Existence of strong solutions. To show the existence of a

strong solution for the problem (2.1)-(2.3), we assume the hypotheses:

u0 ∈ H1
0 (Ω) ∩H2(Ω) and u1 ∈ H1

0 (Ω), (2.39)

M(x, t, λ) ≤ a+ b|λ|p, (2.40)

with a and b being positive real constants.

Definition 2.2. A strong solution for initial-boundary value problem (2.1)-

(2.3) is a real function u = u(x, t) defined in Q which belongs to the class

u ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)), u′ ∈ L2(0, T ;H1

0 (Ω)),

u′′ ∈ L∞(0, T ;L2(Ω)),
(2.41)

for T > 0 and satisfies the equation (2.1) a. e. in Q.

Proposition 2.1. Assuming the hypotheses (2.4), (2.39) and (2.40), then

the problem (2.1)-(2.3) has a unique solution in the sense of Definition

2.2.
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Proof. In this paragraph VN is the subspace of H1
0 (Ω) spanned by the

N first vectors of the hilbertian basis (wj)j∈N, where wj is defined as

solution of the eigenvalue problem

(−∆wj , v) = λj (wj , v) for all v ∈ H1
0 (Ω) and j ∈ N.

Thus, the approximate problem (2.8) is now defined with such functions

wj . In these conditions we can get the following estimates:

Estimate III. Setting w = −∆u′ in (2.8) and proceeding as in the

estimates I and II, we can write

1

2

d

dt

{ ∣∣∇u′(t)
∣∣2 + ∫

Ω
M

(
x, t, |u(t)|2

)
|∆u(x, t)|2 dx

}
+ δ

∣∣∇u′(t)
∣∣2 =

−1

2

∫
Ω

∂

∂t
M

(
x, t, |u(t)|2

)
|∆u(x, t)|2 dx−

[ ∫
Ω

∂

∂λ
M

(
x, t, |u(t)|2

)
|∆u(x, t)|2 dx

](
u′(t), u(t)

)
≤

K12|∆u(t)|2
{
|u(t)|2p + |u(t)|2p−1|u′(t)|

}
≤ K13|∆u(t)|2.

(2.42)

Integrating (2.42) from 0 to t ≤ T, using (2.4) and (2.39) we get∣∣∇u′(t)
∣∣2 +m0 |∆u(t)|2 +

∫ T

0
δ
∣∣∇u′(t)

∣∣2 dt ≤ K14T. (2.43)

Estimate IV. Setting w = u′′ into (2.8) and by using (2.40) yields∣∣u′′(t)∣∣2 =

∫
Ω
M

(
x, t, |u(t)|2

) (
∆u(x, t), u′′(x, t)

)
dx− δ

(
u′(t), u′′(t)

)
≤ |u′′(t)|

[(
a+ b|u(t)|2p

)
|∆u(t)|+ δ|u′(t)|

]
≤ K15|u′′(t)|,

where we have used in the last inequality the previous estimates. Thus,

we have

|u′′(t)| ≤ K16. (2.44)
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Therefore, the estimates (2.43) and (2.44) are sufficient to get solutions

for the problem (2.1)-(2.3) in the sense of Definition 2.2. This way, the

proof of Proposition 2.1 is concluded. The uniqueness of strong solutions

can be gotten by the usual energy method

2

3 Carrier equation in a non-cylindrical

domain

§ 3.1 Existence of weak solutions. Let Ωt be a time-dependent

non empty, open and bounded subsets of Rn. We consider a non-cylindrical

domain

Q̂ =
⋃

0≤t<∞
{Ωt × {t}},

such that Q̂ ⊂ Rn× [0,∞[ or Q̂ ⊂ Rn× [0, T [ for T > 0. We also assume

Q̂ ⊂ Q = Ω×]0, T [, where Q is a cylinder as in Section 2. By Ωs, for

0 ≤ s ≤ T, we represent the sections of Q̂ ∩ {t = s}, Γs is the boundary

of Ωs and the lateral boundary of Q̂ is given by Σs =
⋃

0<s<T

Γs.

In the above conditions we look for a real function u = u(x, t) defined

for all (x, t) ∈ Q̂ solving the mixed problem of Carrier type

u′′(x, t)− M̂
(
x, t,

∫
Ωt

|u(x, t)|2dx
)
∆u(x, t) + δu′(x, t) = 0 in Q̂,(3.1)

u(x, t) = 0 on Σ̂, (3.2)

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω0, (3.3)

where M̂(x, t, λ) is the restriction of M(x, t, λ) to (x, t) ∈ Q̂ with λ ≥ 0

and M(x, t, λ) is the function of Section 2 defined on the cylinder Q =

Ω×]0, T [.

To investigate the solutions of the mixed problem (3.1)-(3.3) it is nec-

essary to assume some hypotheses on Q̂, as was made by Lions [8] in the

case of nonlinear wave equation of the type u′′ −∆u+ |u|ρu = 0. In fact,
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one condition is about the geometry of Q̂ and the other one is on the

regularity of its lateral boundary Σ̂. Therefore, we assume:

The sections Ωt = Q̂ ∩ {t = s} are increasing with s. (3.4)

This condition means that, if s1 ≤ s2 the projections of Ωs1 and Ωs2

on the hyperplane t = 0 are increasing, that is,

proj∣∣
t = 0

Ωs1 ⊆ proj∣∣
t = 0

Ωs2 if s1 ≤ s2.

We assumed previously Q̂ ⊂ Q = Ω×]0, T [ and we need of the following

regularity condition:

If v ∈ H1
0 (Ω) and v = 0 a. e. in Ω− Ωt, then v ∈ H1

0 (Ωt). (3.5)

Note that v = 0 a. e. in Ω − Ωt is the restriction of v to Ω − Ωt.

Observe that by trace theorem, if Γt is of class C1, v ∈ H1
0 (Ω) and

v = 0 a. e. in Ω − Ωt, then v ∈ H1
0 (Ωt). Due to the characteristics of

the penalty method it is only possible to obtain estimates that determine

weak solutions for the problem (3.1)-(3.3).

Definition 3.1. A weak solution for the initial-boundary value problem

(3.1)-(3.3) is a real valued function u = u(x, t) defined in Q̂ such that

u ∈ L∞(0, T ;H1
0 (Ωt)), u′ ∈ L∞(0, T ;L2(Ωt)) for T > 0,

u satisfies the identity integral

−
∫ T

0

∫
Ωt

u′(x, t)ϕ′(x, t)dxdt+

∫ T

0

∫
Ωt

M
(
x, t,

∫
Ωt

|u(x, t)|2dx
)[

∇u(x, t) · ∇ϕ(x, t)
]
dxdt+

∫ T

0

∫
Ωt

[
∇M

(
x, t,

∫
Ωt

|u(x, t)|2dx
)
· ∇u(x, t)

]
ϕ(x, t)dxdt+

δ

∫ T

0

∫
Ωt

u′(x, t)ϕ(x, t)dxdt = 0 for all ϕ such that

ϕ ∈ L2(0, T ;H1
0 (Ωt)), ϕ′ ∈ L2(0, T ;L2(Ωt)) with ϕ(x, 0) = ϕ(x, T ) = 0.
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Moreover, u satisfies the initial conditions

u(x, 0) = u0(x) and u′(x, 0) = u1(x) for x ∈ Ω0.

Theorem 3.1. Suppose u0 ∈ H1
0 (Ω0) and u1 ∈ L2(Ω0) such that

K̃6[H(0)]p <
m0δθ

2
, (3.6)

where H(t) and K̃6 are defined in (3.13) and (3.15) respectively, and θ is

a real constant such that 0 < θ < 1. Then there exists at least one function

u which is weak solution of the initial-boundary value problem (3.1)-(3.3),

provided the hypothesis (2.4) holds.

Proof. We apply the penalty method to transform the non-cylindrical

problem in Q̂ into a cylindrical problem in Q, and then we employ the

Faedo-Galerkin method. First, we consider the characteristic function

χ(x, t) =

 1 in Ω×]0, T [\Q̂ ∪ {Ω0 × {0}},

0 in Q̂ ∪ {Ω0 × {0}},

which belongs to L∞(Ω×]0, T [). Denoting by ũ0 and ũ1 the extensions

of u0 and u1 to Ω defined zero outside of Ω−Ω0, we have ũ0 ∈ H1
0 (Ω)

and ũ1 ∈ L2(Ω). Thus, we define the penalized problem as follows:

Given ϵ > 0 we look for uϵ = uϵ(x, t) for (x, t) ∈ Q such that

uϵ ∈ L∞(0, T ;H1
0 (Ω)) and u′ϵ ∈ L∞(0, T ;L2(Ω)) for T > 0,

uϵ satisfies the integral identity

−
∫
Q
u′ϵ(x, t)ϕ

′(x, t)dxdt+

∫
Q
M

(
x, t, |uϵ(t)|2

) [
∇uϵ(x, t) · ∇ϕ(x, t)

]
dxdt+∫

Q

[
∇M

(
x, t, |uϵ(t)|2

)
· ∇uϵ(x, t)

]
ϕ(x, t)dxdt+ (3.7)

δ

∫
Q
u′ϵ(x, t)ϕ(x, t)dxdt+

1

ϵ

∫
Q
χ(x, t)u′ϵ(x, t)ϕ(x, t)dxdt = 0,
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for all ϕ such that ϕ ∈ L2(0, T ;H1
0 (Ωt)), ϕ′ ∈ L2(0, T ;L2(Ωt)) with

ϕ(x, 0) = ϕ(x, T ) = 0. Besides, u satisfies the initial conditions

uϵ(x, 0) = ũ0(x) and u′ϵ(x, 0) = ũ1(x) for x ∈ Ω0. (3.8)

Note that (3.7) and (3.8) are the version of Definition 3.1 for a weak

solution for the penalized problem which is cylindrical. Thus, we can

employ the Faedo-Galerkin’s method. In fact, considering a hilbertian

basis with vectors
(
wj

)
j ∈N, wi ∈ H1

0 (Ω) such that w1 = ũ0, we look for

uϵN =
N∑
j=1

gϵjN (t)wj(x) ∈ VN , for ϵ > 0 fixed, such that

∫
Ω
u′′ϵN (x, t)w(x)dx+

∫
Ω
M

(
x, t, |uϵN (t)|2

) [
∇uϵN (x, t) · ∇w(x)

]
dx+∫

Ω

[
∇M

(
x, t, |uϵN (t)|2

)
· ∇uϵN (x, t)

]
w(x)dx+ (3.9)

δ

∫
Ω
u′ϵN (x, t)w(x)dx+

1

ϵ

∫
Ω
χ(x, t)u′ϵN (x, t)w(x)dx = 0 for all w ∈ VN ,

uϵN (x, 0) = ũ0 and u′ϵN (x, 0) = u1N → ũ1 in L2(Ω). (3.10)

As before, we now will obtain estimates for the solutions uϵN of the

problem (3.9), (3.10). These estimates are those obtained in the Section

2, § 2.1 . Thus, we set w = u′ϵN (x, t) and w = uϵN (x, t) in (3.9) and work

as in Section 2, § 2.1 . After that, multiplying the second estimate, which

is obtained from substitution of w by uϵN (x, t), by δθ, and we add to
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the first one to obtain

1

2

d

dt

{ ∣∣u′ϵN (t)
∣∣2 + 2δθ

(
u′ϵN (t), uϵN (t)

)
+∫

Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2dx+ δ2θ |uϵN (t)|2

}
+

δ(1− θ)
∣∣u′ϵN (t)

∣∣2 + δθ

2

∫
Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2dx+(3.11)

|∇uϵN (x, t)|2
[m0δθ

2
−K4 |uϵN (t)|2p−1

∣∣u′ϵN (t)
∣∣−(

K4 + δθKK1 |uϵN (t)|2p
) ]

+
1

ϵ

∫
Ω
χ(x, t)

∣∣u′ϵN (x, t)
∣∣2 dx+

δθ

ϵ

∫
Ω
χ(x, t)u′ϵN (x, t)uϵN (x, t)dx ≤ 0 for all t ≥ 0,

We denote by γ(t) and H(t) the functions

γ(t) = K4 |uϵN (t)|2p−1 |u′ϵN (t)|+ (K4 + δθKK1) |uϵN (t)|2p , (3.12)

H(t) =
∣∣u′ϵN (t)

∣∣2 + 2δθ
(
u′ϵN (t), uϵN (t)

)
+∫

Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2dx+ δ2θ |uϵN (t)|2 . (3.13)

As ∣∣∣2δθ(u′ϵN (t), uϵN (t))
∣∣∣
R
≤ θ|u′ϵN (t)|2 + δ2θ|uϵN (t)|2,

then from (3.13) we get

H(t) ≥ (1− θ)
∣∣u′ϵN (t)

∣∣2 + ∫
Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2dx

≥ (1− θ)
∣∣u′ϵN (t)

∣∣2 + m0

2K
|uϵN (t)|2 (3.14)

+
1

2

∫
Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2dx.

From this we get∣∣u′ϵN (t)
∣∣ ≤ [ 1

(1− θ)
H(t)

]1/2
and |uϵN (t)| ≤

[2K
m0

H(t)
]1/2

.

By using these two inequalities in (3.12) we obtain

γ(t) ≤ K̃6[H(t)]p,
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K̃6 = K4

(2K
m0

)p−1/2 1

(1− θ)1/2
+ (K4 + δθKK1)

(2K
m0

)p
. (3.15)

From (3.11)-(3.13) we get

1

2

d

dt
H(t) + |∇uϵN (x, t)|2

[m0δθ

2
− γ(t)

]
+

1

ϵ

∫
Ω
χ(x, t)

∣∣u′ϵN (x, t)
∣∣2 dx+

δθ

ϵ

∫
Ω
χ(x, t)u′ϵN (x, t)uϵN (x, t)dx ≤ 0 for all t ≥ 0.

(3.16)

From this, hypothesis (3.6) and as∫ t

0

∫
Ω
χ(x, t)u′ϵN (x, t)uϵN (x, t)dxds ≥ 0,

for this last inequality, see for instance Nakao-Narazaki [10], we obtain

H(t) ≤ H(0) for all t > 0 and ϵ > 0. (3.17)

Therefore, we obtain from (3.17) estimates independent of N for each

ϵ > 0 that permit the passing limit as N → ∞ in the approximate

equations (3.9). Thus, uϵ is a weak solution of (3.7) and (3.8) for each

0 < ϵ < 1.

The next step is to obtain estimates on uϵ in order to take the limit

ϵ → 0+ and conclude the proof of Theorem 3.1. In fact, uϵ is defined by

the following convergence as N → ∞ :

uϵN ⇀ uϵ weak star in L∞ (
0, T ;H1

0 (Ω)
)
,

u′ϵN ⇀ u′ϵ weak star in L∞ (
0, T ;L2(Ω)

)
,

uϵN → uϵ strongly in L2
(
0, T ;L2(Ω)

)
,

χu′ϵN ⇀ χu′ϵ weak star in L∞ (
0, T ;L2(Ω)

)
.

(3.18)

From convergence (3.18)1, (3.18)2 and the Banach-Steinhauss theorem we

obtain a net (uϵ)0<ϵ<1 and a function ω : Q → R satisfying

uϵ ⇀ ω weak star in L∞ (
0, T ;H1

0 (Ω)
)

as ϵ → 0,

u′ϵ ⇀ ω′ weak star in L∞ (
0, T ;L2(Ω)

)
as ϵ → 0,

uϵ → ω strongly in L2
(
0, T ;L2(Ω)

)
as ϵ → 0 and a. e. in Q.

(3.19)
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From (3.16) we get∫
Ω×]0,T [

χ
∣∣u′ϵN (x, t)

∣∣2 dxdt ≤ ϵK16,

where K16 is a positive real constant independent of ϵ and N. Thus, from

(3.18)4 and the Banach-Steinhauss theorem we have ∥χu′ϵ∥L2(0,T ;L2(Ω)) <

ϵK16. Then, we affirm that χu′ϵ converges strong to zero in L2
(
0, T ;L2(Ω)

)
.

Therefore, from (3.19)2 we get∫ T

0

∫
Ω
χ(x, t)|ω′(x, t)|2dxdt = 0. (3.20)

From (3.20) we have χ(x, t)ω′(x, t) = 0 a. e. in Ω×]0, T [= Q. This

implies ω′(x, t) = 0 for all (x, t) ∈ Q−Q̂∪Ω0×{0}. Since Q̂ is increasing,

we have ∫ t

0
ω′(x, s)ds = 0 for all 0 < t < T and x ∈ Ω− Ω0.

As w(x, 0) = ũ0(x) = 0 in Ω− Ω0, because ω is a solution in Q, then

ω(x, t) = 0 a. e. in Ω− Ωt for 0 < t < T. (3.21)

From (3.21) and since u is the restriction of ω to Q̂, then we get

u belongs to L∞ (
0, T ;H1

0 (Ωt)
)
, (3.22)

where we have used to obtain (3.22) the hypothesis of regularity on Q̂

established in (3.5), and also (3.19)1. Arguing as before, if u′ is the

restriction of ω′ to Q̂ then we get by using (3.19)2

u′ belongs to L∞ (
0, T ;L2(Ωt)

)
. (3.23)

Thus, by restriction to Q̂ of the penalized problem (3.7) and (3.8) we
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obtain

−
∫
Q
u′ϵ(x, t)ϕ

′(x, t)dxdt+∫
Q
M

(
x, t, |uϵ(t)|2

) [
∇uϵ(x, t) · ∇ϕ(x, t)

]
dxdt+∫

Q

[
∇M

(
x, t, |uϵ(t)|2

)
· ∇uϵ(x, t)

]
ϕ(x, t)dxdt+

δ

∫
Q
u′ϵ(x, t)ϕ(x, t)dxdt = 0,

uϵ(x, 0) = ũ0(x), u′ϵ(x, 0) = ũ1(x) for x ∈ Ω0,

(3.24)

for all ϕ ∈ L2(0, T ;H1
0 (Ωt)), ϕ

′ ∈ L2(0, T ;L2(Ωt)) with ϕ(x, 0) = ϕ(x, T ) =

0. Therefore, M̂(x, t, λ) is the restriction of M(x, t, λ) to Q̂, for λ > 0,

and u the restriction of ω to Q̂. From the convergence (3.19)1-(3.19)3

and making ϵ → 0 in (3.2) it implies that u is a solution of (3.1)-(3.3) in

the sense of Definition 3.1. Thus the proof of Theorem 3.1 is concluded

2

§ 3.2 Exponential decay. The exponential decay for the energy of

system (3.1)-(3.3), i. e., inside of the noncylindrical domain, is obtained

arguing as in the Section 2, § 2.2, however, we have to make the following

hypothesis on δ and θ:

δ =
1

θ
> 1. (3.25)

Thus, we can state the following result

Theorem 3.2. Assuming all the hypotheses of Theorem 3.1 and (3.25),

then the energy E associated with the weak solutions of (3.1)-(3.3) satis-

fies, for suitable α0, α1 > 0,

E(t) ≤ α0 exp{−α1t} for all t ≥ 0, (3.26)

where E(t) is defined in (2.30).
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Proof. Initially, note that the existence of solutions for the problem

(3.1)-(3.3) with the restriction (3.25) can be made as in Theorem 3.1

adding to the penalized problem (3.7) the term

1

ϵ

∫
Q
χ(x, t)uϵ(x, t)ϕ(x, t)dxdt.

Therefore, since δθ = 1, we get from (3.11) and (3.14) that

1

2

d

dt
H(t) + (δ − 1)

∣∣u′ϵN (t)
∣∣2 + 1

2

∫
Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2 dx+

1

ϵ

∫
Ω
χ(x, t)

∣∣u′ϵN (x, t)
∣∣2 dx+

2

ϵ

∫
Ω
χ(x, t)u′ϵN (x, t)uϵN (x, t)dx+

1

ϵ

∫
Ω
χ(x, t) |uϵN (x, t)|2 dx ≤ 0 for all t ≥ 0.

(3.27)

Still from (3.13) and (2.4) we can write

H(t) ≤ 2
∣∣u′ϵN (t)

∣∣2 + (δ + 1) |uϵN (t)|2 +
∫
Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2dx

≤ 2
∣∣u′ϵN (t)

∣∣2 + (δ + 1)K

∫
Ω
|∇uϵN (x, t)|2 dx

+

∫
Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2dx (3.28)

≤ 2
∣∣u′ϵN (t)

∣∣2 + ((δ + 1)K

m0
+ 1

)∫
Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2dx

≤ K17

( ∣∣u′ϵN (t)
∣∣2 + ∫

Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2dx

)
,

K17 = max
{
2,

(δ + 1)K

m0
+ 1

}
. Besides that,

∣∣∣2
ϵ

∫
Ω
χ(x, t)u′ϵN (x, t)uϵN (x, t)dx

∣∣∣
R
≤

1

ϵ

∫
Ω
χ(x, t)

∣∣u′ϵN (x, t)
∣∣2 dx+

1

ϵ

∫
Ω
χ(x, t) |uϵN (x, t)|2 dx.

Taking into account this inequality and (3.28) into (3.27) yields

d

dt
H(t) +K18H(t) ≤ 0 for all t ≥ 0,
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where K18 = min {2(δ − 1), 1}/K17. From this

H(t) ≤ H(0) exp{−K18t} for all t ≥ 0. (3.29)

On the other hand,

EϵN (t) =
1

2

∣∣u′ϵN (t)
∣∣2 + 1

2

∫
Ω
M

(
x, t, |uϵN (t)|2

)
|∇uϵN (x, t)|2dx

≤ K19H(t) for all t ≥ 0, (3.30)

where K19 = 1/min {2(1− θ), 1} . Therefore, from (3.29), (3.30) we

have

EϵN (t) ≤ K19H(0) exp{−K18t} for all t ≥ 0.

From this, and the Banach-Steinhauss theorem, and denoting K19H(0)

and K18 by α0 and α1, respectively, we get the inequality (3.26)

2
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