GLOBAL AND DECAY OF SOLUTIONS OF A DAMPED KIRCHHOFF-CARRIER EQUATION IN BANACH SPACES

R. Izaguirre R. Fuentes M. Milla Miranda (D)

In Homage to Professor L. A. Medeiros by his Eightieth Birthday

Abstract

This paper is concerned with the study of the existence and the decay of solutions of the following problem: $$
\begin{aligned} & B u^{\prime \prime}(t)+M\left(\|u(t)\|_{W}^{\beta}\right) A u(t)+\delta B u^{\prime}(t)=0, \text { in } V^{\prime}, t>0 \\ & u(0)=u^{0}, u^{\prime}(0)=u^{1}\left(u^{0} \neq 0\right) \end{aligned}
$$ where A and B are symmetric linear operators from a Hilbert space V into its dual V^{\prime} satisfying $\langle B v, v\rangle>0, v \neq 0,\langle A v, v\rangle \geq \gamma\|v\|_{V}^{2}, \gamma>$ 0 ; W a Banach space with V continuously embedding in $\mathrm{W} ; \beta$ a real number with $\beta \geq 1, M(\xi)$ a smooth function with $M(\xi) \geq 0$, and δ a positive real number

AMS Subject Classification: 35L70,35B35. Key Words and Phrases: Kirchhoff-Carrier Equation, global solutions, decay of

 solutions.
1 Introduction

Let V be a real separable Hilbert space whose dual is denoted by V^{\prime} and W a Banach space with V continuously embedding in W . Consider two symmetric linear operators $A, B: V \rightarrow V^{\prime}$ such that

$$
\begin{gathered}
\langle A v, v\rangle \geq \gamma\|v\|_{V}^{2}, \forall v \in V(\gamma \text { positive constant }) ; \\
\langle B v, v\rangle>0, \forall v \in V, v \neq 0
\end{gathered}
$$

and a smooth function $M(\xi)$ with

$$
M(\xi) \geq 0, \forall \xi \geq 0
$$

Consider also two real numbers $\beta \geq 1$ and $\delta>0$. In this conditions we have the following problem:

$$
(*) \left\lvert\, \begin{aligned}
& B u^{\prime \prime}(t)+M\left(\|u(t)\|_{W}^{\beta}\right) A u(t)+\delta B u^{\prime}(t)=0, \text { in } V^{\prime}, t>0, \\
& u(0)=u^{0}, u^{\prime}(0)=u^{1}\left(u^{0} \neq 0\right) .
\end{aligned}\right.
$$

Equation in $\left(^{*}\right)$ is a damped abstract version in Banach spaces of the Kirchhoff equation [14] and the Carrier equation [5]. When $B=I, \beta=$ $2, \mathrm{~W}$ is a Hilbert space and $\delta \geq 0$, there is an extensive literature on this problem (cf. Medeiros, Limaco and Menezes [22]).

The existence of local solutions of problem $\left(^{*}\right)$ has been obtained by the Authors in [13].

In this paper we study the existence of global solutions of $\left({ }^{*}\right)$ when $M(\xi) \geq 0$ and the exponential decay of solutions of $\left({ }^{*}\right)$ when $M(\xi) \geq$ $m_{0}>0$. In Section 5, we give some examples.

To obtain global solutions we use the prolongation method and in the decay of solutions, the Lyapunov approach, cf. Komornik and Zuazua [15]. In both cases it is fundamental an appropriate characterization of the derivative of $M\left(\|u(t)\|_{W}^{\beta}\right)$. We use various results obtained in [13] and in S. S. Souza and the third A. [27].

2 Notations and Main Results

Let V be a real separable Hilbert space whose dual is denoted by V^{\prime}. Consider two linear operators $A, B: V \rightarrow V^{\prime}$ satisfying

$$
\langle A u, v\rangle=\langle u, A v\rangle, \forall u, v \in V
$$

$$
\begin{align*}
& \langle A u, u\rangle \geq \gamma\|u\|_{V}^{2}, \forall u \in V(\gamma \text { positive constant }) \tag{H1}\\
& \langle B u, v\rangle=\langle u, B v\rangle, \forall u, v \in V \\
& \langle B u, u\rangle>0, \forall u \in V, u \neq 0
\end{align*}
$$

Here \langle,$\rangle denotes the duality pairing between V^{\prime}$ and V . We have that the scalar product $((u, v))=\langle A u, v\rangle$ defines a norm $\|u\|=((u, u))^{1 / 2}$ in V which is equivalent to the norm $\|u\|_{V}$. The space V will be equipped with the scalar product $((u, v))$ and norm $\|u\|$.

The bilinear form

$$
(u, v)=\langle B u, v\rangle, \forall u, v \in V
$$

is a scalar product in V . We denote by H the completed of the space $\{V,(u, v)\}$. The scalar product of the Hilbert space H will be denoted also by (u, v) and its norm by $|u|$. We have that

V is densely and continuously embedding in H .
Consider the coercive self-adjoint operator S of H determined by the triplet $\{V, H,((u, v))\}$. We have:

$$
\begin{gather*}
(S u, v)=((u, v))=\langle A u, v\rangle, \forall u \in D(S), \forall v \in V \tag{2.1}\\
A u=B S u \text { in } V^{\prime}, \forall u \in D\left(S^{3 / 2}\right) \tag{2.2}
\end{gather*}
$$

Identify H with its dual H^{\prime}. Then expression (2.1) says that A is the extension of S to the space V.

Represent by W a Banach space whose dual W^{\prime} is strictly convex.

Denote by $\theta \geq 0$ a real number and by $\left(E_{\lambda}\right)_{\lambda \in \mathbb{R}}$ the spectral family of S . Then $D\left(S^{\theta}\right)$ is the Hilbert space

$$
D\left(S^{\theta}\right)=\left\{u \in H ; \int_{0}^{\infty} \lambda^{2 \theta} d\left(E_{\lambda} u, u\right)<\infty\right\}
$$

equipped with the scalar product

$$
(u, v)_{D\left(S^{\theta}\right)}=\left(S^{\theta} u, S^{\theta} v\right) .
$$

Fix $\alpha \geq 0$ a real number. Assume that $D\left(S^{\alpha+1}\right)$ is continuously embedding in W , that is, there exist a positive number k_{0}, such that

$$
\begin{equation*}
\|u\|_{W} \leq k_{0}\|u\|_{D\left(S^{\alpha+1}\right)}, \forall u \in D\left(S^{\alpha+1}\right) \tag{H3}
\end{equation*}
$$

Consider a function $M(\xi)$ and $\beta \geq 1$ a real number satisfying

$$
(H 4) \left\lvert\, \begin{aligned}
& M \in C^{0}([0, \infty[), M(0)=0, M(\xi)>0, \forall \xi>0 ; \\
& M \in C^{1}(] 0, \infty[) ; \\
& \\
& \left|M^{\prime}(\xi)\right| \lambda^{1-1 / \beta} \leq C_{0} M^{1 / 2}(\xi), \forall \xi>0\left(C_{0} \text { positive constant }\right) .
\end{aligned}\right.
$$

Under the above considerations, we have the following result:
Theorem 2.1 Assume hypotheses (H1)-(H4) with $\alpha \geq 0, \beta \geq 1$. Consider $\delta>0$ a real number and

$$
\begin{equation*}
u^{0} \in D\left(S^{2 \alpha+5 / 2}\right), u^{1} \in D\left(S^{2 \alpha+2}\right), u^{0} \neq 0 \tag{H5}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\beta C_{0} k_{0}\left[\frac{\left|S^{\alpha+1} u^{1}\right|^{2}}{M\left(\left\|u^{0}\right\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u^{0}\right|^{2}\right]^{1 / 2}<\delta \tag{H6}
\end{equation*}
$$

(a) Then there exists a function u in the class

$$
\begin{gather*}
u \in L^{\infty}\left(0, \infty ; D\left(S^{\alpha+3 / 2}\right)\right) \tag{2.3}\\
u^{\prime} \in L^{\infty}\left(0, \infty ; D\left(S^{\alpha+1}\right)\right) \\
u^{\prime \prime} \in L^{\infty}\left(0, \infty ; D\left(S^{\alpha+1 / 2}\right)\right)
\end{gather*}
$$

satisfying

(P)	$\begin{array}{l}u^{\prime \prime}+M\left(\\|u\\|_{W}^{\beta}\right) S u+\delta u^{\prime}=0 \text { in } L^{\infty}\left(0, \infty ; D\left(S^{\alpha+1 / 2}\right)\right), \\ u(0)=u^{0}, u^{\prime}(0)=u^{1} .\end{array}$

(b) Let \mathcal{M} be the set constituted by the real numbers $T>0$ such that there exists a unique function u in the class (2.3) with u solution of (P) in $[0, T]$ and $\|u(t)\|_{W}>0$ for all $t \in[0, T]$. Let $T_{\max }$ be the supremum of the $T \in \mathcal{M}$. Then $\mathcal{M} \neq \emptyset$ and the solution u obtained in (a) verifies

$$
\begin{aligned}
& u \in L_{l o c}^{\infty}\left(0, T_{\max } ; D\left(S^{2 \alpha+5 / 2}\right)\right) \\
& u^{\prime} \in L_{l o c}^{\infty}\left(0, T_{\max } ; D\left(S^{2 \alpha+2}\right)\right) \\
& u^{\prime \prime} \in L_{l o c}^{\infty}\left(0, T_{\max } ; D\left(S^{\alpha+1 / 2}\right)\right)
\end{aligned}
$$

and

$$
\frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u(t)\right|^{2} \leq \frac{\left|S^{\alpha+1} u^{1}\right|^{2}}{M\left(\left\|u^{0}\right\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u^{0}\right|^{2}, 0 \leq t<T_{\max }
$$

And if $T_{\max }$ is finite,

$$
u(t)=0, \text { for } t \geq T_{\max }
$$

In order to obtain the decay of solutions of problem (P), we make the following considerations.

Consider a function $M(\xi)$ and $\beta>1$ a real number satisfying

$$
\begin{align*}
& M \in C^{1}([0, \infty[) \\
& M(\xi) \geq m_{0}>0, \forall \xi \geq 0\left(m_{0} \text { constant }\right) \tag{H7}\\
& M^{\prime}(\xi) \geq 0, \forall \xi \geq 0 \\
& \left|M^{\prime}(\xi)\right| \lambda^{1-1 / \beta} \leq C_{1} M(\xi), \forall \xi \geq 0\left(C_{1} \text { positive constant }\right)
\end{align*}
$$

As V is continuously embedding in H , we have:

$$
(S u, u)=\|u\|^{2} \geq C_{*}^{2}|u|^{2}, \forall u \in D(S)\left(C_{*} \text { positive constant }\right) .
$$

This implies

$$
\begin{equation*}
\left|S^{\alpha+1} u\right|^{2} \leq \frac{1}{C_{*}^{2}}\left|S^{\alpha+3 / 2} u\right|^{2}, \forall u \in D\left(S^{\alpha+3 / 2}\right) \tag{2.4}
\end{equation*}
$$

We introduce the constant $k_{1}>0$ verifying

$$
\begin{equation*}
\|u\|_{W} \leq k_{1}\left|S^{\alpha+3 / 2} u\right|^{2}, \forall u \in D\left(S^{\alpha+3 / 2}\right) \tag{2.5}
\end{equation*}
$$

Let $\varphi(t)$ be the function

$$
\begin{equation*}
\varphi(t)=\frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u(t)\right|^{2}, t \geq 0 \tag{2.6}
\end{equation*}
$$

Under the above considerations, we obtain :
Theorem 2.2 Assume hypotheses (H1)-(H3), (H7) with $\alpha \geq 0$ and $\beta>1$. Consider a real number $\delta>0$ and

$$
\begin{align*}
& u^{0} \in D\left(S^{\alpha+3 / 2}\right), u^{1} \in D\left(S^{\alpha+1}\right) \tag{H8}\\
& \beta C_{1} k_{0} M^{1 / 2}\left(k_{1}^{\beta} \varphi^{\beta / 2}(0)\right) \varphi^{1 / 2}(0)<\delta \tag{H9}
\end{align*}
$$

where

$$
\varphi(0)=\frac{\left|S^{\alpha+1} u^{1}\right|^{2}}{M\left(\left\|u^{0}\right\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u^{0}\right|^{2}
$$

Then there exists a unique function u in the class (2.3) such that u is solution of Problem (P). Furthermore if

$$
\begin{aligned}
& \text { (H10) } \frac{\left|S^{\alpha+1} u^{1}\right|^{2}}{M\left(\left\|u^{0}\right\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u^{0}\right|^{2} \\
& \quad<\min \left[\frac{\delta^{2}}{4 \beta^{2} C_{1}^{2} k_{0}^{2} M\left(k_{1}^{\beta} \varphi^{\beta / 2}(0)\right.}, \frac{m_{0} C_{*}^{4}}{4 \beta^{2} C_{1}^{2} k_{0}^{2}}, \frac{m_{0} C_{*}^{4}}{4 \delta^{2} \beta^{2} C_{1}^{2} k_{0}^{2}}\right]
\end{aligned}
$$

where C_{*} were defined in (2.4), we have

$$
\begin{equation*}
\varphi(t) \leq 3 \varphi(0) e^{-\frac{\tau_{0}}{3} t}, t \geq 0, \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{0}=\min \left(\delta, \epsilon_{0}\right), \epsilon_{0}=\min \left(\frac{1}{2 P_{0}}, \frac{\delta}{4}, 1\right), P_{0}=\frac{1}{C_{*} m_{0}^{1 / 2}}+\frac{\delta}{2 C_{*} m_{0}} \tag{2.8}
\end{equation*}
$$

and $\varphi(t)$ was defined in (2.6).

Corollary 2.2 If $K=\sup _{0 \leq t<\infty} M\left(\|u(t)\|_{W}^{\beta}\right)$
then (2.7) implies

$$
E(t) \leq 3 K \varphi(0) e^{-\frac{\tau_{0}}{3} t}, \quad t \geq 0
$$

where

$$
E(t)=\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}+M\left(\|u(t)\|_{W}^{\beta}\right)\left|S^{\alpha+3 / 2} u(t)\right|^{2}, t \geq 0
$$

Remark 2.1 By property (2.2), we have that the equations

$$
B u^{\prime \prime}(t)+M\left(\|u(t)\|_{W}^{\beta}\right) A u(t)+\delta B u^{\prime}(t)=0 \text { in } V^{\prime}, t>0
$$

and

$$
u^{\prime \prime}(t)+M\left(\|u(t)\|_{W}^{\beta}\right) S u(t)+\delta u^{\prime}(t)=0 \text { in } D\left(S^{3 / 2}\right), t>0
$$

are equivalents.

3 Proof of Theorem 2.1

We need of the following result, obtained in [13]:

Proposition 3.1 Let $M:\left[0, \infty\left[\rightarrow \mathbb{R}\right.\right.$ be a function of class C^{1} and

$$
u \in C^{1}([0, \infty[; W), u(t) \neq 0, \forall t \in[0, \infty[.
$$

Consider β a real number. Then the Leibniz derivative of $M\left(\|u(t)\|_{W}^{\beta}\right)$ is given by

$$
\begin{aligned}
& \frac{d}{d t}\left\{M\left(\|u(t)\|_{W}^{\beta}\right)\right\}=\beta M^{\prime}\left(\|u(t)\|_{W}^{\beta}\right)\|u(t)\|_{W}^{\beta-1}\left\langle\frac{J u(t)}{\|u(t)\|_{W}}, u^{\prime}(t)\right\rangle_{W^{\prime} \times W} \\
& \quad t \geq 0
\end{aligned}
$$

where J is the duality application $J: W \rightarrow W^{\prime}$ defined by

$$
\langle J v, v\rangle_{W^{\prime} \times W}=\|v\|_{W}^{2}, \quad\|J v\|_{W^{\prime}}=\|v\|_{W}, \quad \forall v \in W
$$

By [13] we have also that there exists $T_{0}>0$ and a unique function u in the class

$$
\begin{gather*}
u \in L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+5 / 2}\right)\right) \\
u^{\prime} \in L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+2}\right)\right) \tag{3.1}\\
u^{\prime \prime} \in L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+3 / 2}\right)\right)
\end{gather*}
$$

such that

$$
\begin{array}{l|l}
(L P) & u^{\prime \prime}+M\left(\|u\|_{W}^{\beta}\right) S u+\delta u^{\prime}=0 \text { in } L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+3 / 2}\right)\right) \\
u(0)=u^{0}, \quad u^{\prime}(0)=u^{1}
\end{array}
$$

and

$$
\begin{equation*}
\|u(t)\|_{W}>0, \quad \forall t \in\left[0, T_{0}\right] \tag{3.2}
\end{equation*}
$$

So $\mathcal{M} \neq \emptyset$.
Next we obtain estimates for the solutions u given in \mathcal{M}. Note that if u given in \mathcal{M} by the uniqueness of solutions (P) in $[0, \mathrm{~T}]$, we have that u belongs to class $(3.1), u$ is solution of (LP) in $[0, \mathrm{~T}]$ and u satisfies (3.2) in $[0, \mathrm{~T}]$ (see[13]). Consider $0<t_{0}<T_{\max }$. Taking the scalar product of H in both sides of equation $(L P)_{1}$ by $2 S^{2 \alpha+2} u^{\prime}$, we obtain:

$$
\begin{aligned}
\frac{d}{d t}\left[\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}\right] & +M\left(\|u(t)\|_{W}^{\beta}\right) \frac{d}{d t}\left[\left|S^{\alpha+3 / 2} u(t)\right|^{2}\right] \\
& +2 \delta\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}=0, t \in\left[0, t_{0}\right]
\end{aligned}
$$

that is,

$$
\begin{equation*}
\frac{\frac{d}{d t}\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}+\frac{d}{d t}\left[\left|S^{\alpha+3 / 2} u(t)\right|^{2}\right]=-2 \delta \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)} \tag{3.3}
\end{equation*}
$$

Introduce the function

$$
\begin{equation*}
\varphi(t)=\frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u(t)\right|^{2}, \quad t \in\left[0, t_{0}\right] \tag{3.4}
\end{equation*}
$$

Our goal is to show that $\varphi(t)$ is not increasing. By Proposition 3.1 and (3.3), we have:

$$
\begin{aligned}
& \varphi^{\prime}(t)=-\frac{1}{M\left(\|u(t)\|_{W}^{\beta}\right)} \beta M^{\prime}\left(\|u(t)\|_{W}^{\beta}\right)\|u(t)\|_{W}^{\beta-1} \\
& \left\langle\frac{J u(t)}{\|u(t)\|_{W}}, u^{\prime}(t)\right\rangle_{W \times W^{\prime}}\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}-\frac{2 \delta\left|S^{\alpha+1)} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}, t \in\left[0, t_{0}\right] .
\end{aligned}
$$

This gives

$$
\varphi^{\prime}(t) \leq \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}\left[\frac{\beta\left|M^{\prime}\left(\|u(t)\|_{W}^{\beta}\right)\right|\|u(t)\|_{W}^{\beta-1}}{M^{1 / 2}\left(\|u(t)\|_{W}^{\beta}\right)} \frac{\left\|u^{\prime}(t)\right\|_{W}}{M^{1 / 2}\left(\|\left. u(t)\right|_{W} ^{\beta}\right)}-2 \delta\right]
$$

Then hypothesis $(H 4)_{2}$ and embedding (H3) give:

$$
\begin{equation*}
\varphi^{\prime}(t) \leq \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}\left[\beta C_{0} k_{0} \frac{\left|S^{\alpha+1)} u^{\prime}(t)\right|^{2}}{M^{1 / 2}\left(\|\left. u(t)\right|_{W} ^{\beta}\right)}-2 \delta\right], \quad t \in\left[0, t_{0}\right] \tag{3.5}
\end{equation*}
$$

Introduce the function

$$
\psi(t)=\beta C_{0} k_{0} \frac{\left|S^{\alpha+1)} u^{\prime}(t)\right|}{M^{1 / 2}\left(\|\left. u(t)\right|_{W} ^{\beta}\right)}, \quad t \in\left[0, t_{0}\right] .
$$

We have

$$
\begin{equation*}
\psi(t) \leq \beta C_{0} k_{0} \varphi^{1 / 2}(t), \quad \forall t \in\left[0, t_{0}\right] \tag{3.6}
\end{equation*}
$$

We affirm that

$$
\begin{equation*}
\psi(t)<\delta, \quad \forall t \in\left[0, t_{0}\right] . \tag{3.7}
\end{equation*}
$$

In fact, suppose that there exists $t_{1} \in\left[0, t_{0}\right]$ such that $\psi(t) \geq \delta$. By hypothesis (H6), we have $\psi(0)<\delta$. Consider

$$
t^{*}=\inf \left\{t \in\left[0, t_{0}\right] ; \psi(t)=\delta\right\}>0
$$

As $\psi(t)$ is continuous in $\left[0, t_{0}\right]$, we have that $\psi\left(t^{*}\right)=\delta$, which implies by (3.5) that $\varphi(t)$ is not increasing on $\left[0, t^{*}\right]$. Then by hypothesis (H6) and (3.6), we obtain:

$$
\psi(t) \leq \beta C_{0} k_{0} \varphi^{1 / 2}(0)<\delta, \quad \forall t \in\left[0, t^{*}\right]
$$

which is a contradiction since $\psi\left(t^{*}\right)=\delta$. So (3.7) holds.
If follows from (3.7), (3.5) and noting that $0<t_{0}<T_{\max }$ was arbitrary that

$$
\begin{equation*}
\varphi^{\prime}(t) \leq-\delta \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|\left. u(t)\right|_{W} ^{\beta}\right)}, \quad \forall t \in\left[0, T_{\max }[.\right. \tag{3.8}
\end{equation*}
$$

In particular

$$
\begin{align*}
\frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)} & +\left|S^{\alpha+3 / 2} u(t)\right|^{2} \leq \frac{\left|S^{\alpha+1} u^{1}\right|^{2}}{M\left(\left\|u^{0}\right\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u^{0}\right|^{2}< \\
& <\frac{\delta^{2}}{\beta^{2} C_{0}^{2} k_{0}^{2}}=N_{0}^{2}, \quad \forall t \in\left[0, T_{\max }[.\right. \tag{3.9}
\end{align*}
$$

Note that if $T_{\max }$ is infinite then (3.9) give the theorem. Suppose that $T_{\max }$ is finite. Then (3.9) implies

$$
\begin{equation*}
\left|S^{\alpha+3 / 2} u(t)\right|^{2} \leq N_{0}^{2}, \quad \forall t \in\left[0, T_{\max }[.\right. \tag{3.10}
\end{equation*}
$$

As $\|u(t)\|_{W} \leq k_{1}\|u(t)\|_{D\left(S^{\alpha+3 / 2}\right)}$ for all $t \in\left[0, T_{\max }\right.$ [, we have by (3.9) and (3.10) that

$$
\begin{equation*}
\left|S^{\alpha+1} u^{\prime}(t)\right|^{2} \leq N_{1}^{2}, \quad \forall t \in\left[0, T_{\max }[.\right. \tag{3.11}
\end{equation*}
$$

Consider a sequence of real number $\left(t_{\nu}\right)$ such that $0<t_{\nu}<T_{\max }$ and $t_{\nu} \rightarrow T_{\text {max }}$. By (3.10) and (3.11) we have that there exist $\zeta \in D\left(S^{\alpha+3 / 2}\right)$ and $\chi \in D\left(S^{\alpha+1}\right)$ such that

$$
\begin{align*}
& u\left(t_{\nu}\right) \rightarrow \zeta \text { weak in } D\left(S^{\alpha+3 / 2}\right) \tag{3.12}\\
& u^{\prime}\left(t_{\nu}\right) \rightarrow \chi \text { weak in } D\left(S^{\alpha+1}\right) \tag{3.13}
\end{align*}
$$

We affirm that

$$
\begin{equation*}
\zeta=\chi=0 \tag{3.14}
\end{equation*}
$$

In fact, if $\zeta \neq 0$ with ζ and χ we determine the local solution w of the problem

$$
\left\lvert\, \begin{aligned}
& w^{\prime \prime}+M\left(\|w\|_{W}^{\beta}\right) S w+\delta w^{\prime}=0 \text { in } L^{\infty}\left(0, T_{0} ; D\left(S^{\alpha+1 / 2}\right)\right) \\
& w(0)=\zeta, w^{\prime}(0)=\chi
\end{aligned}\right.
$$

(see [13]). Then the function

$$
\widetilde{u}(t)=\left\lvert\, \begin{aligned}
& w(t), \quad 0 \leq t<T_{\max } \\
& w\left(t-T_{\max }\right), \quad T_{\max } \leq t<T_{0}+T_{\max }
\end{aligned}\right.
$$

is a solution of Problem (P) in $\left[0, T_{0}+T_{\max }\right]$, with $\|\widetilde{u}(t)\|_{W}>0$ for all $t \in\left[0, T_{0}+T_{\max }\right]$. This gives a contradiction with the definition of $T_{\max }$. So $\zeta=0$.

Also by (3.11),

$$
\left\|u\left(t_{\nu}\right)-u\left(t_{\mu}\right)\right\|_{D\left(S^{\alpha+1}\right)} \leq \int_{t_{\mu}}^{t_{\nu}}\left\|u^{\prime}(s)\right\|_{D\left(S^{\alpha+1}\right)} d s \leq N_{1}\left|t_{\nu}-t_{\mu}\right|,
$$

that is, $\left(u\left(t_{\nu}\right)\right)$ is a Cauchy sequence in $D\left(S^{\alpha+1}\right)$. As $\zeta=0$, (3.12) implies then

$$
u\left(t_{\nu}\right) \rightarrow 0 \text { in } D\left(S^{\alpha+1}\right)
$$

In particular

$$
u\left(t_{\nu}\right) \rightarrow 0 \text { in } W .
$$

By estimate (3.9), we have:

$$
\left|S^{\alpha+1} u^{\prime}\left(t_{\nu}\right)\right|^{2} \leq N_{0}^{2} M\left(\left\|u\left(t_{\nu}\right)\right\|_{W}\right)
$$

As $M(0)=0$ it follows from this inequality and convergence (3.13) that $\chi=0$. So the affirmation (3.14) is correct.

Also by equation $(P)_{1}$ we have that

$$
u^{\prime \prime}\left(t_{\nu}\right) \rightarrow 0 \text { in } D\left(S^{\alpha+1 / 2}\right)
$$

Thus if $T_{\max }$ is finite we define $u(t)=0$ for $t \geq T_{\max }$. This extension is a solution of Problem (P) in $[0, \infty[$.

4 Proof of Theorem 2.2

We begin with a previous result.

Lemma 4.1 Let $\beta>1$ a real number, $M:[0, \infty[\rightarrow \mathbb{R}$ a function of class C^{1} and $u \in C^{1}\left(\left[0, \infty[; W)\right.\right.$. Then if $u\left(t_{0}\right)=0$, we have that the Leibniz derivative $\frac{d}{d t} M\left(\left\|u\left(t_{0}\right)\right\|_{W}^{\beta}\right)$ is equal to zero.

Proof: Consider $t_{0}>0$ and $u\left(t_{0}\right)=0$. Then

$$
u\left(t_{0}+h\right)=u\left(t_{0}+h\right)-u\left(t_{0}\right)=h \int_{0}^{1} u^{\prime}\left(t_{0}+\tau h\right) d \tau
$$

which implies for $0<|h|<\min \left\{1, t_{0} / 2\right\}$,

$$
\left\|u\left(t_{0}+h\right)\right\|_{W}^{\beta} \leq|h|^{\beta}\left(\int_{0}^{1}\left\|u^{\prime}\left(t_{0}+\tau h\right)\right\|_{W} d \tau\right)^{\beta} \leq|h|^{\beta} C^{\beta}
$$

where

$$
C=\max \left\{\left\|u^{\prime}(s)\right\|_{W} ; t_{0} / 2 \leq s \leq t_{0}+1\right\} .
$$

The last inequality gives the result since $\beta>1$. Analogous arguments give the result when $t_{0}=0$ and $u(0)=0$.

Let u_{j}^{0} and u_{j}^{1} be two sequences of vectors of $D\left(S^{2 \alpha+5 / 2}\right)$ and $D\left(S^{2 \alpha+2}\right)$, respectively, such that

$$
u_{j}^{0} \rightarrow u^{0} \text { in } D\left(S^{\alpha+3 / 2}\right), \quad u_{j}^{0} \rightarrow u^{1} \text { in } D\left(S^{\alpha+1}\right) .
$$

By these convergence and (H9), we have:

$$
\beta C_{1} k_{0} M^{1 / 2}\left(k_{1}^{\beta} \varphi_{j}^{\beta / 2}(0)\right) \varphi_{j}^{1 / 2}(0)<\delta, \quad j \geq j_{0},
$$

where

$$
\varphi_{j}(0)=\frac{\left|S^{\alpha+1} u_{j}^{1}\right|^{2}}{M\left(\left\|u_{j}^{0}\right\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u_{j}^{0}\right|^{2}
$$

Consider the problem ($j \geq j_{0}$)

$$
\left(P_{j}\right) \left\lvert\, \begin{aligned}
& u_{j}^{\prime \prime}+M\left(\left\|u_{j}\right\|_{W}^{\beta}\right) S u_{j}+\delta u_{j}^{\prime}=0 \text { in } L^{\infty}\left(0, \infty ; D\left(S^{2 \alpha+3 / 2}\right)\right), \\
& u_{j}(0)=u_{j}^{0}, \quad u_{j}^{\prime}(0)=u_{j}^{1} .
\end{aligned}\right.
$$

By applying the Galerkin method, the successive approximations technique and the spectral theory of the operator S, Arzela-Ascoli Theorem, Proposition (3.1), Lemma (4.1), we obtain a local solution u_{j} of $\left(P_{j}\right)$, that is, we find a real number $T_{0}>0$ and a function u_{j} in the class

$$
\begin{gather*}
u_{j} \in L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+5 / 2}\right)\right), \\
u_{j}^{\prime} \in L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+2}\right)\right), \tag{4.1}\\
u_{j}^{\prime \prime} \in L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+3 / 2}\right)\right)
\end{gather*}
$$

such that, u_{j} is the solution of Problem $\left(P_{j}\right)$ in $L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+3 / 2}\right)\right)$ (see the methodology of this approach in S. S. Souza and the third A. [27]). The same arguments allow us to obtain a real number $T_{0}>0$ and a solution u in the class

$$
\begin{gathered}
u \in L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+3 / 2}\right)\right) \\
u^{\prime} \in L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+1}\right)\right) \\
u^{\prime \prime} \in L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+1 / 2}\right)\right)
\end{gathered}
$$

such that, u is the unique solution of the problem

$$
\left(P^{\prime}\right) \left\lvert\, \begin{aligned}
& u^{\prime \prime}+M\left(\|u\|_{W}^{\beta}\right) S u_{j}+\delta u^{\prime}=0 \text { in } L^{\infty}\left(0, T_{0} ; D\left(S^{2 \alpha+1 / 2}\right)\right), \\
& u(0)=\zeta, u^{\prime}(0)=\eta,
\end{aligned}\right.
$$

where $\zeta \in D\left(S^{\alpha+3 / 2}\right)$ and $\eta \in D\left(S^{2 \alpha+1}\right)$ are arbitrary.
Let \mathcal{M}_{j} be the set of real numbers $T>0$ such that there exists a unique function u_{j} in class (4.1) with T instead T_{0} and u_{j} is the solution of $\left(P_{j}\right)$ in $L^{\infty}\left(0, T ; D\left(S^{2 \alpha+3 / 2}\right)\right)$. Then by the result of local existence above, we have that $\mathcal{M}_{j} \neq \emptyset$. Denote by $T_{\max , j}$ the supremum of $T \in \mathcal{M}$.

Let $\varphi_{j}(t), j \geq j_{0}$, be the function

$$
\begin{equation*}
\varphi_{j}(t)=\frac{\left|S^{\alpha+1} u_{j}^{\prime}(t)\right|^{2}}{M\left(\left\|u_{j}(t)\right\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u_{j}(t)\right|^{2}, \quad t \in\left[0, T_{\max , j}[.\right. \tag{4.2}
\end{equation*}
$$

Then as in the proof of Theorem (2.1), we obtain:

$$
\begin{equation*}
\varphi_{j}^{\prime}(t) \leq \frac{\left|S^{\alpha+1} u_{j}^{\prime}(t)\right|^{2}}{M\left(\left\|u_{j}(t)\right\|_{W}^{\beta}\right)}\left[\beta C_{1} k_{0}\left|S^{\alpha+1} u_{j}^{\prime}(t)\right|-2 \delta\right], \quad t \in\left[0, T_{\max , j}[.\right. \tag{4.3}
\end{equation*}
$$

Consider the function

$$
\psi_{1}(t)=\beta C_{1} k_{0}\left|S^{\alpha+1} u_{j}^{\prime}(t)\right|, \quad t \in\left[0, T_{\max , j}[.\right.
$$

By (H9) and noting that $M(\xi)$ is increasing, we have:

$$
\begin{aligned}
\psi_{1}(0)=\beta C_{1} k_{0} M^{1 / 2}\left(\left\|u_{j}^{0}\right\|_{W}^{\beta}\right) \frac{\left|S^{\alpha+1} u_{j}^{1}\right|}{M^{1 / 2}\left(\left\|u_{j}^{0}\right\|_{W}^{\beta}\right)} \\
\leq \beta C_{1} k_{0} M^{1 / 2}\left(k_{1}^{\beta} \varphi_{j}^{\beta / 2}(0)\right) \varphi_{j}^{1 / 2}(0)<\delta
\end{aligned}
$$

By similar arguments used in the proof Theorem 2.1, we obtain:

$$
\begin{equation*}
\psi_{1}(t)<\delta, \quad t \in\left[0, T_{\max , j}[.\right. \tag{4.4}
\end{equation*}
$$

This result and (4.3) imply

$$
\begin{equation*}
\varphi_{j}^{\prime}(t) \leq-\delta \frac{\left|S^{\alpha+1)} u_{j}^{\prime}(t)\right|^{2}}{M\left(\left\|u_{j}(t)\right\|_{W}^{\beta}\right)}, t \in\left[0, T_{\max , j}[\right. \tag{4.5}
\end{equation*}
$$

and

$$
\begin{gather*}
\frac{\left|S^{\alpha+1} u_{j}^{\prime}(t)\right|^{2}}{M\left(\left\|u_{j}(t)\right\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u_{j}(t)\right|^{2} \leq \frac{\left|S^{\alpha+1} u_{j}^{1}\right|^{2}}{M\left(\left\|u_{j}^{0}\right\|_{W}^{\beta}\right)}+\left|S^{\alpha+3 / 2} u_{j}^{0}\right|^{2}< \\
<\frac{\delta^{2}}{\beta^{2} C_{1}^{2} k_{0}^{2} M\left(k_{1}^{\beta} \varphi_{j}^{\beta / 2}(0)\right)}, \quad t \in\left[0, T_{\max , j}[.\right. \tag{4.6}
\end{gather*}
$$

By inequality (4.4), local existence of solution of $\left(P^{\prime}\right)$, uniqueness of solution of Problem $\left(P_{j}\right)$ in any $L^{\infty}\left(0, T ; D\left(S^{2 \alpha+3 / 2}\right)\right)$ and by similar argument used in the proof of Theorem 2.1, we obtain that $T_{\max , j}$ is infinite for $j \geq j_{0}$.

Fix $j \geq j_{0}$ and consider $\epsilon>0$. Introduce the functions

$$
\begin{equation*}
\rho(t)=\frac{\left(S^{\alpha+1} u_{j}^{\prime}(t), S^{\alpha+1} u_{j}(t)\right)}{M\left(\left\|u_{j}(t)\right\|_{W}^{\beta}\right)}+\frac{\delta}{2} \frac{\left|S^{\alpha+1} u_{j}(t)\right|^{2}}{M\left(\left\|u_{j}(t)\right\|_{W}^{\beta}\right)}, t \in[0, \infty[\tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{\epsilon}(t)=\varphi_{j}(t)+\epsilon \rho(t), \quad t \in[0, \infty[, \tag{4.8}
\end{equation*}
$$

where u_{j} is the solution of $\left(P_{j}\right)$.
In what follows, to facilitate the notation, we omit the subscript j . We have:

$$
|\rho(t)| \leq \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|}{C_{*} m_{0}^{1 / 2} M\left(\|u(t)\|_{W}^{\beta}\right)^{1 / 2}}\left|S^{\alpha+3 / 2} u(t)\right|+\frac{\delta}{2} \frac{\left|S^{\alpha+3 / 2} u(t)\right|^{2}}{m_{0} C_{*}}
$$

where C_{*} were defined in (2.4), that is,

$$
|\rho(t)| \leq\left[\frac{1}{C_{*} m_{0}^{1 / 2}}+\frac{\delta}{2 m_{0} C_{*}}\right] \varphi(t), \quad t \in[0, \infty[.
$$

So, this inequality and (4.8) imply

$$
\left|\varphi_{\epsilon}(t)\right| \leq\left(1+\epsilon P_{0}\right) \varphi(t), \text { where } P_{0}=\frac{1}{C_{*} m_{0}^{1 / 2}}+\frac{\delta}{2 m_{0} C_{*}}
$$

Then taking $0<\epsilon \leq 1 / 2 P_{0}$, we have:

$$
\begin{equation*}
\frac{1}{2} \varphi(t) \leq \varphi_{\epsilon}(t) \leq \frac{3}{2} \varphi(t), \quad t \in[0, \infty[. \tag{4.9}
\end{equation*}
$$

On the other side, by taking the scalar product of H in both sides of equation $\left(P_{j}\right)_{1}$ by $S^{2 \alpha+2} u$, we obtain:

$$
\left(S^{\alpha+1} u^{\prime \prime}(t), S^{\alpha+1} u(t)\right)+M\left(\|u(t)\|_{W}^{\beta}\right)\left|S^{\alpha+3 / 2} u(t)\right|^{2}+\frac{\delta}{2} \frac{d}{d t}\left|S^{\alpha+1} u(t)\right|^{2}=0
$$

or

$$
\frac{\frac{d}{d t}\left(S^{\alpha+1} u^{\prime}(t), S^{\alpha+1} u(t)\right)}{M\left(\|u(t)\|_{W}^{\beta}\right)}+\frac{\delta}{2} \frac{\frac{d}{d t}\left|S^{\alpha+1} u(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}=\frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}-\left|S^{\alpha+3 / 2} u(t)\right|^{2}
$$

Combining this equality with the definition (4.7) of $\rho(t)$, we deduce, for $u(t) \neq 0$,

$$
\begin{gathered}
\rho^{\prime}(t)=\frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}-\left|S^{\alpha+3 / 2} u(t)\right|^{2}- \\
\frac{\beta M^{\prime}\left(\|u(t)\|_{W}^{\beta}\right)\|u(t)\|_{W}^{\beta-1}}{M\left(\|u(t)\|_{W}^{\beta}\right)}\left\langle\frac{J u(t)}{\|u(t)\|_{W}}, u^{\prime}(t)\right\rangle \\
\left(\frac{S^{\alpha+1} u^{\prime}(t)}{M^{1 / 2}\left(\|u(t)\|_{W}^{\beta}\right)}, \frac{S^{\alpha+1} u(t)}{M^{1 / 2}\left(\|u(t)\|_{W}^{\beta}\right)}\right)- \\
\frac{\delta \beta M^{\prime}\left(\|u(t)\|_{W}^{\beta}\right)\|u(t)\|_{W}^{\beta-1}}{2 M\left(\|u(t)\|_{W}^{\beta}\right)}\left\langle\frac{J u(t)}{\|u(t)\|_{W}}, u^{\prime}(t)\right\rangle \frac{\left|S^{\alpha+1} u(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}=
\end{gathered}
$$

$$
\begin{equation*}
=\frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}-\left|S^{\alpha+3 / 2} u(t)\right|^{2}-L_{1}-L_{2} ; \tag{4.10}
\end{equation*}
$$

and for $u(t)=0$,

$$
\begin{equation*}
\rho^{\prime}(t)=\frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}-\left|S^{\alpha+3 / 2} u(t)\right|^{2} \tag{4.11}
\end{equation*}
$$

(see Lemma 4.1). We have, by hypothesis $(H 7)_{4}$, (4.4), and hypothesis (H10):

$$
\begin{gathered}
\left|L_{1}\right| \leq \beta C_{1} k_{0}\left|S^{\alpha+1} u^{\prime}(t)\right| \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|}{M^{1 / 2}\left(\|u(t)\|_{W}^{\beta}\right)} \frac{\left|S^{\alpha+1} u(t)\right|}{M^{1 / 2}\left(\|u(t)\|_{W}^{\beta}\right)} \leq \\
\leq \beta C_{1} k_{0}\left|S^{\alpha+1} u^{\prime}(t)\right|\left(\frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{2 M\left(\|u(t)\|_{W}^{\beta}\right)}+\frac{\left|S^{\alpha+1} u(t)\right|^{2}}{2 M\left(\|u(t)\|_{W}^{\beta}\right)}\right) \leq \\
\leq \frac{\delta}{4} \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}+\frac{\beta C_{1} k_{0}\left|S^{\alpha+1} u^{\prime}(t)\right|\left|S^{\alpha+3 / 2} u(t)\right|^{2}}{2 m_{0}^{1 / 2} C_{*}^{2} M\left(\|u(t)\|_{W}^{\beta}\right)^{1 / 2}} \leq \\
\leq \frac{\delta}{4} \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}+\frac{1}{4}\left|S^{\alpha+3 / 2} u(t)\right|^{2}
\end{gathered}
$$

Also

$$
\left|L_{2}\right| \leq \frac{\delta C_{1} k_{0}}{2 m_{0}^{1 / 2} C_{*}^{2}} \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|}{M^{1 / 2}\left(\|u(t)\|_{W}^{\beta}\right)}\left|S^{\alpha+3 / 2} u(t)\right|^{2} \leq \frac{1}{4}\left|S^{\alpha+3 / 2} u(t)\right|^{2}
$$

Combining (4.10), (4.11) and the last two inequalities, we obtain:

$$
\rho^{\prime}(t) \leq \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|}{M\left(\|u(t)\|_{W}^{\beta}\right)}-\left|S^{\alpha+3 / 2} u(t)\right|^{2}+\frac{\delta}{4} \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}+\frac{1}{2}\left|S^{\alpha+3 / 2} u(t)\right|^{2}
$$

This inequality, the definition (4.8) of φ_{ϵ} and inequality (4.3), give:

$$
\begin{aligned}
\varphi_{\epsilon}^{\prime}(t) & \leq-\delta \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|}{M\left(\|u(t)\|_{W}^{\beta}\right)}+\epsilon \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}-\epsilon\left|S^{\alpha+3 / 2} u(t)\right|^{2} \\
& +\epsilon \frac{\delta}{4} \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|^{2}}{M\left(\|u(t)\|_{W}^{\beta}\right)}+\frac{\epsilon}{2}\left|S^{\alpha+3 / 2} u(t)\right|^{2}
\end{aligned}
$$

for all $u(t), t \in[0, \infty[$. Noting that $\epsilon \leq \min \{1, \delta / 4\}$, we obtain:

$$
\varphi_{\epsilon}^{\prime}(t) \leq-\frac{\delta}{2} \frac{\left|S^{\alpha+1} u^{\prime}(t)\right|}{M\left(\|u(t)\|_{W}^{\beta}\right)}-\frac{\epsilon}{2}\left|S^{\alpha+3 / 2} u(t)\right|^{2}, \quad t \in[0, \infty[,
$$

that implies by (4.9),

$$
\varphi_{\epsilon}^{\prime}(t) \leq-\frac{\tau_{0}}{3} \varphi_{\epsilon}(t), \quad t \in[0, \infty[,
$$

which gives

$$
\varphi_{\epsilon}(t) \leq \varphi_{\epsilon}(0) e^{-\frac{\tau_{0}}{3} t}, t \in[0, \infty[.
$$

Therefore, by (4.9),

$$
\varphi_{j}(t) \leq 3 \varphi_{j}(0) e^{-\frac{\tau_{0}}{3} t}, \quad t \in\left[0, \infty\left[, \quad j \geq j_{0}\right.\right.
$$

By the methodology used in [27], we obtain the limit u of the solutions u_{j} is the solution of Problem (P) with u in class (2.3). Also by taking the lim inf in both sides of the last inequality, we deduce inequality (2.7).

5 Examples

The result obtained in Theorem 2.1 can be applied to the equation

$$
u^{\prime \prime}(t)+\|u(t)\|_{W}^{2} S u(t)+\delta u^{\prime}(t)=0, \quad t>0 .
$$

Here $M(\xi)=\xi^{2 / \beta}$. And the result obtained in Theorem 2.2, to the equation

$$
u^{\prime \prime}(t)+M\left(\|u(t)\|_{W}^{\beta}\right) S u(t)+\delta u^{\prime}(t)=0, \quad t>0
$$

where $M(\xi)=\xi^{\sigma}+m_{0}, \sigma \geq 1 / \beta$ and $m_{0}>0$. For the mixed problem associated to these equation, see [13].

REFERENCES

[1] Arosio, A.; Garavaldi, S., On the mildly Kirchhoff string, Math. Appl. Science, 14 (1991), 177-195.
[2] Arosio, A.; Spagnolo, S., Global solutions to the Cauchy problem for a nonlinear hyperbolic equation, Nonlinear Partial Differential Equations, H. Brezis and J. 1.Lions eds., College de France Seminar, Vol. 6, Pitman, London, (1984), 1-26.
[3] Bernstein, S., Sur une classe d'équations functionelles aux derivées partielles, Izv. Acad. Nauk SSSR, Ser. Math., 4 (1940), 17-26.
[4] Brezis, H., Analyse Fonctionelle, Théorie et Applications, Masson, Paris, (1983).
[5] Carrier, G. F., On the non-linear vibration problem of the elastic string, Quart. Appl. Math., 3 (1945), 157-165.
[6] Clark, H. R., Global classical solutions to the Cauchy problem for a nonlinear wave equation, Internat. J. Math. \& Math. Sci., 21(1998), 533-548.
[7] Corrêa, F. J. S. A.; Nascimento, R. G., On an elliptic equation with a Kirchhoff term, Proceedings 62 SBA, UNIRIO, Rio, (2005), 1-8.
[8] Cousin, A. T.; Frota, C. L.; Larkin, N. A.; Medeiros, L. A., On the abstract model of Kirchhoff-Carrier equation, Computational and Appl. Analyisi, 1 (1997), 389-404.
[9] Crippa, H. R., On local solutions of some mildly degenerate hyperbolic equation, Nonlinear Analysis : TMA, 21 (1993), 565-574.
[10] Ebihara, Y.; Medeiros, L. A.; Milla Miranda, M., Local solutions for a nonlinear degenerate hyperbolic equation, Nonlinear analysis :TMA, 10 (1986), 27-40.
[11] Ekeland, I.; Teman, R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, (1976).
[12] Frota, C. L., Non local solutions of a nonlinear hyperbolic partial differential equation, Portugaliae Mathematica, 51 (1994), 455-473.
[13] Izaguirre, R.; Fuentes, R.; Milla Miranda, M., Existence of local solutions of the Kirchhoff-Carrier equation in Banach spaces, to appear in Nonlinear Analysis: TMA.
[14] Kirchhoff, G., Vorlesunger über Mechanik, Teubner, Leipzig, (1883).
[15] Kormonik, V.; Zuazua, E., A direct method for boundary stabilization of the wave equation, J. Math. Pure et Appl., 69 (1990), 33-54.
[16] Larkin, N. A., Global regular solution for the nonhomogeneous Carrier equation, Mathematical Problems in Enginering, 8 (2002), 15-31.
[17] Limaco, J.; Clark, H. R.; Medeiros, L. A., On damped Kirchhoff equation with variable coefficients, J. Math. Anal. Appl., 307 (2005), 641-655.
[18] Lions, J.-L., Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires, Dunod, Paris, (1969).
[19] Lions, J.-L., On some equations in boundary value problems of mathematical physics, Contemporary Developmemt in Continuous Mechanics and Partial Differential Equations, G. de la Penha and L. A. Medeiros eds., North-Holland, London, (1978).
[20] Matos, M. P., Mathematical analysis of the nonlinear model for the vibrations of a string, Nonlinear Analysis : TMA, 17 (1991), 11251137.
[21] Medeiros, L. A.; Milla Miranda, M., Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Aplic. Comp., 6 (1987), 257-276.
[22] Medeiros, L.A.; Limaco, J.; Menezes, S. B., Mathematical vibrations of elastic string : mathematical aspects, part one, J. Comp. Analysis and Applications, 4 (2002), 91-127.
[23] Nishihara, K., On a global solutions of some quasilinear hyperbolic equation, Tokyo, J. Math., 7(1984), 437-459.
[24] Pohozaev, S. I., On a class of quasilinear hyperbolic equations, Math. Sbornik, 95 (1975), 152-166.
[25] Pohozaev, S. I., The Kirchhoff quasilinear hyperbolic equation, Differential Equations, 21 (1985), 101-108.
[26] Rivera, P. H., On local strong solution of a nonlinear partial differential equation, Applicable Analysis, 10 (1980), 93-104.
[27] Souza, S. S.; Milla Miranda, M., Existence and decay of solutions of a damped Kirchhoff equation, Int. J. of Pure and Appl. Math. 32 (2006), 483-508.
[28] Yamada, Y., Some nonlinear degenerate wave equation, NonlinearAnalysis: TMA, 11 (1987), 1155-1168.
[29] Yamazaki, T., On local solutions of some quasilinear degenerate hyperbolic equations, Funkciakj Ervacioj, 31 (1988), 439-457.
[30] Zuazua, E., Controlabilidad Exacta yEstabilización dela Ecuación de Ondas, Textos de Métodos Matemáticos, 23, IM-UFRJ, Rio, (1991).
[31] Zeidler, E., Nonlinear Functional Analysis and Its Applications, Vol. III, Springer-Verlag, New York, (1985).

Facultad de Ciencias Matemáticas	Instituto de Matemática - UFF
UNMSM	Rua Mário Santos Braga S/N
Av. Venezuela S/N,	Valonguinho
Lima, PERU	$24.020-140$, Niterói, RJ, BRAZIL
	E-mail: ricardof16@yahoo.com.br

Instituto de Matemática - UFRJ
Caixa Postal 68530
21945-970, Rio de Janeiro, RJ, BRAZIL
E-mail: milla@im.ufrj.br

