

GLOBAL AND DECAY OF SOLUTIONS OF A DAMPED KIRCHHOFF-CARRIER EQUATION IN BANACH SPACES

R. Izaguirre R. Fuentes M. Milla Miranda

In Homage to Professor L. A. Medeiros by his Eightieth Birthday

Abstract

This paper is concerned with the study of the existence and the decay of solutions of the following problem:

$$\left|\begin{array}{l} Bu''(t)+M\left(\left\|u(t)\right\|_W^\beta\right)Au(t)+\delta Bu'(t)=0, \text{ in } V',t>0,\\ u\left(0\right)=u^0 \ ,u'(0)=u^1 \ (u^0\neq 0), \end{array}\right.$$

where A and B are symmetric linear operators from a Hilbert space V into its dual V' satisfying $\langle Bv,v\rangle>0,\ v\neq 0, \langle Av,v\rangle\geq \gamma \|v\|_V^2,\gamma>0$; W a Banach space with V continuously embedding in W; β a real number with $\beta\geq 1,\ M(\xi)$ a smooth function with $M(\xi)\geq 0$, and δ a positive real number

AMS Subject Classification: 35L70,35B35.

 $[\]it Key\ Words\ and\ Phrases:\ Kirchhoff-Carrier\ Equation,\ global\ solutions,\ decay\ of\ solutions.$

1 Introduction

Let V be a real separable Hilbert space whose dual is denoted by V' and W a Banach space with V continuously embedding in W. Consider two symmetric linear operators $A, B: V \to V'$ such that

$$\langle Av, v \rangle \ge \gamma \|v\|_V^2$$
, $\forall v \in V$ (γ positive constant);
$$\langle Bv, v \rangle > 0, \ \forall v \in V, \ v \ne 0;$$

and a smooth function $M(\xi)$ with

$$M(\xi) \ge 0, \ \forall \ \xi \ge 0.$$

Consider also two real numbers $\beta \geq 1$ and $\delta > 0$. In this conditions we have the following problem:

(*)
$$\begin{vmatrix} Bu''(t) + M \left(\|u(t)\|_W^{\beta} \right) Au(t) + \delta Bu'(t) = 0, \text{ in } V', t > 0, \\ u(0) = u^0, \ u'(0) = u^1 \ (u^0 \neq 0). \end{vmatrix}$$

Equation in (*) is a damped abstract version in Banach spaces of the Kirchhoff equation [14] and the Carrier equation [5]. When $B = I, \beta = 2$, W is a Hilbert space and $\delta \geq 0$, there is an extensive literature on this problem (cf. Medeiros, Limaco and Menezes [22]).

The existence of local solutions of problem (*) has been obtained by the Authors in [13].

In this paper we study the existence of global solutions of (*) when $M(\xi) \geq 0$ and the exponential decay of solutions of (*) when $M(\xi) \geq m_0 > 0$. In Section 5, we give some examples.

To obtain global solutions we use the prolongation method and in the decay of solutions, the Lyapunov approach, cf. Komornik and Zuazua [15]. In both cases it is fundamental an appropriate characterization of the derivative of $M(\|u(t)\|_W^{\beta})$. We use various results obtained in [13] and in S. S. Souza and the third A. [27].

2 Notations and Main Results

Let V be a real separable Hilbert space whose dual is denoted by V'. Consider two linear operators $A, B: V \to V'$ satisfying

$$\begin{split} \langle Au,v\rangle &= \langle u,Av\rangle\,, \forall u,v\in V;\\ (H1) & \begin{aligned} \langle Au,u\rangle &\geq \gamma \left\|u\right\|_V^2\,, \forall u\in V \text{ (γ positive constant)};\\ \langle Bu,v\rangle &= \langle u,Bv\rangle\,, \forall u,v\in V;\\ \langle Bu,u\rangle &> 0, \forall u\in V,u\neq 0. \end{aligned}$$

Here $\langle \; , \; \rangle$ denotes the duality pairing between V' and V. We have that the scalar product $((u,v)) = \langle Au,v \rangle$ defines a norm $\|u\| = ((u,u))^{1/2}$ in V which is equivalent to the norm $\|u\|_V$. The space V will be equipped with the scalar product ((u,v)) and norm $\|u\|$.

The bilinear form

$$(u, v) = \langle Bu, v \rangle, \ \forall u, v \in V$$

is a scalar product in V. We denote by H the completed of the space $\{V, (u, v)\}$. The scalar product of the Hilbert space H will be denoted also by (u, v) and its norm by |u|. We have that

V is densely and continuously embedding in H.

Consider the coercive self-adjoint operator S of H determined by the triplet $\{V, H, ((u, v))\}$. We have:

$$(Su, v) = ((u, v)) = \langle Au, v \rangle, \ \forall u \in D(S), \ \forall v \in V;$$
 (2.1)

$$Au = BSu \text{ in } V', \ \forall u \in D(S^{3/2}). \tag{2.2}$$

Identify H with its dual H'. Then expression (2.1) says that A is the extension of S to the space V.

Represent by W a Banach space whose dual

(H2)
$$W'$$
 is strictly convex.

Denote by $\theta \geq 0$ a real number and by $(E_{\lambda})_{\lambda \in \mathbb{R}}$ the spectral family of S. Then $D(S^{\theta})$ is the Hilbert space

$$D\left(S^{\theta}\right) = \left\{u \in H; \int_{0}^{\infty} \lambda^{2\theta} d(E_{\lambda}u, u) < \infty\right\}$$

equipped with the scalar product

$$(u,v)_{D(S^{\theta})} = \left(S^{\theta}u, S^{\theta}v\right).$$

Fix $\alpha \geq 0$ a real number. Assume that $D(S^{\alpha+1})$ is continuously embedding in W, that is, there exist a positive number k_0 , such that

(H3)
$$||u||_W \le k_0 ||u||_{D(S^{\alpha+1})}, \forall u \in D(S^{\alpha+1}).$$

Consider a function $M(\xi)$ and $\beta \geq 1$ a real number satisfying

$$(H4) \mid M \in C^{0}([0, \infty[), M(0) = 0, M(\xi) > 0, \forall \xi > 0; \\ M \in C^{1}(]0, \infty[); \\ |M'(\xi)| \lambda^{1-1/\beta} \leq C_{0}M^{1/2}(\xi), \forall \xi > 0 \ (C_{0} \text{ positive constant}).$$

Under the above considerations, we have the following result:

Theorem 2.1 Assume hypotheses (H1)-(H4) with $\alpha \geq 0$, $\beta \geq 1$. Consider $\delta > 0$ a real number and

(H5)
$$u^0 \in D(S^{2\alpha+5/2}), u^1 \in D(S^{2\alpha+2}), u^0 \neq 0$$
 satisfying

(H6)
$$\beta C_0 k_0 \left[\frac{\left| S^{\alpha+1} u^1 \right|^2}{M \left(\left\| u^0 \right\|_W^{\beta} \right)} + \left| S^{\alpha+3/2} u^0 \right|^2 \right]^{1/2} < \delta.$$

(a) Then there exists a function u in the class

$$u \in L^{\infty}(0, \infty; D(S^{\alpha+3/2})),$$

$$u' \in L^{\infty}(0, \infty; D(S^{\alpha+1})),$$

$$u'' \in L^{\infty}(0, \infty; D(S^{\alpha+1/2}))$$

$$(2.3)$$

satisfying

(P)
$$u'' + M (||u||_W^{\beta}) Su + \delta u' = 0 \text{ in } L^{\infty}(0, \infty; D(S^{\alpha+1/2})),$$
$$u(0) = u^0, u'(0) = u^1.$$

(b) Let \mathcal{M} be the set constituted by the real numbers T > 0 such that there exists a unique function u in the class (2.3) with u solution of (P) in [0, T] and $||u(t)||_W > 0$ for all $t \in [0, T]$. Let T_{max} be the supremum of the $T \in \mathcal{M}$. Then $\mathcal{M} \neq \emptyset$ and the solution u obtained in (a) verifies

$$u \in L^{\infty}_{loc}(0, T_{max}; D(S^{2\alpha+5/2})),$$

 $u' \in L^{\infty}_{loc}(0, T_{max}; D(S^{2\alpha+2})),$
 $u'' \in L^{\infty}_{loc}(0, T_{max}; D(S^{\alpha+1/2}))$

and

$$\frac{\left|S^{\alpha+1}u'(t)\right|^{2}}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)} + \left|S^{\alpha+3/2}u(t)\right|^{2} \leq \frac{\left|S^{\alpha+1}u^{1}\right|^{2}}{M\left(\left\|u^{0}\right\|_{W}^{\beta}\right)} + \left|S^{\alpha+3/2}u^{0}\right|^{2}, \ 0 \leq t < T_{max}.$$

And if T_{max} is finite,

$$u(t) = 0$$
, for $t \ge T_{max}$.

In order to obtain the decay of solutions of problem (P), we make the following considerations.

Consider a function $M(\xi)$ and $\beta > 1$ a real number satisfying

$$(H7) \begin{vmatrix} M \in C^{1}([0, \infty[); \\ M(\xi) \geq m_{0} > 0, \ \forall \ \xi \geq 0 \ (m_{0} \text{ constant}); \\ M'(\xi) \geq 0, \ \forall \ \xi \geq 0; \\ |M'(\xi)| \ \lambda^{1-1/\beta} \leq C_{1}M(\xi), \ \forall \ \xi \geq 0 \ (C_{1} \text{ positive constant}). \end{vmatrix}$$

As V is continuously embedding in H, we have:

$$(Su, u) = ||u||^2 \ge C_*^2 |u|^2$$
, $\forall u \in D(S)$ (C_* positive constant).

This implies

$$\left| S^{\alpha+1} u \right|^2 \le \frac{1}{C_*^2} \left| S^{\alpha+3/2} u \right|^2, \ \forall \ u \in D(S^{\alpha+3/2}).$$
 (2.4)

We introduce the constant $k_1 > 0$ verifying

$$||u||_W \le k_1 |S^{\alpha+3/2}u|^2, \ \forall \ u \in D(S^{\alpha+3/2}).$$
 (2.5)

Let $\varphi(t)$ be the function

$$\varphi(t) = \frac{\left| S^{\alpha+1} u'(t) \right|^2}{M\left(\|u(t)\|_W^{\beta} \right)} + \left| S^{\alpha+3/2} u(t) \right|^2, \ t \ge 0.$$
 (2.6)

Under the above considerations, we obtain:

Theorem 2.2 Assume hypotheses (H1) - (H3), (H7) with $\alpha \geq 0$ and $\beta > 1$. Consider a real number $\delta > 0$ and

(H8)
$$u^0 \in D(S^{\alpha+3/2}), u^1 \in D(S^{\alpha+1});$$

(H9)
$$\beta C_1 k_0 M^{1/2} \left(k_1^{\beta} \varphi^{\beta/2}(0) \right) \varphi^{1/2}(0) < \delta;$$

where

$$\varphi(0) = \frac{\left| S^{\alpha+1} u^{1} \right|^{2}}{M\left(\|u^{0}\|_{W}^{\beta} \right)} + \left| S^{\alpha+3/2} u^{0} \right|^{2}.$$

Then there exists a unique function u in the class (2.3) such that u is solution of Problem (P). Furthermore if

$$(\mathrm{H}10)\ \frac{\left|S^{\alpha+1}u^{1}\right|^{2}}{M\left(\left\|u^{0}\right\|_{W}^{\beta}\right)}+\left|S^{\alpha+3/2}u^{0}\right|^{2}$$

$$< min \left[\frac{\delta^2}{4\beta^2 C_1^2 k_0^2 M(k_1^\beta \varphi^{\beta/2}(0))}, \frac{m_0 C_*^4}{4\beta^2 C_1^2 k_0^2}, \frac{m_0 C_*^4}{4\delta^2 \beta^2 C_1^2 k_0^2} \right]$$

where C_* were defined in (2.4), we have

$$\varphi(t) \le 3\varphi(0)e^{-\frac{\tau_0}{3}t}, \quad t \ge 0, \tag{2.7}$$

where

$$\tau_0 = min(\delta, \epsilon_0), \ \epsilon_0 = min(\frac{1}{2P_0}, \frac{\delta}{4}, 1), \ P_0 = \frac{1}{C_* m_0^{1/2}} + \frac{\delta}{2C_* m_0}$$
 (2.8) and $\varphi(t)$ was defined in (2.6).

Corollary 2.2 If $K = \sup_{0 \le t < \infty} M\left(\|u(t)\|_W^{\beta}\right)$ then (2.7) implies

$$E(t) \le 3K\varphi(0)e^{-\frac{\tau_0}{3}t}, \quad t \ge 0,$$

where

$$E(t) = \left| S^{\alpha+1} u'(t) \right|^2 + M \left(\|u(t)\|_W^{\beta} \right) \left| S^{\alpha+3/2} u(t) \right|^2, \ t \ge 0.$$

Remark 2.1 By property (2.2), we have that the equations

$$Bu''(t) + M\left(\|u(t)\|_{W}^{\beta}\right)Au(t) + \delta Bu'(t) = 0 \text{ in } V', \ t > 0$$

and

$$u''(t) + M\left(\|u(t)\|_W^\beta\right) Su(t) + \delta u'(t) = 0 \text{ in } D(S^{3/2}), \ t > 0$$

are equivalents.

3 Proof of Theorem 2.1

We need of the following result, obtained in [13]:

Proposition 3.1 Let $M: [0, \infty[\to \mathbb{R} \ be \ a \ function \ of \ class \ C^1 \ and$ $u \in C^1([0, \infty[; W), \ u(t) \neq 0, \ \forall t \in [0, \infty[.$

Consider β a real number. Then the Leibniz derivative of $M\left(\|u(t)\|_W^\beta\right)$ is given by

$$\frac{d}{dt}\left\{M\left(\|u(t)\|_W^\beta\right)\right\} = \beta M'(\|u(t)\|_W^\beta)\|u(t)\|_W^{\beta-1}\left\langle\frac{Ju(t)}{\|u(t)\|_W},u'(t)\right\rangle_{W'\times W},$$

$$t\geq 0,$$

where J is the duality application $J: W \to W'$ defined by

$$\langle Jv,v\rangle_{W'\times W} = \|v\|_W^2 \,, \ \ \|Jv\|_{W'} = \|v\|_W \,, \ \ \forall v \in W.$$

By [13] we have also that there exists $T_0 > 0$ and a unique function u in the class

$$u \in L^{\infty}(0, T_0; D(S^{2\alpha+5/2})),$$

$$u' \in L^{\infty}(0, T_0; D(S^{2\alpha+2})),$$

$$u'' \in L^{\infty}(0, T_0; D(S^{2\alpha+3/2}))$$
(3.1)

such that

$$(LP) \quad \left| \begin{array}{l} u'' + M \left(\|u\|_W^{\beta} \right) Su + \delta u' = 0 \text{ in } L^{\infty}(0, T_0; D(S^{2\alpha + 3/2})), \\ u(0) = u^0, \quad u'(0) = u^1 \end{array} \right.$$

and

$$||u(t)||_{W} > 0, \ \forall \ t \in [0, T_0].$$
 (3.2)

So $\mathcal{M} \neq \emptyset$.

Next we obtain estimates for the solutions u given in \mathcal{M} . Note that if u given in \mathcal{M} by the uniqueness of solutions (P) in [0, T], we have that u belongs to class (3.1), u is solution of (LP) in [0, T] and u satisfies (3.2) in [0, T] (see[13]). Consider $0 < t_0 < T_{max}$. Taking the scalar product of H in both sides of equation $(LP)_1$ by $2S^{2\alpha+2}u'$, we obtain:

$$\frac{d}{dt} \left[\left| S^{\alpha+1} u'(t) \right|^2 \right] + M \left(\| u(t) \|_W^{\beta} \right) \frac{d}{dt} \left[\left| S^{\alpha+3/2} u(t) \right|^2 \right] + 2\delta \left| S^{\alpha+1} u'(t) \right|^2 = 0, \ t \in [0, t_0],$$

that is.

$$\frac{\frac{d}{dt} \left| S^{\alpha+1} u'(t) \right|^2}{M \left(\| u(t) \|_W^{\beta} \right)} + \frac{d}{dt} \left[\left| S^{\alpha+3/2} u(t) \right|^2 \right] = -2\delta \frac{\left| S^{\alpha+1} u'(t) \right|^2}{M \left(\| u(t) \|_W^{\beta} \right)}.$$
(3.3)

Introduce the function

$$\varphi(t) = \frac{\left| S^{\alpha+1} u'(t) \right|^2}{M\left(\|u(t)\|_W^{\beta} \right)} + \left| S^{\alpha+3/2} u(t) \right|^2, \quad t \in [0, t_0].$$
 (3.4)

Our goal is to show that $\varphi(t)$ is not increasing. By Proposition 3.1 and (3.3), we have:

$$\varphi'(t) = -\frac{1}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)}\beta M'\left(\left\|u(t)\right\|_{W}^{\beta}\right)\left\|u(t)\right\|_{W}^{\beta-1}$$

$$\left\langle \frac{Ju(t)}{\|u(t)\|_W}, u'(t) \right\rangle_{W \times W'} \left| S^{\alpha+1}u'(t) \right|^2 - \frac{2\delta \left| S^{\alpha+1}u'(t) \right|^2}{M\left(\|u(t)\|_W^{\beta} \right)}, \ t \in [0, t_0].$$

This gives

$$\varphi'(t) \leq \frac{\left|S^{\alpha+1}u'(t)\right|^2}{M\left(\|u(t)\|_W^\beta\right)} \left[\frac{\beta \left|M'\left(\|u(t)\|_W^\beta\right)\right| \|u(t)\|_W^{\beta-1}}{M^{1/2}(\|u(t)\|_W^\beta)} \frac{\|u'(t)\|_W}{M^{1/2}(\|u(t)\|_W^\beta)} - 2\delta\right].$$

Then hypothesis $(H4)_2$ and embedding (H3) give:

$$\varphi'(t) \le \frac{\left| S^{\alpha+1} u'(t) \right|^2}{M\left(\|u(t)\|_W^{\beta} \right)} \left[\beta C_0 k_0 \frac{\left| S^{\alpha+1} u'(t) \right|^2}{M^{1/2} (\|u(t)\|_W^{\beta})} - 2\delta \right], \quad t \in [0, t_0]. \quad (3.5)$$

Introduce the function

$$\psi(t) = \beta C_0 k_0 \frac{\left| S^{\alpha+1} u'(t) \right|}{M^{1/2} (\|u(t)\|_W^{\beta})}, \quad t \in [0, t_0].$$

We have

$$\psi(t) \le \beta C_0 k_0 \varphi^{1/2}(t), \quad \forall \ t \in [0, t_0].$$
 (3.6)

We affirm that

$$\psi(t) < \delta, \quad \forall \ t \in [0, t_0]. \tag{3.7}$$

In fact, suppose that there exists $t_1 \in [0, t_0]$ such that $\psi(t) \geq \delta$. By hypothesis (H6), we have $\psi(0) < \delta$. Consider

$$t^* = inf \{t \in [0, t_0]; \psi(t) = \delta\} > 0$$

As $\psi(t)$ is continuous in $[0, t_0]$, we have that $\psi(t^*) = \delta$, which implies by (3.5) that $\varphi(t)$ is not increasing on $[0, t^*]$. Then by hypothesis (H6) and (3.6), we obtain:

$$\psi(t) \le \beta C_0 k_0 \varphi^{1/2}(0) < \delta, \ \forall \ t \in [0, t^*],$$

which is a contradiction since $\psi(t^*) = \delta$. So (3.7) holds.

If follows from (3.7), (3.5) and noting that $0 < t_0 < T_{max}$ was arbitrary that

$$\varphi'(t) \le -\delta \frac{\left| S^{\alpha+1} u'(t) \right|^2}{M(\|u(t)\|_W^{\beta})}, \ \forall \ t \in [0, T_{max}].$$
 (3.8)

In particular

$$\frac{\left|S^{\alpha+1}u'(t)\right|^{2}}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)} + \left|S^{\alpha+3/2}u(t)\right|^{2} \leq \frac{\left|S^{\alpha+1}u^{1}\right|^{2}}{M\left(\left\|u^{0}\right\|_{W}^{\beta}\right)} + \left|S^{\alpha+3/2}u^{0}\right|^{2} <
< \frac{\delta^{2}}{\beta^{2}C_{0}^{2}k_{0}^{2}} = N_{0}^{2}, \quad \forall \ t \in [0, T_{max}[. \tag{3.9})$$

Note that if T_{max} is infinite then (3.9) give the theorem. Suppose that T_{max} is finite. Then (3.9) implies

$$\left| S^{\alpha+3/2} u(t) \right|^2 \le N_0^2, \ \forall \ t \in [0, T_{max}[.$$
 (3.10)

As $||u(t)||_W \le k_1 ||u(t)||_{D(S^{\alpha+3/2})}$ for all $t \in [0, T_{max}[$, we have by (3.9) and (3.10) that

$$\left| S^{\alpha+1} u'(t) \right|^2 \le N_1^2, \ \forall \ t \in [0, T_{max}].$$
 (3.11)

Consider a sequence of real number (t_{ν}) such that $0 < t_{\nu} < T_{max}$ and $t_{\nu} \to T_{max}$. By (3.10) and (3.11) we have that there exist $\zeta \in D(S^{\alpha+3/2})$ and $\chi \in D(S^{\alpha+1})$ such that

$$u(t_{\nu}) \to \zeta$$
 weak in $D(S^{\alpha+3/2})$, (3.12)

$$u'(t_{\nu}) \to \chi \text{ weak in } D(S^{\alpha+1}).$$
 (3.13)

We affirm that

$$\zeta = \chi = 0. \tag{3.14}$$

In fact, if $\zeta \neq 0$ with ζ and χ we determine the local solution w of the problem

$$\begin{vmatrix} w'' + M(\|w\|_W^{\beta}) Sw + \delta w' = 0 \text{ in } L^{\infty}(0, T_0; D(S^{\alpha + 1/2})), \\ w(0) = \zeta, w'(0) = \chi \end{vmatrix}$$

(see [13]). Then the function

$$\widetilde{u}(t) = \begin{vmatrix} w(t), & 0 \le t < T_{max} \\ w(t - T_{max}), & T_{max} \le t < T_0 + T_{max} \end{vmatrix}$$

is a solution of Problem (P) in $[0, T_0 + T_{max}]$, with $\|\widetilde{u}(t)\|_W > 0$ for all $t \in [0, T_0 + T_{max}]$. This gives a contradiction with the definition of T_{max} . So $\zeta = 0$.

Also by (3.11),

$$||u(t_{\nu}) - u(t_{\mu})||_{D(S^{\alpha+1})} \le \int_{t_{\mu}}^{t_{\nu}} ||u'(s)||_{D(S^{\alpha+1})} ds \le N_1 |t_{\nu} - t_{\mu}|,$$

that is, $(u(t_{\nu}))$ is a Cauchy sequence in $D(S^{\alpha+1})$. As $\zeta = 0$, (3.12) implies then

$$u(t_{\nu}) \to 0$$
 in $D(S^{\alpha+1})$.

In particular

$$u(t_{\nu}) \to 0$$
 in W .

By estimate (3.9), we have:

$$|S^{\alpha+1}u'(t_{\nu})|^2 \le N_0^2 M(\|u(t_{\nu})\|_W).$$

As M(0) = 0 it follows from this inequality and convergence (3.13) that $\chi = 0$. So the affirmation (3.14) is correct.

Also by equation $(P)_1$ we have that

$$u''(t_{\nu}) \to 0 \text{ in } D(S^{\alpha+1/2}).$$

Thus if T_{max} is finite we define u(t) = 0 for $t \ge T_{max}$. This extension is a solution of Problem (P) in $[0, \infty[$.

4 Proof of Theorem 2.2

We begin with a previous result.

Lemma 4.1 Let $\beta > 1$ a real number, $M : [0, \infty[\to \mathbb{R} \text{ a function of class } C^1 \text{ and } u \in C^1([0, \infty[; W). Then if } u(t_0) = 0, \text{ we have that the Leibniz derivative } \frac{d}{dt} M\left(\|u(t_0)\|_W^\beta\right) \text{ is equal to zero.}$

Proof: Consider $t_0 > 0$ and $u(t_0) = 0$. Then

$$u(t_0 + h) = u(t_0 + h) - u(t_0) = h \int_0^1 u'(t_0 + \tau h) d\tau,$$

which implies for $0 < |h| < min\{1, t_0/2\},$

$$||u(t_0+h)||_W^\beta \le |h|^\beta \left(\int_0^1 ||u'(t_0+\tau h)||_W d\tau\right)^\beta \le |h|^\beta C^\beta,$$

where

$$C = \max \{ \|u'(s)\|_W; t_0/2 \le s \le t_0 + 1 \}.$$

The last inequality gives the result since $\beta > 1$. Analogous arguments give the result when $t_0 = 0$ and u(0) = 0.

Let u_j^0 and u_j^1 be two sequences of vectors of $D(S^{2\alpha+5/2})$ and $D(S^{2\alpha+2})$, respectively, such that

$$u_j^0 \to u^0 \text{ in } D(S^{\alpha+3/2}), \quad u_j^0 \to u^1 \text{ in } D(S^{\alpha+1}).$$

By these convergence and (H9), we have:

$$\beta C_1 k_0 M^{1/2} (k_1^{\beta} \varphi_j^{\beta/2}(0)) \varphi_j^{1/2}(0) < \delta, \ j \ge j_0,$$

where

$$\varphi_j(0) = \frac{\left|S^{\alpha+1}u_j^1\right|^2}{M(\left\|u_j^0\right\|_W^\beta)} + \left|S^{\alpha+3/2}u_j^0\right|^2$$

Consider the problem $(j \ge j_0)$

$$(P_j) \quad \left| \begin{array}{l} u_j'' + M\left(\|u_j\|_W^\beta\right) S u_j + \delta u_j' = 0 \text{ in } L^\infty(0,\infty; D(S^{2\alpha + 3/2})), \\ u_j(0) = u_j^0, \ u_j'(0) = u_j^1. \end{array} \right|$$

By applying the Galerkin method, the successive approximations technique and the spectral theory of the operator S, Arzela-Ascoli Theorem, Proposition (3.1), Lemma (4.1), we obtain a local solution u_j of (P_j) , that is, we find a real number $T_0 > 0$ and a function u_j in the class

$$u_j \in L^{\infty}(0, T_0; D(S^{2\alpha+5/2})),$$

 $u'_j \in L^{\infty}(0, T_0; D(S^{2\alpha+2})),$ (4.1)
 $u''_j \in L^{\infty}(0, T_0; D(S^{2\alpha+3/2}))$

such that, u_j is the solution of Problem (P_j) in $L^{\infty}(0, T_0; D(S^{2\alpha+3/2}))$ (see the methodology of this approach in S. S. Souza and the third A. [27]). The same arguments allow us to obtain a real number $T_0 > 0$ and a solution u in the class

$$u \in L^{\infty}(0, T_0; D(S^{2\alpha+3/2})),$$

 $u' \in L^{\infty}(0, T_0; D(S^{2\alpha+1})),$
 $u'' \in L^{\infty}(0, T_0; D(S^{2\alpha+1/2}))$

such that, u is the unique solution of the problem

$$(P') \quad \left| \begin{array}{l} u'' + M\left(\|u\|_W^{\beta}\right) S u_j + \delta u' = 0 \text{ in } L^{\infty}(0, T_0; D(S^{2\alpha + 1/2})), \\ u(0) = \zeta \ , u'(0) = \eta, \end{array} \right.$$

where $\zeta \in D(S^{\alpha+3/2})$ and $\eta \in D(S^{2\alpha+1})$ are arbitrary.

Let \mathcal{M}_j be the set of real numbers T>0 such that there exists a unique function u_j in class (4.1) with T instead T_0 and u_j is the solution of (P_j) in $L^{\infty}(0,T;D(S^{2\alpha+3/2}))$. Then by the result of local existence above, we have that $\mathcal{M}_j\neq\emptyset$. Denote by $T_{max,j}$ the supremum of $T\in\mathcal{M}$.

Let $\varphi_j(t), j \geq j_0$, be the function

$$\varphi_{j}(t) = \frac{\left| S^{\alpha+1} u_{j}'(t) \right|^{2}}{M\left(\|u_{j}(t)\|_{W}^{\beta} \right)} + \left| S^{\alpha+3/2} u_{j}(t) \right|^{2}, \quad t \in [0, T_{max,j}].$$
 (4.2)

Then as in the proof of Theorem (2.1), we obtain:

$$\varphi_{j}'(t) \leq \frac{\left|S^{\alpha+1}u_{j}'(t)\right|^{2}}{M\left(\|u_{j}(t)\|_{W}^{\beta}\right)} \left[\beta C_{1}k_{0}\left|S^{\alpha+1}u_{j}'(t)\right| - 2\delta\right], \quad t \in [0, T_{max, j}[. \quad (4.3)$$

Consider the function

$$\psi_1(t) = \beta C_1 k_0 |S^{\alpha+1} u_i'(t)|, \quad t \in [0, T_{max,i}].$$

By (H9) and noting that $M(\xi)$ is increasing, we have:

$$\psi_{1}(0) = \beta C_{1} k_{0} M^{1/2} \left(\|u_{j}^{0}\|_{W}^{\beta} \right) \frac{\left| S^{\alpha+1} u_{j}^{1} \right|}{M^{1/2} \left(\|u_{j}^{0}\|_{W}^{\beta} \right)}$$

$$\leq \beta C_{1} k_{0} M^{1/2} \left(k_{1}^{\beta} \varphi_{j}^{\beta/2}(0) \right) \varphi_{j}^{1/2}(0) < \delta.$$

By similar arguments used in the proof Theorem 2.1, we obtain:

$$\psi_1(t) < \delta, \quad t \in [0, T_{max,i}]. \tag{4.4}$$

This result and (4.3) imply

$$\varphi_j'(t) \le -\delta \frac{\left| S^{\alpha+1} u_j'(t) \right|^2}{M\left(\left\| u_j(t) \right\|_W^{\beta} \right)}, \quad t \in [0, T_{max,j}]$$

$$(4.5)$$

and

$$\frac{\left|S^{\alpha+1}u_{j}'(t)\right|^{2}}{M\left(\left\|u_{j}(t)\right\|_{W}^{\beta}\right)} + \left|S^{\alpha+3/2}u_{j}(t)\right|^{2} \leq \frac{\left|S^{\alpha+1}u_{j}^{1}\right|^{2}}{M\left(\left\|u_{j}^{0}\right\|_{W}^{\beta}\right)} + \left|S^{\alpha+3/2}u_{j}^{0}\right|^{2} <
< \frac{\delta^{2}}{\beta^{2}C_{1}^{2}k_{0}^{2}M(k_{1}^{\beta}\varphi_{j}^{\beta/2}(0))}, \quad t \in [0, T_{max,j}[. \tag{4.6})$$

By inequality (4.4), local existence of solution of (P'), uniqueness of solution of Problem (P_j) in any $L^{\infty}(0,T;D(S^{2\alpha+3/2}))$ and by similar argument used in the proof of Theorem 2.1, we obtain that $T_{max,j}$ is infinite for $j \geq j_0$.

Fix $j \geq j_0$ and consider $\epsilon > 0$. Introduce the functions

$$\rho(t) = \frac{\left(S^{\alpha+1}u_j'(t), S^{\alpha+1}u_j(t)\right)}{M\left(\|u_j(t)\|_W^{\beta}\right)} + \frac{\delta}{2} \frac{\left|S^{\alpha+1}u_j(t)\right|^2}{M\left(\|u_j(t)\|_W^{\beta}\right)}, \quad t \in [0, \infty[\quad (4.7)]$$

and

$$\varphi_{\epsilon}(t) = \varphi_{i}(t) + \epsilon \rho(t), \quad t \in [0, \infty[,$$

$$(4.8)$$

where u_i is the solution of (P_i) .

In what follows, to facilitate the notation, we omit the subscript j. We have:

$$|\rho(t)| \le \frac{\left|S^{\alpha+1}u'(t)\right|}{C_* m_0^{1/2} M \left(\left\|u(t)\right\|_W^{\beta}\right)^{1/2}} \left|S^{\alpha+3/2}u(t)\right| + \frac{\delta}{2} \frac{\left|S^{\alpha+3/2}u(t)\right|^2}{m_0 C_*},$$

where C_* were defined in (2.4), that is,

$$|\rho(t)| \le \left[\frac{1}{C_* m_0^{1/2}} + \frac{\delta}{2m_0 C_*} \right] \varphi(t), \ t \in [0, \infty[.$$

So, this inequality and (4.8) imply

$$|\varphi_{\epsilon}(t)| \le (1 + \epsilon P_0) \, \varphi(t), \text{ where } P_0 = \frac{1}{C_* m_0^{1/2}} + \frac{\delta}{2m_0 C_*}.$$

Then taking $0 < \epsilon \le 1/2P_0$, we have:

$$\frac{1}{2}\varphi(t) \le \varphi_{\epsilon}(t) \le \frac{3}{2}\varphi(t), \quad t \in [0, \infty[. \tag{4.9})$$

On the other side, by taking the scalar product of H in both sides of equation $(P_i)_1$ by $S^{2\alpha+2}u$, we obtain:

$$\left(S^{\alpha+1} u''(t), S^{\alpha+1} u(t) \right) + M \left(\|u(t)\|_W^\beta \right) \left| S^{\alpha+3/2} u(t) \right|^2 + \frac{\delta}{2} \frac{d}{dt} \left| S^{\alpha+1} u(t) \right|^2 = 0$$
 or

$$\frac{\frac{d}{dt}\left(S^{\alpha+1}u'(t),S^{\alpha+1}u(t)\right)}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)}+\frac{\delta}{2}\frac{\frac{d}{dt}\left|S^{\alpha+1}u(t)\right|^{2}}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)}=\frac{\left|S^{\alpha+1}u'(t)\right|^{2}}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)}-\left|S^{\alpha+3/2}u(t)\right|^{2}$$

Combining this equality with the definition (4.7) of $\rho(t)$, we deduce, for $u(t) \neq 0$,

$$\begin{split} \rho'(t) &= \frac{\left|S^{\alpha+1}u'(t)\right|^{2}}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)} - \left|S^{\alpha+3/2}u(t)\right|^{2} - \\ &\frac{\beta M'\left(\left\|u(t)\right\|_{W}^{\beta}\right)\left\|u(t)\right\|_{W}^{\beta-1}}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)} \left\langle \frac{Ju(t)}{\left\|u(t)\right\|_{W}}, u'(t)\right\rangle \\ &\left(\frac{S^{\alpha+1}u'(t)}{M^{1/2}\left(\left\|u(t)\right\|_{W}^{\beta}\right)}, \frac{S^{\alpha+1}u(t)}{M^{1/2}\left(\left\|u(t)\right\|_{W}^{\beta}\right)}\right) - \\ &\frac{\delta\beta M'\left(\left\|u(t)\right\|_{W}^{\beta}\right)\left\|u(t)\right\|_{W}^{\beta-1}}{2M\left(\left\|u(t)\right\|_{W}^{\beta}\right)} \left\langle \frac{Ju(t)}{\left\|u(t)\right\|_{W}}, u'(t)\right\rangle \frac{\left|S^{\alpha+1}u(t)\right|^{2}}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)} = \end{split}$$

$$= \frac{\left|S^{\alpha+1}u'(t)\right|^2}{M\left(\|u(t)\|_W^{\beta}\right)} - \left|S^{\alpha+3/2}u(t)\right|^2 - L_1 - L_2; \tag{4.10}$$

and for u(t) = 0,

$$\rho'(t) = \frac{\left| S^{\alpha+1} u'(t) \right|^2}{M\left(\|u(t)\|_W^{\beta} \right)} - \left| S^{\alpha+3/2} u(t) \right|^2 \tag{4.11}$$

(see Lemma 4.1). We have, by hypothesis $(H7)_4$, (4.4), and hypothesis (H10):

$$|L_{1}| \leq \beta C_{1}k_{0} |S^{\alpha+1}u'(t)| \frac{|S^{\alpha+1}u'(t)|}{M^{1/2} (||u(t)||_{W}^{\beta})} \frac{|S^{\alpha+1}u(t)|}{M^{1/2} (||u(t)||_{W}^{\beta})} \leq$$

$$\leq \beta C_{1}k_{0} |S^{\alpha+1}u'(t)| \left(\frac{|S^{\alpha+1}u'(t)|^{2}}{2M (||u(t)||_{W}^{\beta})} + \frac{|S^{\alpha+1}u(t)|^{2}}{2M (||u(t)||_{W}^{\beta})} \right) \leq$$

$$\leq \frac{\delta}{4} \frac{|S^{\alpha+1}u'(t)|^{2}}{M (||u(t)||_{W}^{\beta})} + \frac{\beta C_{1}k_{0} |S^{\alpha+1}u'(t)| |S^{\alpha+3/2}u(t)|^{2}}{2m_{0}^{1/2}C_{*}^{2}M (||u(t)||_{W}^{\beta})^{1/2}} \leq$$

$$\leq \frac{\delta}{4} \frac{|S^{\alpha+1}u'(t)|^{2}}{M (||u(t)||_{W}^{\beta})} + \frac{1}{4} |S^{\alpha+3/2}u(t)|^{2}.$$

Also

$$|L_2| \le \frac{\delta C_1 k_0}{2m_0^{1/2} C_*^2} \frac{\left| S^{\alpha+1} u'(t) \right|}{M^{1/2} \left(\|u(t)\|_W^{\beta} \right)} \left| S^{\alpha+3/2} u(t) \right|^2 \le \frac{1}{4} \left| S^{\alpha+3/2} u(t) \right|^2.$$

Combining (4.10), (4.11) and the last two inequalities, we obtain:

$$\rho'(t) \leq \frac{\left|S^{\alpha+1}u'(t)\right|}{M\left(\left\|u(t)\right\|_W^\beta\right)} - \left|S^{\alpha+3/2}u(t)\right|^2 + \frac{\delta}{4}\frac{\left|S^{\alpha+1}u'(t)\right|^2}{M\left(\left\|u(t)\right\|_W^\beta\right)} + \frac{1}{2}\left|S^{\alpha+3/2}u(t)\right|^2.$$

This inequality, the definition (4.8) of φ_{ϵ} and inequality (4.3), give:

$$\varphi_{\epsilon}'(t) \leq -\delta \frac{\left|S^{\alpha+1}u'(t)\right|}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)} + \epsilon \frac{\left|S^{\alpha+1}u'(t)\right|^{2}}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)} - \epsilon \left|S^{\alpha+3/2}u(t)\right|^{2}$$
$$+\epsilon \frac{\delta}{4} \frac{\left|S^{\alpha+1}u'(t)\right|^{2}}{M\left(\left\|u(t)\right\|_{W}^{\beta}\right)} + \frac{\epsilon}{2} \left|S^{\alpha+3/2}u(t)\right|^{2},$$

for all $u(t), t \in [0, \infty[$. Noting that $\epsilon \leq \min\{1, \delta/4\}$, we obtain:

$$\varphi_{\epsilon}'(t) \le -\frac{\delta}{2} \frac{\left| S^{\alpha+1} u'(t) \right|}{M\left(\left\| u(t) \right\|_{W}^{\beta} \right)} - \frac{\epsilon}{2} \left| S^{\alpha+3/2} u(t) \right|^{2}, \quad t \in [0, \infty[, \frac{1}{2}], \quad t \in [0, \infty[, \frac{1$$

that implies by (4.9),

$$\varphi'_{\epsilon}(t) \le -\frac{\tau_0}{3}\varphi_{\epsilon}(t), \ t \in [0, \infty[,$$

which gives

$$\varphi_{\epsilon}(t) \le \varphi_{\epsilon}(0)e^{-\frac{\tau_0}{3}t}, \ t \in [0, \infty[.$$

Therefore, by (4.9),

$$\varphi_j(t) \le 3\varphi_j(0)e^{-\frac{\tau_0}{3}t}, \quad t \in [0, \infty[, \ j \ge j_0].$$

By the methodology used in [27], we obtain the limit u of the solutions u_j is the solution of Problem (P) with u in class (2.3). Also by taking the lim inf in both sides of the last inequality, we deduce inequality (2.7).

5 Examples

The result obtained in Theorem 2.1 can be applied to the equation

$$u''(t) + ||u(t)||_W^2 Su(t) + \delta u'(t) = 0, \quad t > 0.$$

Here $M(\xi) = \xi^{2/\beta}$. And the result obtained in Theorem 2.2, to the equation

$$u''(t) + M\left(\|u(t)\|_{W}^{\beta}\right) Su(t) + \delta u'(t) = 0, \ t > 0,$$

where $M(\xi) = \xi^{\sigma} + m_0$, $\sigma \ge 1/\beta$ and $m_0 > 0$. For the mixed problem associated to these equation, see [13].

REFERENCES

- [1] Arosio, A.; Garavaldi, S., On the mildly Kirchhoff string, Math. Appl. Science, 14 (1991), 177-195.
- [2] Arosio, A.; Spagnolo, S., Global solutions to the Cauchy problem for a nonlinear hyperbolic equation, Nonlinear Partial Differential Equations, H. Brezis and J. l.Lions eds., College de France Seminar, Vol. 6, Pitman, London, (1984), 1-26.
- [3] Bernstein, S., Sur une classe d'équations functionelles aux derivées partielles, Izv. Acad. Nauk SSSR, Ser. Math., 4 (1940), 17-26.
- [4] Brezis, H., Analyse Fonctionelle, Théorie et Applications, Masson, Paris, (1983).
- [5] Carrier, G. F., On the non-linear vibration problem of the elastic string, Quart. Appl. Math., 3 (1945), 157-165.
- [6] Clark, H. R., Global classical solutions to the Cauchy problem for a nonlinear wave equation, Internat. J. Math. & Math. Sci., 21(1998), 533-548.
- [7] Corrêa, F. J. S. A.; Nascimento, R. G., On an elliptic equation with a Kirchhoff term, Proceedings 62 SBA, UNIRIO, Rio, (2005), 1-8.
- [8] Cousin, A. T.; Frota, C. L.; Larkin, N. A.; Medeiros, L. A., On the abstract model of Kirchhoff-Carrier equation, Computational and Appl. Analysii, 1 (1997), 389-404.

- [9] Crippa, H. R., On local solutions of some mildly degenerate hyperbolic equation, Nonlinear Analysis: TMA, 21 (1993), 565-574.
- [10] Ebihara, Y.; Medeiros, L. A.; Milla Miranda, M., Local solutions for a nonlinear degenerate hyperbolic equation, Nonlinear analysis :TMA, 10 (1986), 27-40.
- [11] Ekeland, I.; Teman, R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, (1976).
- [12] Frota, C. L., Non local solutions of a nonlinear hyperbolic partial differential equation, Portugaliae Mathematica, 51 (1994), 455-473.
- [13] Izaguirre, R.; Fuentes, R.; Milla Miranda, M., Existence of local solutions of the Kirchhoff-Carrier equation in Banach spaces, to appear in Nonlinear Analysis: TMA.
- [14] Kirchhoff, G., Vorlesunger über Mechanik, Teubner, Leipzig, (1883).
- [15] Kormonik, V.; Zuazua, E., A direct method for boundary stabilization of the wave equation, J. Math. Pure et Appl., 69 (1990), 33-54.
- [16] Larkin, N. A., Global regular solution for the nonhomogeneous Carrier equation, Mathematical Problems in Engineeing, 8 (2002), 15-31.
- [17] Limaco, J.; Clark, H. R.; Medeiros, L. A., On damped Kirchhoff equation with variable coefficients, J. Math. Anal. Appl., 307 (2005), 641-655.
- [18] Lions, J.-L., Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires, Dunod, Paris, (1969).
- [19] Lions, J.-L., On some equations in boundary value problems of mathematical physics, Contemporary Development in Continuous Mechanics and Partial Differential Equations, G. de la Penha and L. A. Medeiros eds., North-Holland, London, (1978).

- [20] Matos, M. P., Mathematical analysis of the nonlinear model for the vibrations of a string, Nonlinear Analysis: TMA, 17 (1991), 1125-1137.
- [21] Medeiros, L. A.; Milla Miranda, M., Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Mat. Aplic. Comp., 6 (1987), 257-276.
- [22] Medeiros, L.A.; Limaco, J.; Menezes, S. B., *Mathematical vibrations* of elastic string: mathematical aspects, part one, J. Comp. Analysis and Applications, 4 (2002), 91-127.
- [23] Nishihara, K., On a global solutions of some quasilinear hyperbolic equation, Tokyo, J. Math., 7(1984), 437-459.
- [24] Pohozaev, S. I., On a class of quasilinear hyperbolic equations, Math. Sbornik, 95 (1975), 152-166.
- [25] Pohozaev, S. I., The Kirchhoff quasilinear hyperbolic equation, Differential Equations, 21 (1985), 101-108.
- [26] Rivera, P. H., On local strong solution of a nonlinear partial differential equation, Applicable Analysis, 10 (1980), 93-104.
- [27] Souza, S. S.; Milla Miranda, M., Existence and decay of solutions of a damped Kirchhoff equation, Int. J. of Pure and Appl. Math. 32 (2006), 483-508.
- [28] Yamada, Y., Some nonlinear degenerate wave equation, Nonlinear-Analysis: TMA, 11 (1987), 1155-1168.
- [29] Yamazaki, T., On local solutions of some quasilinear degenerate hyperbolic equations, Funkciakj Ervacioj, 31 (1988), 439-457.
- [30] Zuazua, E., Controlabilidad Exacta yEstabilización dela Ecuación de Ondas, Textos de Métodos Matemáticos, 23, IM-UFRJ, Rio, (1991).

[31] Zeidler, E., Nonlinear Functional Analysis and Its Applications, Vol. III, Springer-Verlag, New York, (1985).

Facultad de Ciencias Matemáticas UNMSM ${\rm Av.\ Venezuela\ S/N},$ ${\rm Lima,\ PERU}$

Instituto de Matemática - UFF Rua Mário Santos Braga S/N Valonguinho 24.020-140, Niterói, RJ, BRAZIL *E-mail*: ricardof16@yahoo.com.br

Instituto de Matemática - UFRJ Caixa Postal 68530 21945-970, Rio de Janeiro, RJ, BRAZIL *E-mail*: milla@im.ufrj.br