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Abstract
This paper is concerned with the study of the existence and the
decay of solutions of the following problem:
Bu'(t) + M (||u(t)||€v) Au(t) + 6B/ (t) = 0, in V',t > 0,
uw(0) =u® ,u'(0) =ul (u® #£0),

where A and B are symmetric linear operators from a Hilbert space V
into its dual V' satisfying (Bv,v) >0, v # 0, (Av,v) >~ ||v||%/ )y >
0 ; W a Banach space with V continuously embedding in W; 5 a real
number with 8 > 1, M(§) a smooth function with M(§) > 0, and ¢

a positive real number
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1 Introduction

Let V be a real separable Hilbert space whose dual is denoted by V'
and W a Banach space with V continuously embedding in W. Consider

two symmetric linear operators A, B : V — V' such that
(Av,v) >~ Hv||%/, Vv € V (v positive constant);
(Bu,v) >0, Yo eV, v #0;
and a smooth function M (&) with
M(£)>0,VE>0.

Consider also two real numbers 5 > 1 and > 0. In this conditions we

have the following problem:

Bu'(t) + M (Hu(t)uév) Au(t) +0Bu/(t) = 0, in V', ¢ > 0,

*) u (0) = u®, o/ (0) =u' (u® #0).

Equation in (*) is a damped abstract version in Banach spaces of the
Kirchhoff equation [14] and the Carrier equation [5]. When B = I, =
2,W is a Hilbert space and § > 0, there is an extensive literature on this
problem (cf. Medeiros, Limaco and Menezes [22]).

The existence of local solutions of problem (*) has been obtained
by the Authors in [13].

In this paper we study the existence of global solutions of (*) when
M(&) > 0 and the exponential decay of solutions of (*) when M(§) >
mo > 0. In Section 5, we give some examples.

To obtain global solutions we use the prolongation method and in
the decay of solutions, the Lyapunov approach, cf. Komornik and Zuazua
[15]. In both cases it is fundamental an appropriate characterization of
the derivative of M (Hu(t)||’€v) We use various results obtained in [13] and
in S. S. Souza and the third A. [27].
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2 Notations and Main Results

Let V be a real separable Hilbert space whose dual is denoted by
V. Consider two linear operators A, B : V — V' satisfying

Au,v) = (u, Av) ,Yu,v € V;
Au,

S

)
) > ||u||%/ ,Yu € V (v positive constant);
)

(
(
(H1)
(Bu,v) = (u, Bv) ,Yu,v € V;
(

Bu,u) > 0,Yu € V,u # 0.

Here (, ) denotes the duality pairing between V' and V. We have that
the scalar product ((u,v)) = (Au,v) defines a norm |ju| = ((u,u))*/? in
V which is equivalent to the norm |ul|;,. The space V will be equipped
with the scalar product ((u,v)) and norm |[|ul|.

The bilinear form
(u,v) = (Bu,v), Yu,v € V

is a scalar product in V. We denote by H the completed of the space
{V, (u,v)}. The scalar product of the Hilbert space H will be denoted also
by (u,v) and its norm by |u|. We have that
V is densely and continuously embedding in H.
Consider the coercive self-adjoint operator S of H determined by the
triplet {V, H, ((u,v))}. We have:

(Su,v) = ((u,v)) = (Au,v), Yu € D(S5), Yv € V; (2.1)

Au= BSuin V', Yu € D(S%?). (2.2)

Identify H with its dual H’. Then expression (2.1) says that A is the
extension of S to the space V.

Represent by W a Banach space whose dual

(H2) W' is strictly convex.
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Denote by 6 > 0 a real number and by (E)),cg the spectral family
of S. Then D(S?) is the Hilbert space

D <59> - {u € H: /OOO NP d(Eyu,u) < oo}

equipped with the scalar product
(u,v) psey = (Seu,Sev) .

Fix a > 0 a real number. Assume that D(S%*!) is continuously embed-

ding in W, that is, there exist a positive number kg, such that
(H3) lully < ko lull pgasry, ¥ u € D(SH).

Consider a function M(§) and 5 > 1 a real number satisfying
M € C°([0,00]), M(0) =0, M(&) >0, V&> 05
(H4) | M € C(]0, 00]);
|M'(€)| NI=VB < CoMM3(€), ¥ € > 0 (Cp positive constant).

Under the above considerations, we have the following result:

Theorem 2.1 Assume hypotheses (H1)-(Hj) with « > 0, 8 > 1. Con-

stder 6 > 0 a real number and

<H5) U= D(s2a+5/2),u1 e D(s2a+2)’u0 £0
satisfying
1/2
gatl, 12 9
(H6) BCoko sl ‘Sa+3/2u0‘ <6

()1 )
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(a) Then there exists a function u in the class
u € L=(0, 00; D(S13/2)),
u' € L°°(0, 00; D(STY)), (2.3)
u" € L>(0, 00; D(S%H1/2))
satisfying
w" -+ M (|[ullgy ) Su+ 8u' = 0 in L%(0, 00; D(SH1/2)),
u(0) =u® ,u'(0) = ul.
(b) Let M be the set constituted by the real numbers T' > 0 such that
there exists a unique function u in the class (2.3) with u solution of (P)

in [0, T] and ||u(t)||yy > 0 for allt € [0,T]. Let Trnaa be the supremum of
the T € M. Then M # () and the solution u obtained in (a) verifies

(P)

w € LE2(0, Thae; D(S520F5/2)),
u' € L2 (0, Thnae; D(S**2)),
u" € LE2(0, Thnae; D(STY/2))

and
!Sa+1u’(t)’2 2 ‘Sa+1u1‘2 2
5t Sa+3/2u(t)‘ <5+ S“+3/2u0‘ , 0<t < Thas-
M ()l ) (T

And if Tiaq s finite,
u(t) =0, for t > Thaz-
In order to obtain the decay of solutions of problem (P), we make

the following considerations.

Consider a function M(§) and 5 > 1 a real number satisfying
M € C*([0, ool);
M(&) > mo >0, V&> 0 (mg constant);

(HT)
M'(€) >0, V&> 0;

|M(€)| NI7YB < O M (€), ¥ € > 0 (C) positive constant).
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As V is continuously embedding in H, we have:
(Su,u) = ||ul|®* > C?|ul*, ¥V u e D(S) (C, positive constant).
This implies

Sotd/2y,

2
5o+y[? < % VY ue D(SO8/2). (2.4)

*

We introduce the constant k; > 0 verifying
2
lully < ki (sa+3/2u‘ , ¥ u € D(S3/2), (2.5)
Let ¢(t) be the function
Sa+1u/(t) 2
p(t) = Sy +

M (@)

Under the above considerations, we obtain :

2
Sa+3/2u(t)( t>0. (2.6)

Theorem 2.2 Assume hypotheses (H1) - (H3), (H7) with o« > 0 and
B > 1. Consider a real number 6 > 0 and

(H8) u € D(S§%3/2) u! € D(SoH);
(HY) BC1ko M2 (k:fcpﬁ/z(O)) o1/2(0) < 6;
where )
Sa+1 1 2
0(0) = ‘ “B‘ i ‘Sa+3/2uo‘ '
M ([[u05 )

Then there exists a unique function u in the class (2.8) such that u is
solution of Problem (P). Furthermore if

+1,,1|2
(H10) M 4 ‘Sa+3/2u0‘2
o (Jju5, )
< min (52 m()C:} mon

AR2C2RZM (K} pP/2(0) 482CEk3 46232 CEk3
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where C, were defined in (2.4), we have

where

‘ 109 1 g
70 = min(d, €p), € = mm(ﬁ, 1 1), Py = C.ml/? * 2C,myg
* My

and p(t) was defined in (2.6).

Corollary 2.2 If K= sup M <Hu(t)H€V>
0<t<oo

then (2.7) implies

70

E(t) <3Kp(0)e 3, t>0,
where

B(t) = [s ) + M (@) |85 2uto] ¢ 2 0.

Remark 2.1 By property (2.2), we have that the equations
Bu"(t) + M (|yu(t)||€v) Au(t) + 0BU'(t) = 0 in V', t > 0
and
u"(t) + M (||u(t)||€v) Su(t) + 8u/(t) = 0 in D(S%2), t > 0

are equivalents.

3 Proof of Theorem 2.1

We need of the following result, obtained in [13]:

Proposition 3.1 Let M : [0,00[— R be a function of class C* and

w e C([0,00[; W), u(t) # 0, Vt € [0,00[.

163

(2.7)

(2.8)
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Consider B a real mnumber. Then the Leibniz derivative of
M(||u(t)||ﬁ,) is given by

— Ju
4 ()15, ) b = B0 (@15 @15 (st v 0))
t>0,
where J is the duality application J : W — W' defined by
(o, 0y = [0l s 170l = ol Yo € W

By [13] we have also that there exists Tp > 0 and a unique function u

in the class
u € L*(0,Tp; D(52*F5/2)),

Wl € L(0, To; D(52+2)), (3.1)
W' e Loo(O’TO;D(SQa—H’)/Q))

such that
wpy | WM (Il ) Suct du = 0in 2290, To; D(S™+9%)),
u(0) =u’, u(0)=u!
and
|u(®)|ly, >0, Vtelo,To. (3.2)
So M #£ 0.

Next we obtain estimates for the solutions u given in M. Note that
if u given in M by the uniqueness of solutions (P) in [0, T], we have that
u belongs to class (3.1), u is solution of (LP) in [0, T] and u satisfies (3.2)
in [0, T] (see[13]). Consider 0 < tg < Tinae- Taking the scalar product of
H in both sides of equation (LP); by 25224/, we obtain:

S lismw@P) -+ (i) 4 |

2
Sa+3/2u(t)‘ :|

+ 26|59/ (1)]2 = 0, t € [0, o),
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that is,
d a+1, ./ 2
% ‘S u (t)‘ i at3/2 o |Sa+1ul(t)}
By EerE e + o S u(t)] | = —29 5 3.3)
o ()l ) M ()l )
Introduce the function
o(t) = s + ‘Sa+3/2u(t) , te0,to). (3.4)

M ()l )

Our goal is to show that ¢(t) is not increasing. By Proposition 3.1 and

(3.3), we have:

1
() = ——————BM (Jlul®)||5) w5
T (o) (o) ol

Ju(t) a1,y 2 25|5°FDu/(1)
(R 0),, 170 w1 (ol

‘ 2

, t€ [O,to].

This gives

¢'(t) <

M (i)

Then hypothesis (H4), and embedding (H3) give:

sertw? [B (@5 ) @I o s
M2 (||u(t)]|2) MY2(|[u(t)]y,) '

‘ 2

« / 2 « /
go’(t) < |S+1—u(t)| [ |S u (t? ) — 25] , L€ [O,to]. (3.5)

0RO ————————5
M ([t ) MV2(|lu(t)
Introduce the function

’SO‘H)U’(t) }

w(t) = 500k0m7

te [O, t()].

We have
h(t) < BCokow'2(t), ¥t € [0,t). (3.6)
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We affirm that
P(t) <0, Vitelo,to). (3.7)

In fact, suppose that there exists t; € [0,%p] such that ¢ (¢f) > 6. By
hypothesis (H6), we have 1(0) < §. Consider
" =inf{t € [0,to];y(t) =6} >0

As 4(t) is continuous in [0,tg], we have that ¢(¢*) = 4, which implies by
(3.5) that o(t) is not increasing on [0,¢*]. Then by hypothesis (H6) and
(3.6), we obtain:

Y(t) < BCokop'/?(0) < 6, Yt e 0,t*],

which is a contradiction since ¢ (t*) = 0. So (3.7) holds.
If follows from (3.7), (3.5) and noting that 0 < t9 < Tipae Was
arbitrary that

Sa+1 /t 2
0 <=5 OL 0 35)
M ([u(t)ly)
In particular
atl, /(4|2 9 a+1,1|2 9
E u(t)ﬁ! +|srrmu| < E uﬁ’ [l <
M (Jlu(t) 5 ) M (|5, )
52
< ——ss =N, Vte[0, Tl (3.9)
PO

Note that if T},4, is infinite then (3.9) give the theorem. Suppose
that T),q, is finite. Then (3.9) implies

2
sa+3/2u<t)( < N2, Yt € [0, Tnas|- (3.10)

As [[u®)lw < ki [lu(t) | p(ga+sszy for all t € [0, Tingz|, We have by (3.9) and
(3.10) that
|SeH 1 (1)|* < N2, Wt € [0, Trnaal. (3.11)
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Consider a sequence of real number (¢,) such that 0 < ¢, < Tjq, and
t, — Tymae- By (3.10) and (3.11) we have that there exist ¢ € D(S%+3/2)
and y € D(S*t!) such that

u(t,) — ¢ weak in D(ST3/2), (3.12)
u'(t,) — x weak in D(S*T1), (3.13)

We affirm that
¢C=x=0. (3.14)

In fact, if ( # 0 with ( and x we determine the local solution w of the

problem

w'+ M (Hw\|€v> Sw + sw' = 0 in L(0, Tp; D(S+1/2)),
w(0) = ¢ ,w'(0) = x

(see [13]). Then the function

w(t), 0<t< T

u(t) =
w(t - Tmax)a Doz <t <1+ Tmaz

is a solution of Problem (P) in [0, Ty + Tinaz), with ||u(t)|w > 0 for all
t € [0,Ty + Tinaz)- This gives a contradiction with the definition of T},qz.
So (=0.

Also by (3.11),

ty
lu(ty) = u(tu)ll pgsasy < / /()| psestyds < Nulty = .

i

that is, (u(t,)) is a Cauchy sequence in D(S*1). As ¢ = 0, (3.12) implies
then
u(t,) — 0 in D(S*T).

In particular
u(t,) = 0 in W.
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By estimate (3.9), we have:
o 2
S () < NEM () ).

As M(0) = 0 it follows from this inequality and convergence (3.13) that
x = 0. So the affirmation (3.14) is correct.
Also by equation (P); we have that

u"(t,) = 0 in D(S+1/2),

Thus if T}4. is finite we define u(t) = 0 for ¢t > Ty4,. This extension is a
solution of Problem (P) in [0, co].
Od

4  Proof of Theorem 2.2

We begin with a previous result.

Lemma 4.1 Let § > 1 a real number, M : [0,00[— R a function of class
C' and u € C*([0,00[; W). Then if u(ty) = 0, we have that the Leibniz

. d 8\ .
derivative %M (Hu(to)HW) is equal to zero.
Proof: Consider ¢ty > 0 and u(tp) = 0. Then
1
u(to + h) = u(to + h) — u(ty) = h/ u'(to + Th)dr,
0
which implies for 0 < |h| < min{1,ty/2},

1 B8
lutto + W, < |A)° ( / uu'<to+7h>uwdr) < e,
0

where
C =maz {||u/(s)||w;to/2 < s <tg+1}.

The last inequality gives the result since 8§ > 1. Analogous arguments
give the result when ty = 0 and u(0) = 0. O
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Let ug and u; be two sequences of vectors of D(S?*+%/2) and
D (52a+2), respectively, such that

ug — u® in D(SF3/2), ug — u! in D(S*T).
By these convergence and (H9), we have:

BOka MY (kY ) (0) 0}/ *(0) < 6, § > jo.

where

SO“HUI-‘Q
J
o0 =y

‘2

§e/2,0

Consider the problem (j > jo)

w + M (Jluglfy ) Suj + 0 = 0in L=(0, 003 D(S2+3/2)),

u;i(0) = u, u}(0) = uj.

(P)

By applying the Galerkin method, the successive approximations tech-
nique and the spectral theory of the operator S, Arzela-Ascoli Theorem,
Proposition (3.1), Lemma (4.1), we obtain a local solution u; of (P;), that

is, we find a real number T > 0 and a function u; in the class

u; € LOO(O,T(); D(S2a+5/2)),
uj € L*°(0,To; D(S**+2)), (4.1)
ul € L>(0, Tp; D(S%*+3/2))
such that, u; is the solution of Problem (P;) in L>(0, Tp; D(S2*+3/2))
(see the methodology of this approach in S. S. Souza and the third A.

[27]). The same arguments allow us to obtain a real number Ty > 0 and

a solution u in the class
u e L>®(0,Ty; D(5%F3/2)),
u' € L>(0,Tp; D(S**t)),
u" € L=(0,Ty; D(S%+1/2))
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such that, u is the unique solution of the problem

a"+ M (Jlully, ) Suj+ 6w’ = 0in L2(0, Ty; D($22+1/2)),

P/
) u(0) =¢ ,u'(0) =,

where ¢ € D(S*3/2) and n € D(S%*+1) are arbitrary.

Let M; be the set of real numbers 7" > 0 such that there exists a
unique function u; in class (4.1) with T instead T and w; is the solution of
(P;) in L>(0, T; D(S?*+3/2)). Then by the result of local existence above,
we have that M; # () . Denote by T}pqz ; the supremum of T € M.

Let ¢;(t),7 > jo, be the function

pi(t) =~ +

M (s )11 )

2
s+ (1)

Sa+3/2uj (t)

2
‘ te [0, Tasy.  (4.2)

Then as in the proof of Theorem (2.1), we obtain:
+1,,/ 2
‘sa uj(t)‘
M ([lu ()]
J w

Consider the function

[BC1ko |ST1(t)| — 28], t € [0, Tnawy[- (4.3)

@i(t) <

P1(t) = BCrko | ST (t)

, te {Omiax,j{-
By (H9) and noting that M () is increasing, we have:
o

(T

< BCykoM/? (kfgof/Q(O)) }/%(0) <6,

91(0) = BCkoMY2 ([ud]5,)

By similar arguments used in the proof Theorem 2.1, we obtain:

1/}1(t) <0, t€ [OaTmam,j[' (44)
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This result and (4.3) imply

/ Saﬂ)u;(t)‘
@;(t) < =6 5 t € [0, Trnaz,j| (4.5)
o (s (015
and
Sa“u;(t)r , ‘Sa—&—lu}‘Q )
. i Sa+3/2uj(t)‘ < g i Sa+3/2u2‘ <
M (Jli (815 (112115
52

, te [O,Tmax,j[. (46)

© PCHRIM (T 0)
By inequality (4.4), local existence of solution of (P’), uniqueness
of solution of Problem (P;) in any L*(0,T; D(5%**3/2)) and by similar
argument used in the proof of Theorem 2.1, we obtain that Tj,q. ; is
infinite for j > jo.
Fix j > jo and consider € > 0. Introduce the functions

Satlyl(t), St atly, (]2
p(t) = ( ;0 Jw) 42 |5 Ty () , te 0,00 (4.7

M (@) 28 (1)

and
e(t) = @;(t) +ep(t), te[0,00], (4.8)

where u; is the solution of (Fj).
In what follows, to facilitate the notation, we omit the subscript j.
We have:

()] < \Sa+1u’(t)‘ _ Sa+3/2u(t)} N é ’Sa+3/2u(t)‘2’
Cntf (o)) 2 G
where C, were defined in (2.4), that is,
0] < | 3+ g | 20 1€ 0.1
«MMyg
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So, this inequality and (4.8) imply

1 )

()] < (1+€eR, t), where Py = + .
[pelt)] < (14 €Py) () = T e

Then taking 0 < € < 1/2P, we have:

o(t), te 0,00l (4.9)

N w

1
5‘10(75) < Soe(t) <
On the other side, by taking the scalar product of H in both sides

of equation (P;); by S?**2u, we obtain:

(Saﬂu”(t),So‘Hu(t)) + M <||u(t)\|§,) Sa+3/2u(t)‘2 + g% |Sa+1u(t)|2 =0
or
d 17 a+1 d a+1 2
G 5@ 5 ) 5 SO e,
B T3 B 8 ° U(t)‘
M (Ilu(t)Hw) M (||u(t)HW> M (Ilu(t)llw)

Combining this equality with the definition (4.7) of p(t), we deduce, for

u(t) # 0, ,
gy = SSOF

Sa+3/2u(t)
o ()l )

‘ 2

M (I ) WO ) gue)
M ([lu(®)liy) < Tu(®lw " (t)>

( Sa+1u/(t) Sa—i—lu(t) ) B
a2 (@l ) M2 (Jlue) 15, )

680" (I ) 5™/ g o\ 15T g
2M(||u(t)\|€v) <Hu(t)llw’“ >M(Hu(t)H€V)
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|Sa+1 /(t)|2
M ()l )

2
. Sa+3/2u(t)‘ ~ L1 — L, (4.10)

and for u(t) =0,
st (1))

M ()l )

(see Lemma 4.1). We have, by hypothesis (H7)4, (4.4), and hypothesis
(H10):

Jt) = _ So‘+3/2u(t)‘2 (4.11)

‘SO"Hu/(t)‘ }SO"Hu(t)‘
M2 (Il ) M2 ()l

|L1| < BC1ko | ST/ (1))

a1,/ (4|2 a+1 2
S ,801]?0 ‘SO‘Hu'(t)‘ }S u (t)/‘j + ’S U(t)‘ﬁ S
oM (Hu(t)nw) 2M (Ilu(t)llw)
S ISP pCuk st (n)] |+ 2u()]
SO () el (o)
) \Sa“u’(t)‘2 ‘Sa+3/2 ()‘2_
A ()l )
Also
a+1,/
o] < Gk SO a1 |sessrz o

2my*C2 1172 ([lu(t) 5, )
Combining (4.10), (4.11) and the last two inequalities, we obtain:

‘Soﬂrl /(t)

, |Sa+1ul(t)}
(t) < -
A1 (Jlu(e) 5, )

2 W | ga+/z, 2
M (Jue)ly) el +3

‘56“*3/2 ()]2
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This inequality, the definition (4.8) of ¢, and inequality (4.3), give:

5 ‘SaJrlu/(t)‘ . \So‘“u’(t)f
- €

M (Jlu®lig) 2 (@l

é ‘Sa+1u/(t)‘2 N E)Sa+3/2u(t)

(i) 2

for all u(t),t € [0, 00[. Noting that e < min{l,/4}, we obtain:

Pe(t)

—€ ‘Sa+3/2u(t))2

2

)

S 5] e
2 (@) 2

that implies by (4.9),

2
pe(t) < SO 2u(t)

, t€[0,00],

which gives

Therefore, by (4.9),

70

0;(t) <3p;(0)e 3, te 0,00, 7> jo

By the methodology used in [27], we obtain the limit u of the solutions
u; is the solution of Problem (P) with u in class (2.3). Also by taking the
lim inf in both sides of the last inequality, we deduce inequality (2.7).

O

5 Examples
The result obtained in Theorem 2.1 can be applied to the equation

u” (t) + |lu(®)||Z Su(t) + 6u'(t) = 0, t> 0.
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Here M (€) = €2/, And the result obtained in Theorem 2.2, to the equa-

tion

u"(t) + M (Hu(t)név) Su(t) +6u'(t) =0, t >0,

where M (&) = &7 +mg, 0 > 1/ and my > 0. For the mixed problem

associated to these equation, see [13].
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