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Abstract

We use a unified approach to study certain classes of elliptic prob-

lems. More precisely, we consider a Dirichlet problem for a system of

two ordinary differential equations which depends on two numerical

parameters a and b, and with nonlinearities satisfying very general

superlinear local growth conditions. Using the upper–lower solutions

method, fixed point theorems of cone expansion/compression type

and some degree–theoretic arguments, we prove that there exists a

non–increasing function Γ of the parameter a such that the problem

has (i) at least one positive solution for 0 ≤ b ≤ Γ(a), (ii) no posi-

tive solution for b > Γ(a), and (iii) at least two positive solutions for

0 < b < Γ(a). We apply the main results to a class of semilinear ellip-

tic systems in both bounded annular domains and exterior domains
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with non–homogeneous Dirichlet boundary conditions. In addition,

we apply our results to fourth–order boundary value problems. The

nonlinearities may have singularities, as well as may vanish in parts

of the domain.

1 Introduction

In this paper we will outline some recent advances concerning existence,

non-existence and multiplicity of positive solutions for a class of systems

of two ordinary differential equations which depends on two numerical pa-

rameters with Dirichlet homogeneous boundary conditions. We will apply

these results to study certain classes of semilinear elliptic systems in both

bounded annular domains and exterior domains with non–homogeneous

Dirichlet boundary conditions. In addition, we apply our results to fourth–

order boundary value problems.

We will mainly deal with the class of ordinary differential equations{
−u′′ = g1(t, u, v, a, b) in (0, 1),

−v′′ = g2(t, u, v, a, b) in (0, 1)
(Sab)

with Dirichlet boundary conditions

u(0) = v(0) = u(1) = v(1) = 0 . (BC)

Here the parameters a and b are non–negative, and the nonlinearities

g1, g2 : (0, 1) × [0,+∞)4 −→ [0,+∞) are continuous and non–decreasing

in the last four variables, satisfying the following hypotheses:

(H1) Given a, b ≥ 0, we have that, for all M > 0 and i = 1, 2, there exists

hi ∈ C((0, 1), (0,+∞)) such that∫ 1

0
t(1− t)hi(t)dt < +∞ (1.1)

and

0 ≤ gi(t, u, v, a, b) ≤ hi(t), for all (t, u, v) ∈ (0, 1)× [0,M ]2.
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(H2) There exist a function h ∈ C((0, 1), (0,+∞)) and an M∗ > 0 such

that ∫ 1

0
t(1− t)h(t)dt <

1

M∗

and

lim
|(u,v,a,b)|→0+

g1(t, u, v, a, b) + g2(t, u, v, a, b)

u+ v + a+ b
< h(t)M∗, for each t ∈ (0, 1).

(H3) There exist α, β, γ, δ, η, ξ ∈ (0, 1) , with α < β, γ < δ and η < ξ,

such that

lim
u→+∞

g1(t, u, v, 0, 0) + g2(t, u, v, 0, 0)

u
= +∞

uniformly for v ≥ 0 and t ∈ [α, β] ,

lim
v→+∞

g1(t, u, v, 0, 0) + g2(t, u, v, 0, 0)

v
= +∞

uniformly for u ≥ 0 and t ∈ [γ, δ], and

lim
|(a,b)|→+∞

(g1(t, 0, 0, a, b) + g2(t, 0, 0, a, b)) = +∞

uniformly for t ∈ [η, ξ].

1.1 Main Result

Theorem 1.1. Suppose g1, g2 : (0, 1) × [0,+∞)4 −→ [0,+∞) are con-

tinuous, non–decreasing in the last four variables and satisfy assumptions

(H1),(H2) and (H3). Then there exist a constant ā > 0 and a non–

increasing function Γ : [0, ā] → [0,+∞) so that, for all a ∈ [0, ā], the

System (Sab) has:

(i) at least one positive solution for 0 ≤ b ≤ Γ(a);

(ii) no positive solutions for b > Γ(a);

(iii) at least two positive solutions for 0 < b < Γ(a).
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The approach taken to prove our main result is based on some well

known fixed point theorem of expansion/compression type, the upper–

lower solutions method, and some topological degree arguments.

Remark 1.2. The results in this paper were in part motivated by several

recent papers on elliptic problems. Here we extend and complement some

of those previous works, see Section 1.2 and compare with the results of

[5], [6], [3], [4], [7], [8], [10], [12], [11], [14], [15] and [16] and references

therein. We consider a more general class of superlinear nonlinearities.

As a typical example of functions satisfying our assumptions above we

have

g1(t, u, v, a, b) = c1(t)(e
u − 1 + a)q(v + c2(t))

g2(t, u, v, a, b) = d1(t)(e
v5 − 1 + b)p(u+ d2(t))

where p, q > 0 and c1, d1 satisfy the integrability condition (1.1) and may

have disjoint support, and c2, d2 are positive continuous function defined

on [0, 1] . These nonlinearities satisfy assumptions (H1) through (H3), but

do not satisfy the particular classical superlinear assumptions

lim
u+v→+∞

g1(t, u, v, a, b)

u+ v
= +∞ or lim

u+v→+∞

g2(t, u, v, a, b)

u+ v
= +∞.

1.2 Applications

Next we give some examples of elliptic problems to which we can apply

Theorem 1.1 to prove existence, multiplicity and nonexistence of positive

solutions.

I. Elliptic Systems in Annular Domains.
−∆u = f(|x|, u, v)
−∆v = g(|x|, u, v), for r1 < |x| < r2 and x ∈ RN (N ≥ 3),

(u(x), v(x)) = (a, b), for |x| = r1,

(u(x), v(x)) = (0, 0), for |x| = r2.

(1.2)
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By applying the change of variable t = a(r) , with

a(r) = − A

rN−2
+B

where

A =
(r1r2)

N−2

rN−2
2 − rN−2

1

and B =
r2

N−2

rN−2
2 − rN−2

1

it easy to see that (1.2) is equivalent to a system like (Sab) with boundary

conditions (BC).

II. Elliptic Systems in Exterior Domains.
−∆u = f(|x|, u, v)
−∆v = g(|x|, u, v), for |x| > 1 and x ∈ RN (N ≥ 3),

(u(x), v(x)) = (a, b), for |x| = 1,

(u(x), v(x)) → (0, 0) as |x| → +∞.

(1.3)

We denote the radial solutions by

u, v : [1,+∞) → R, u(x) = u(|x|), v(x) = v(|x|).

By applying the changes of variables

z(t) = u
(
(1− t)1/(2−N)

)
, w(t) = v

(
(1− t)1/(2−N)

)
,

we may transform (1.3) into a system like (Sab) with boundary conditions

(BC).

III. Fourth–order Elastic Beam Equation.
−u(4) = f(t, u, u′′) in (0, 1),

u(0) = a, u(1) = b,

u′′(0) = 0, u′′(1) = 0.

(1.4)

In this case, it suffices to take g2(t, u, v, a, b) = f(t, (1−t)a+tb+u,−v), v =

−u′′ , and g1(t, u, v, a, b) = v .
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1.3 Comments

Second-order elliptic problems in symmetric euclidian domains have

been received considerable attention in the recent years. We start from the

study of simpler case. In [3], it was used fixed point theorems of cone ex-

pansion/

compression type, the upper–lower solutions method and degree argu-

ments, in order to study the existence, non–existence and multiplicity of

positive solutions for a class of second–order ordinary differential equa-

tions with multi–parameters. They applied their results to study a class

of semilinear elliptic equations in bounded annular domains with non–

homogeneous Dirichlet boundary conditions of the form

−∆u = λ f(|x|, u) in r1 < |x| < r2 ,

u(x) = a on |x| = r1 ,

u(x) = b on |x| = r2 ,

where a, b and λ are non–negative parameters. One feature of the hy-

potheses on the nonlinearities that they consider is that they have some

sort of local character.

Several papers on existence and multiplicity of positive radial solutions

of elliptic systems in annular bounded domains involving nonlinearities

as in Problem (1.2) and imposing Dirichlet or Newmann boundary con-

ditions have recently appeared. For homogeneous boundary conditions,

see [7], [8] and references therein. For non–homogeneous boundary condi-

tions, see [4], [10], [12] and the references therein. In [4], the same authors

study a Dirichlet problem for a system of two ordinary differential equa-

tions which depends on two numerical parameters and with nonlinearity

satisfying very general superlinear local growth conditions. Using the

method of lower–upper solutions, a fixed point theorem of cone expan-

sion/compression type and some degree–theoretic arguments, the authors

prove the existence of one and then two positive solutions depending on the

values of the two parameters. The nonexistence of solutions with respect

to these parameters is also considered. These results are then applied to
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establish the existence and multiplicity of positive radial solutions for a

certain class of semilinear elliptic systems in annular domains.

In [5], we study existence and multiplicity of positive solutions of the

non–homogeneous elliptic equation
−∆u = q(|x|)f(u) , for |x| > 1 and x ∈ RN ,

u(x) = a , for |x| = 1 ,

u(x) → b as |x| → +∞

where N ≥ 3 , the nonlinearity f is superlinear at zero and infinity, q

is a non–trivial, non–negative function, and a and b are non–negative

parameters. A typical model is given by f(u) = up , with p > 1 . For

related results about exterior domains, see also [14], [15] and [16] and

references therein.

1.4 Organization of the Paper

This paper is organized as follows. In Section 2, we state three well

known theorems which are crucial for proving our main result, Theorem

1.1. Section 3 is devoted to proving the existence of one positive solution

when the parameters a and b are sufficiently small. In Section 4, we

introduce a theorem of lower and upper solutions method for singular

systems. Section 5 establishes a non–existence result, as well as an a priori

estimate result used in Section 6 to prove the existence of two positive

solutions.

2 Auxiliary Results

We next state the following three well known theorems (see e.g. [1], [2],

[9], [13]).

Theorem A. Let X be a Banach space endowed with norm ∥ · ∥ , and
let C ⊂ X be a cone in X. For R > 0, define CR = C ∩ B[0, R], where
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B[0, R] denotes the closed ball of radius R centered at the origin of X.

Assume that F : CR → C is a completely continuous operator and that

there exists 0 < r < R such that

(A1) ∥Fu∥ < ∥u∥, for all u ∈ ∂Cr and Fu∥ > ∥u∥, for all u ∈ ∂CR or

(A2) ∥Fu∥ > ∥u∥, for all u ∈ ∂Cr and ∥Fu∥ < ∥u∥, for all u ∈ ∂CR,

where ∂CR = {u ∈ C : ∥u∥ = R}. Then F has a fixed point u ∈ C, with

r < ∥u∥ < R.

Theorem B. Let X be a Banach space endowed with norm ∥ · ∥, and
let C be a cone in X. For r > 0, define Cr = {u ∈ C : ∥u∥ < r}.
Assume that F : Cr → C is a compact map such that Fu ̸= u, for

u ∈ ∂Cr = {u ∈ C : ∥u∥ = r}.

(B1) If ∥u∥ ≤ ∥Fu∥ , for all u ∈ ∂Cr , then i(F , Cr, C) = 0 .

(B2) If ∥u∥ ≥ ∥Fu∥ , for all u ∈ ∂Cr , then i(F , Cr, C) = 1 .

Theorem C. Let X be a Banach space; let C be a cone in X; and let Ω

be a bounded open set in X. Let 0 ∈ Ω, and let F : C ∩ Ω → C be a

compact operator. Suppose that Fu ̸= λu , for all u ∈ C ∩ ∂Ω and all

λ ≥ 1 . Then

i (F , C ∩ Ω, C) = 1

where i (F , C ∩ Ω, C) denotes the fixed point index over Ω with respect to

C for the compact operator F .

Define the operator F : X → X by

F(ϕ, ψ)(t) = (A(ϕ, ψ)(t),B(ϕ, ψ)(t)), for t ∈ [0, 1]

where
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A(ϕ, ψ)(t) =

∫ 1

0
G(t, τ) g1(τ, ϕ(τ), ψ(τ), a, b) dτ and

B(ϕ, ψ)(t) =

∫ 1

0
G(t, τ) g2(τ, ϕ(τ), ψ(τ), a, b) dτ.

Here G(t, s) denotes the associated Green’s function that is given by

G(t, s) =

{
s(1− t) for 0 ≤ s ≤ t ≤ 1 ,

t(1− s) for 0 ≤ t ≤ s ≤ 1 .
(2.5)

Therefore, the System (Sab) with boundary conditions (BC) is equivalent

to the fixed point equation

F(ϕ, ψ) = (ϕ, ψ)

in the usual Banach space X = C([0, 1];R) × C([0, 1];R) endowed with

the norm ||(u, v)|| = ||u||∞ + ||v||∞, where ||u||∞ = maxt∈[0,1] |u(t)|. In

this paper, we use topological methods in order to prove our main results.

More precisely, we use a combination of fixed point techniques, degree

theory, fixed point index theory, and the lower and upper solution method.

For this, we consider the cone C in X defined by

C = {(u, v) ∈ X : (u, v)(0) = (u, v)(1) = 0, and u, v are concave}.

Lemma 2.1. Fixing a, b ≥ 0, we have that F : X → X is well defined,

F(C) ⊂ C, and F is completely continuous.

We next state a technical result about some elementary properties of

concave functions.

Lemma 2.2. Suppose u(t) is a non–negative, concave, continuous func-

tion defined on [0, 1]. Then, for all 0 < t0 < t1 < 1, we have

min
t∈[t0,t1]

u(t) ≥ t0(1− t1)||u||∞.
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3 Existence of a Positive Solution for Small Pa-

rameters

In this section, we show the existence of a fixed point of F for a and b

sufficiently small.

Lemma 3.1. Suppose conditions (H1) and (H2) hold. Then there exist

R0 > 0 and δ0 so that, for all (ϕ, ψ) ∈ CR0 and all (a, b) with 0 <

a+ b < δ0 , we have

||F(ϕ, ψ)|| < ||(ϕ, ψ)|| .

Proof. It follows from condition (H2) that we may choose σ ∈ (0, 1) so

that

M∗
∫ 1

0
τ(1− τ)h(τ) dτ < 1− σ .

Also, there exists R > 0 so that, for all 0 ≤ r + s + a + b ≤ R and

t ∈ (0, 1) , we have

g1(t, r, s, a, b) + g2(t, r, s, a, b) ≤M∗h(t)(r + s+ a+ b) .

Thus, for (ϕ, ψ) ∈ C(1−σ)R , a+ b ∈ (0, σR) , and t, t′ ∈ (0, 1), we

have

A(ϕ, ψ)(t) + B(ϕ, ψ)(t′) ≤ M∗ R

∫ 1

0
τ(1− τ)h(τ) dτ

< (1− σ)R .

Taking R0 = (1 − σ)R and δ0 = σR , for all (ϕ, ψ) ∈ CR0 and for

0 < a+ b < δ0 , we have

||F(ϕ, ψ)|| = ||A(ϕ, ψ)||∞ + ||B(ϕ, ψ)||∞ < R0 = ||(ϕ, ψ)|| .

2

Lemma 3.2. Assume that conditions (H1) and (H3) hold. Then there

exists R1 > R0 so that, for all (ϕ, ψ) ∈ CR1 , we have

||F(ϕ, ψ)|| > ||(ϕ, ψ)|| .
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Proof. For otherwise, there would exist an increasing sequence rn → +∞
and a sequence {(ϕn, ψn)} in C so that the real sequence {rn} defined

by ∥(ϕn, ψn)∥ = rn would satisfy

∥F(ϕn, ψn)∥ ≤ ∥(ϕn, ψn)∥ .

We consider two cases:

Case 1: ∥ϕn∥∞/rn → 0 as n → +∞ . Consequently, ∥ψn∥∞/rn → 1 as

n→ +∞. Combining the monotonicity of the nonlinearities, the concavity

of ϕn and ψn, and Lemma 2.2 we would have

∥F(ϕn, ψn)∥ ≥
∫ δ

γ
G(1/2, τ)[ g1(τ, γ(1− δ)∥ϕn∥∞ , γ(1− δ)∥ψn∥∞, 0, 0)

+ g2(τ, γ(1− δ)∥ϕn∥∞ , γ(1− δ)∥ψn∥∞, 0, 0)] dτ

=

∫ δ

γ
G(1/2, τ)

Jn(τ)

γ(1− δ)∥ψn∥∞
· γ(1− δ)∥ψn∥∞ dτ

= γ(1− δ)Mn
∥ψn∥∞
rn

rn

where

Jn(τ) = g1(τ, γ(1− δ)∥ϕn∥∞ , γ(1− δ)∥ψn∥∞ , 0 , 0)

+ g2(τ, γ(1− δ)∥ϕn∥∞ , γ(1− δ)∥ψn∥∞, 0, 0)

and

Mn =

∫ δ

γ
G(1/2 , τ)

Jn(τ)

γ(1− δ)∥ψn∥∞
dτ −→ +∞

by assumption (H3). Therefore, we would have

1 ≥ γ(1− δ)Mn
∥ψn∥∞
rn

,

which is impossible.

Case 2: ∥ϕn∥∞/rn → a > 0 as n → +∞ . Similarly, in this case we

would have
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∥F(ϕn, ψn)∥ ≥
∫ β

α
G(1/2, τ)

Sn(τ)

α(1− β)∥ϕn∥∞
· α(1− β)∥ϕn∥∞ dτ

= α(1− β)Nn
∥ϕn∥∞
rn

rn

where

Sn(τ) = g1(τ, α(1− β)∥ϕn∥∞ , α(1− β)∥ψn∥∞ , 0 , 0)

+ g2(τ, α(1− β)∥ϕn∥∞ , α(1− β)∥ψn∥∞, 0, 0)

and

Nn =

∫ β

α
G(1/2, τ)

Sn(τ)

α(1− β)∥ϕn∥∞
dτ −→ +∞

by assumption (H3). Therefore, we would have

1 ≥ α(1− β)Nn
∥ϕn∥∞
rn

,

which is impossible.

2

Taking into account Lemmas 3.1 and 3.2, the following is a direct con-

sequence of Theorem A.

Theorem 3.3. There exists δ0 > 0 so that, for all a and b satisfying

0 < a + b < δ0 , the operator F has a fixed point (ϕ, ψ) ∈ C verifying

R0 < ||(ϕ, ψ)|| < R1 .

Combining the maximum principle with hypothesis (H1) we obtain that

ϕ and ψ are positive functions.

4 Upper and Lower Solutions

In this section, we establish the classical upper–lower solutions method

for obtaining non–negative solutions of our class of singular systems. For

this, consider the system
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u′′(t) + f(t, u(t), v(t)) = 0,

v′′(t) + g(t, u(t), v(t)) = 0 , for t ∈ (0, 1) ,

(u(0), v(0)) = (0, 0), (u(1), v(1)) = (0, 0)

(P )

where both of the functions f and g satisfy assumption (H1) .

As usual, we will say that (u, v) is an upper solution of System (P ) if

(u, v) verifies the following inequalities:

u′′(t) + f(t, u(t), v(t)) ≤ 0,

v′′(t) + g(t, u(t), v(t)) ≤ 0, for t ∈ (0, 1) ,

(u(0), v(0)) ≥ (0, 0), (u(1), v(1)) ≥ (0, 0) .

(4.6)

Similarly, we define a lower solution of System (P ) replacing “greater than

or equal to” with “less than or equal to”.

The upper–lower solutions method is established in the next lemma.

(See also [11].)

Lemma 4.1. Let (u, v) (resp. (ū, v̄) ) be a lower (resp. an upper) solution

of System (P ). Moreover, we suppose

(0, 0) ≤ (u, v) ≤ (ū, v̄) .

Then System (P ) has a non–negative solution (u, v) verifying

(u, v) ≤ (u, v) ≤ (ū, v̄) .

Proof. Let

M(u, v)(t) =

∫ 1

0
G(t, τ)f(τ, u(τ), v(τ)) dτ,

N(u, v)(t) =

∫ 1

0
G(t, τ)g(τ, u(τ), v(τ)) dτ and

T (u, v)(t) = (M(u, v)(t), N(u, v)(t)) .
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Thus System (P ) is equivalent to the fixed point equation

T (u, v) = (u, v)

in the Banach space X = C([0, 1];R)×C([0, 1];R) endowed with the norm

||(u, v)|| = ||u||∞ + ||v||∞ .

We need to introduce the auxiliary operator T̂ defined by

T̂ (u, v)(t) = (M̂(u, v)(t) , N̂(u, v)(t))

where

M̂(u, v)(t) =

∫ 1

0
G(t, τ)f(τ, ξ(t, u) , ζ(τ, v)) dτ and

N̂(u, v)(t) =

∫ 1

0
G(t, τ) g(τ, ξ(t, u) , ζ(τ, v)) dτ,

and
ξ(t, u) = max{u(t),min{u, u(t)}} and

ζ(t, v) = max{v(t),min{v, v(t)}} .

It is not difficult to see that the operator T̂ has the following three prop-

erties:

(a) The operator T̂ is bounded and completely continuous.

(b) If the pair (u, v) ∈ X is a fixed point of T̂ , then (u, v) is a fixed

point of T, with (u, v) ≤ (u, v) ≤ (u, v) .

(c) If (u, v) = λ T̂ (u, v) , with 0 ≤ λ ≤ 1, then ||(u, v)|| ≤ K3, where

K3 does not depend on either λ or (u, v) ∈ X .

The proof now follows from the topological degree of Leray–Schauder.

(See [1, Corollary 8.1, p. 61].)

2

The following is an application of the preceding result.
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Proposition 4.2. Assume that System (Sa2b2) has a non–negative solu-

tion and that

(0, 0) ≤ (a1, b1) ≤ (a2, b2) .

Then System (Sa1b1) has a non–negative solution.

Proof. Let the pair (u2, v2) be a non–negative solution of System (Sa2b2) .

Since g1 and g2 are non–decreasing functions in the last two variables, we

have that (u2, v2) is an upper solution and that (0, 0) is a lower solution

of System (Sa1b1). The conclusion results from Lemma 4.1.

2

5 A priori Bounds and Non–existence

This section is devoted to establishing a priori estimates for the positive

solutions of System (Sab).

Lemma 5.1. Suppose that conditions (H0), (H1) and (H3) hold. Then

there exists a positive constant K > 0 such that, for every positive solution

(u, v) of System (Sab), we have

||(u, v)|| ≤ K

where K may be chosen independent of a and b .

The proof is analogous to that of Lemma 3.2.

Remark 5.2. Assume that (ϕ, ψ) is a positive solution of System (Sab),

using the same argument as in the proof of Lemma 3.2 we find

∥F(ϕ, ψ)∥ = ∥A(ϕ, ψ)∥∞ + ∥B(ϕ, ψ)∥∞

≥
∫ ξ

η
G(1/2, τ)[ g1(τ, 0, 0, a, b) + g2(τ, 0, 0, a, b)] dτ.

From Lemma 5.1 and hypotheses (H3) we conclude that there exists a

ρ > 0 such that, for all (a, b) ∈ (0,+∞)× (0,+∞) with |(a, b)| > ρ , the

System (Sab) has no positive solutions.
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We next define the set

A = {a > 0 : System (Sab) has a positive solution for some b > 0} .

From Theorem 3.3 and Remark 5.2 we conclude that A is non–empty and

bounded. Thus

0 < ā = supA < +∞ .

Using the upper–lower solutions method, we see that for all a ∈ (0, ā) ,

there exists b > 0 such that System (Sab) has a positive solution. We now

define the function Γ : [0, ā] → [0,+∞) by

Γ(a) = sup{b > 0 : System (Sab) has a positive solution} .

By Proposition 4.2 we know that the function Γ is non–increasing. More-

over, Γ (0) > 0 as is easily verified. We claim that Γ(a) is attained. In

fact, it suffices to use Lemma 5.1 and the compactness of the operator F .
Finally, it follows from the definition of the function Γ that the System

(Sab) has at least one positive solution for 0 ≤ b ≤ Γ(a) , and furthermore

that it has no positive solutions for b > Γ(a) , which proves parts (i) and

(ii) of Theorem 1.1, respectively.

6 Existence of Two Positive Solutions

In this section, we establish existence of two positive solutions of System

(Sab), which corresponds to proving part (iii) of Theorem 1.1. For this,

we will assume that the nonlinearities g1 and g2 are increasing.

Fix a ∈ [0, ā] , and let (ϕ, ψ) be the solution of Problem (SaΓ(a)) which

is obtained using Proposition 4.2. Our next result allows us to establish

another solution of System (Sab) for 0 < b < Γ(a).

Lemma 6.1. For each 0 < b < Γ(a) , there exists ε0 > 0 so that, for all

0 < ε ≤ ε0 and all t ∈ [0, 1] , we have



ELLIPTIC SYSTEMS 129

ϕε (t) >

∫ 1

0
G(t, s)g1(s, ϕε(s), ψε(s), a, b) ds

and

ψε (t) >

∫ 1

0
G(t, s)g2(s, ϕε(s), ψε(s), a, b) ds

where ϕε(t) = ϕ(t) + ε and ψε(t) = ψ(t) + ε.

Proof. Fix δ ∈ (0, 1/2) . Since g1 is increasing, we have that, for each

0 < b < Γ(a), we may find a positive constant I = I(b) such that, for all

s ∈ [δ, 1− δ] , we have

g1(s, ϕ(s), ψ(s), a,Γ(a))− g1(s, ϕ(s), ψ(s), a, b) ≥ I > 0 .

By the uniform continuity of g1, there exists ε0 > 0 so that, for all

s ∈ [δ, 1− δ] and all 0 < ε ≤ ε0 , we have∣∣g1(s, ϕ(s) + ε, ψ(s) + ε, a, b)− g1(s, ϕ(s), ψ(s), a, b)
∣∣ < I

2
·

Next we define

ζε(t, s) = G(t, s)[g1(s, ϕε(s), ψε(s), a, b)− g1(s, ϕ(s), ψ(s), a, b)]

and

η(t, s) = G(t, s)[g1(s, ϕ(s), ψ(s), a,Γ(a))− g1(s, ϕ(s), ψ(s), a, b)] .

Assume 0 < ε ≤ ε0 . Then

ϕε (t) >

∫ 1

0
G(t, s) g1(s, ϕ(s), ψ(s), a,Γ(a)) ds

=

∫ 1

0
G(t, s) g1(s, ϕε(s), ψε(s), a, b) ds

−
∫ 1

0
ζε(t, s) ds+

∫ 1

0
η(t, s) ds .
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Since η(t, s) is positive and η(t, s)− ζε(t, s) >
I
2 G(t, s), for s ∈ [ δ, 1− δ] ,

we have

ϕε (t) >

∫ 1

0
G(t, s) g1(s, ϕε(s), ψε(s), a, b) ds−

∫ δ

0
ζε(t, s) ds

−
∫ 1

1−δ
ζε(t, s) ds+

I

2

∫ 1−δ

δ
G(t, s) ds.

It is not difficult to show that Lebesgue’s Dominated Convergence The-

orem implies that
∫ δ
0 ζε(t, s) ds +

∫ 1
1−δ ζε(t, s) ds converges to zero, uni-

formly in t , as ε tends to zero. Thus, for ε sufficiently small, we have

ϕε (t) >

∫ 1

0
G(t, s) g1(s, ϕε(s), ψε(s), a, b) ds

uniformly in t ∈ [0, 1].

A similar computation holds for ψε .

2

We are now in a position to prove part (iii) of Theorem 1.1, or in other

words show the existence of two positive solutions of System (Sab) for

0 < b < Γ(a), where a ∈ [0, ā] is fixed.

Proof of part (iii) of Theorem 1.1.

Consider the set

Ω =
{
(ϕ, ψ) ∈ X : −ε < ϕ (t) < ϕε (t) , −ε < ψ (t) < ψε (t) , for t ∈ [0, 1]

}
where ϕε and ψε are the functions of Lemma 6.1. It is not hard to see

that Ω is bounded and open inX , and that 0 ∈ Ω. Note that one solution

of System (Sab) belongs to C ∩ Ω. Also, we known that F : C ∩ Ω → C

is a compact operator.

Let (ϕ, ψ) ∈ C ∩ ∂Ω . It follows that there exists a t0 ∈ (0, 1) such that

one of the following two cases hold: ϕ (t0) = ϕε (t0) or ψ (t0) = ψε (t0) .

In the case ϕ (t0) = ϕε (t0) , it follows from Lemma 6.1 that, for all λ ≥ 1,



ELLIPTIC SYSTEMS 131

we have

A(ϕ, ψ)(t0) =

∫ 1

0
G(t0, s) g1(s, ϕ(s), ψ(s), a, b) ds

≤
∫ 1

0
G(t0, s) g1(s, ϕε(s), ψε(s), a, b) ds

< ϕε (t0) = ϕ (t0) ≤ λϕ (t0) .

Similarly, B(ϕ, ψ)(t0) < λψ(t0) in the case ψ (t0) = ψε (t0) . Hence

F(ϕ, ψ) ̸= λ(ϕ, ψ), for all (ϕ, ψ) ∈ C ∩ ∂Ω and all λ ≥ 1. Now according

to Theorem C, we have

i (F , C ∩ Ω, C) = 1.

On the other hand, a slight change in the proof of Lemma 5.1 shows

the existence of an r > 0 sufficiently large, say r > R1, where R1 is as in

Theorem 3.3, so that

∥F(ϕ, ψ)∥ > ∥(ϕ, ψ)∥

for every ∥(ϕ, ψ)∥ = r and every (ϕ, ψ) ∈ C.

Let R = max{K + 1, r, ∥(ϕε, ψε)∥}, where K is as in Lemma 5.1. Set

CR = {(ϕ, ψ) ∈ C : ∥(ϕ, ψ)∥ < R}.

Then Lemma 5.1 implies that F(ϕ, ψ) ̸= (ϕ, ψ), for (ϕ, ψ) ∈ ∂CR. Conse-

quently, part (B1 ) of Theorem B implies i (F , CR, C) = 0.

Now by the additivity property of the fixed point index we obtain

i (F , C ∩ Ω, C) + i
(
F , CR\C ∩ Ω, C

)
= i (F , CR, C) = 0.

Since i (F , C ∩ Ω, C) = 1, we conclude i
(
F , CR\C ∩ Ω, C

)
= −1. There-

fore, F has another fixed point in CR\C ∩ Ω, which was to be shown.

Remark 6.2. Detailed proofs, more examples and comments can be found

in [6].

Open Problem 1. Does the conclusion of Theorem 1.1 hold for problems

involving p−Laplacian operator and without the non-decreasing assump-

tion on the nonlinear terms?.
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Open Problem 2. Do (1.2), (1.3) and (1.4) have infinitely many solu-

tions for a, b > 0 small enough?

Open Problem 3. It would be interesting to study multiplicity of posi-

tive solutions of elliptic systems in more general domains or more general

boundary conditions.
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