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LIFE SPAN OF SOLUTIONS OF
A STRONGLY COUPLED
PARABOLIC SYSTEM

Flavio Dickstein Miguel Loayza®

Abstract

We consider the parabolic system 0, wy —Awy = F(w))
in R, where \ > 0, wy = (ux,vy), F(wy) = (ux® v\, ux¢vy?).
It is assumed that a,b,¢,d > 1,b>d—1, ¢ > a—1, max{a+
bye+d} < 3 and wy(0) = (\T179p, AH1%),) for some
positive functions @1, 2 € Cy(R). Under these conditions wy
blows up for all A > 0. We study the life span of w) for )\

small.

1 Introduction

In this work we consider positive solutions of the fully coupled

parabolic system
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uy — Au=u*’ in (0,T) X R,

v — Av =uv? in (0,T) X R,

(1.1)

[ v(0) =vo InR,
where ug, vg € Cy(R), ug > 0, v9 > 0 and a,b,c,d > 1 are such that

(b+1—d)(c+1—a)>0, (1.2)

It is well known that (1.1) has a unique classical solution w(t) =
(u(t),v(t)) defined over a maximal interval [0,7"), T" < +oo. When
T < +oo we say that w blows up at the blowup time 7. Blow up
phenomena for semilinear parabolic systems in R has been studied
by several authors, see for example [1], [3], [5], [6], [7], [10], [12]. In
particular, Escobedo and Levine [8] proved the following result for
N = 1. Suppose that

a>1lifa+b<c+d, d>1lifa+b>c+d, (1.3)

and that
min{a +b,c+ d} < 3. (1.4)

If ug # 0 and vy # 0 then w(t) blows up. Note that w(t) = (S(¢)ug,0)
and w(t) = (0,S(t)vy), where S(t) is the heat semi-group operator,
are global solutions of (1.1). When b = ¢ = p, a = d = 0, (1.4)
reduces to p < 3, the well known Fujita blowup condition for the
semilinear heat equation in one space dimension. For this reason,
we will say that (1.1) is subcritical when (1.3), (1.4) hold. Under
assumptions (1.2) and (1.4) we have that bc > (a — 1)(d — 1). We
then define

D=bc—(a—1)d-1) g = 20+1=d)
D (1.5)
~ 2(c+1-a) c—a+1
b2 = D T —dr 1
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We show here that unconditional blowup for positive solutions also
occurs when both ug and vy decay slowly at infinity. More precisely,
given o > 0 define
J(o) = {up € Cy(R),up > 0, there exists C' > 0 16)
1.6
such that liminf), _, o |z|7ue(z) > C}.

If up € J(B1), vo € J(f2), and the constant C' appearing in (1.6) is

large enough, then w blows up, see Proposition 3.1.
The main purpose of this work is to study the growth of the blowup
time of the solutions of (1.1) for small initial data in the following

sense. Given \ > 0 we define wy = (uy,v,) as the solution of

((w, — Au=u in (0,T) xR,

vy — Av =vuv? in (0,T) X R,

u(0) = A\, in R,

[ 0(0) =X*10,  in R,

where ¢1,p9 € Cy(R) are nonnegative functions such that, either
@; € L*(R) or ¢; € J(a;) for o; < 1,7 =1,2. We suppose that either
(1.4) holds or that ug € J(o1), vg € J(0o2) for some o1 < Sy, 092 < Sa.
This ensures that w)y blows up for all A > 0. We analyse the growth
of the blowup time T of wy as A — 0. This allows to distinguish in
each case if the solution blows up because of its slow decay at infinity
or due to the subcriticality of the problem.
Define

I(0,1) = {p € Co(R),p 2 0, Tim [z[%p(z) =1}, (L8)

We now present our main results, concerning some sharp estimates
on the growth of T). For ¢, po having slow decay, we show the

following.
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Theorem 1. Assume (1.2), (1.3), (1.4) and let By, v be given by
(1.5). Consider o1 € I(01,l1), wo € 1(09,1s), where ly,ls >0, o1 < 1
and o9 = vyo, < 1. Then p; = By — o1 > 0 and there exists Ly > 0
such that

2(b+1—d)

lim A T)\ = Ll-

We next consider the case where ¢, has slow decay and ¢, € L.

Theorem 2. Assume (1.2), (1.8), (1.4). Suppose that 1 € I1(01,1),
where o1 < 1, yo1 =1, 1> 0 and vy € L', s > 0. Assume also that
M = fgpg > 0. Then there exists Ly > 0 such that

2(b+1—d)

lim A\~ T\ = Lo.
For 1, € L, we prove the following.

Theorem 3. Assume (1.2), (1.3), (1.4) and suppose further that
a+b=c+d< 3. Let 1,05 € L' be nonnegative functions such that

/(pl > 0, /902 > 0. Then there exists L3 > 0 satisfying

2(b+1—d)

lim N ~ T/\ = Lg.

To treat the case where o1, ¢y decay as |z|~! at infinity, we define
g(p) = pPrlog p for p > 7i := e/P1. The function g is invertible and

we call h = g~ ! its inverse.

Theorem 4. Assume (1.2), (1.3), (1.4). Let a+b=c+d, p; €
I(1,1h) and ps € I1(1,13) for some ly,ls > 0. Then wy blows up at a
finite time T and there exists Ly > 0 such that

lim (h(\"CH=DN 2T = L,

A—0
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To prove these results we proceed as follows. Consider w,(z,t) =
(nPru(pz, pt),

pP2o(px, p?t)), where g > 0. Then 1, is also a solution of (1.1)
blowing up at T# = p~2Ty. We choose p depending on ) in such
a way that w,(t) converges (in some topology) to a limit solution
z*(t). It turns out that z*(0) is a singular initial datum. Suppose
2*(t) blows up at a finite time 7%*. Continuity of the blowup time with
respect to the initial data holds here, so that Tu = p 2T\ —T* as
A — 0. We have that p = u()\) and 2*(0) = z5(¢1, v2), that is,

PPN T —T*(p1,02)  as A —0, (1.9)

Therefore, the constants Ly, Lo, L3 and L4 in the theorems above
are related to the blowup time of some limiting problems.

For i = 1,2 set 0; = +0o0 whenever ¢; € L'(R) and define
p1 = 1 — min{oy, 1}, p2 = o — min{os, 1}, (1.10)

where we used (1.5). The theorems stated above are restricted to the
case p; = po for the following reason. It turns out that for p; > po
the limit solution z*(¢) is equal to (S(t)p,0) and is global. Under
this circunstances our argument breaks down. This does not occur
when a = d = 0. This is why a more complete description of the
blowup behaviour of solutions of the weakly coupled system can be
provided, see [6].

Our approach leads to discussing the well-posedness of (1.1) for
nonregular initial data. This is done in Section 2, where we state the
problem in RY and we also consider solutions which are not neces-
sarily positive. In Section 3 we prove the blow up of slowly decaying
positive solutions of the Cauchy problem in RY. We also show the
continuity of the blowup time with respect to initial data. Finally,

the main results are stated and proved in Section 4.
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2 The Semilinear Parabolic Equation with

Singular Data

In this section we discuss the existence of solutions of the Cauchy
problem in RV, N > 1, for the fully coupled system with singular
initial data. Consider
(w, — Au= lu|*"tu|v®~ 1o in (0,T) x RV,

vy — Av = |ultulv] o in (0,T) x RY,

¢ (2.1)
u(0) =ug in RY,

| v(0) =vy in RY.

In the sequel, L" denotes the Lebesgue space L™ (R™Y) and ||.||, its usual
norm. Consider E™% = L" + L*® the Banach space endowed with the
standard norm ||u||, s = inf |Ju,||, +||us||s, where u = u, +u,, u, € L',
us € L*. We also denote by M the space of finite measures in RY.
Our results are to be compared with those of [6], where the weakly
coupled system corresponding to @ = d = 0 in (2.1) is considered. In
[6] it is shown that the problem is well-posed if ug € E™1 vy € £
and
max{—— —, — — —} < —. (2.2)

Singular data in measure spaces was also discussed in [6]. If, for
example, ug € E™, vy € M then (2.2) with ro = 1 still ensures
well-posedness.

We show in this section that for (2.1), the condition (2.2) should
be replaced by

b a—-1 ¢ d-—1 2
— — —. 2.
max{r2 + - + 7"2 } < N (2.3)

Before proving the main results of this section, we present some pre-

liminary lemmas.
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Lemma 2.1. Letk >0,T >0,0< al,ag,ﬁl,&,%,vg <1 be
such that 1 +aq > 1+ 71, 1 +ag > Po + 72. Let A(t) be a positive
t

continuous function defined in (0,T) and such that / A(s)ds <
0
+oo fort < T. Consider ¢,v : (0,T) — RT nondecreasing positive

functions satisfying

(1)< A+ ki [0 57057 (pls) + ) ds
0 (2.4)

ot < A+ ke | (= 575 ((s) + 1(s)) ds

n (0,T). Then there exists C' = C(aq, g, 51, Ba, k, T) > 0 such that,
for allt € (0,7),

o(t) +¥(t) < C(A(t) + /Ot e" " A(s) ds). (2.5)
Proof: Take 7 > 0 such that o(t) < A(t) + (p(t) + ¥ (t)) /4, ¥(t) <

A(t) + (¢(t) +(t)/4 for t < 7. Hence,
p(t) + (1) < 4A(2). (2.6)

Counsider now ¢t > 7 and choose 0 < a < b < 1 such that

a 1 1
T1+a1—51—’71(/ _|_/ )(1 _ S)—ﬁls—’h ds < —
0 b Ak’

a 1 1
T”‘mﬁ?w(/ —|—/ Y1 —5) 2572 ds < —
Then,
bt
plt) < A0+ ke / / b )= 95000 + v ds
bt

SA(t)—f—% +kT1+a1 B1— ’71(1 _b) 51a*’71

/0 ((s) +0(s)) ds
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Analogously,
B < AW) + HoE) + 9(0)) + KT o522 (1 = b)~Fag
[ o)+ i s

Adding up both equations and using (2.6) we get for all £ > 0

o(t) +(t) < 4A(L) + 2k(THa—P=n(1 — p)Prg—n
st () [ () + ) ds

Applying Gronwall’s Lemma we get the desired result.

O
Lemma 2.2.  Consider a,b,c,d > 1, ri,ro > 1. Assume that
-1 b 2 d—1 2
¢ 2oz L <= (2.7)
(&1 T2 N 1 T2 N
Then, there exist n > ry1, & > 19 such that
a b c d
-+ -<1, -+ =<1, 2.8
UBNNS no§ (28)
a b 2 a b c d 2 c d
—t === < -+ = —t == < =+ = (2.9)

rn ro N n & rn ro N n ¢

Proof: Without loss of generality we suppose that %—i—% < £+ %.

— r

Since £ 4+ £ < 2 4 L <2 41 there exists k € (0,1) such that
T1 T2 T2

a b, c d._4 2, ¢ d._; _ 2, a b, _,
1—(—+— <l—-(—+— k< —(—+— < —(—4+ =)
(7"1+7"2) - (r1+r2) < <N(7“1+7“2) _N(r1+7&22)10)

Define n > ry, £ > r9 by




LIFE SPAN OF SOLUTIONS OF A STRONGLY COUPLED 95

Then,
a b a b c d c d
cremun(nen) srgmamn(ner) e

The result follows from (2.10), (2.11).
O

Lemma 2.3.  Let a,b,c,d > 1 such that bc > (a — 1)(d — 1).
Consider po, 6y, c1,co > 0 such that
(@ —1)po+ by =c1, cpo+ (d—1)0y = cs.
For k € N, define py, 0y recursively by
apy + b0y — pr1 =c1+e, cpp+diy —Opp1r =co+9
where €,0 > 0 satisfy

d—1
J
g E<0<_——3

Then, there exists k > 1 such that pr <0, 6, < 0.

e. (2.12)

Proof: Let (p*, 6*) satisfy
(@a—1)p"+b0" =c14+¢e, cp"+(d—1)0" =co+9.

Using (2.12) we get that py < p* and 6y < 6*. It is easy to verify
inductively that for all £ > 0 pp > pra1 and 6, > 0x1. Suppose one
of the sequences is bounded. Then clearly the other sequence is also
bounded and pg \ p*, Or \  0* as k — co. But this contradicts the
fact that py < p* and 0y < 0*. This finishes the proof.
O
We will also use the fact that the heat semigroup S(t) is well defined
in £™* and satisfies

N

sup ||S(t)ull, < max{1,T>G 2}~ 2 |u., (2.13)
t<T
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if 1 <r < s <. This is an immediate consequence of the usual
LP — L7 regularity result for the Laplace operator.
We first consider wy € E™% x E™°2. We set ||wlr 51080 =

HuHmm + HUHrzm for w = (u,v) € Bt x E7%2,

Theorem 2.4. Let a,b,c,d > 1, r1 > 1, ro > 1 be such that bc —
(a—1)(d—1)>0 and
a—1 b 2 c d—1 2

< —=. 2.14
(&} T2 ]\/v7 T1 T9 N ( )

Let n, & be as in Lemma 2.2 and consider sy, Sy such that
ry < s <, ro < 89 < &. (2.15)

Then given wy € E™% x E™%2  there exist T > 0 and a unique
function w € C([0,T], E™* x E™°%2) which is a classical solution
of (2.1) in (0,T).

In addition, let {wyo}neny C E™ X E™%2 and wy € E™% x E">*2
be such that w, o —>wo in B x B2 Then for t small enough
wy, (t) — w(t) uniformly.

Proof: The proof is analogous of the one presented in [6] to show
Theorem 2.3. It consists in obtaining a local weak solution, to show
the regularity of this solution, the uniqueness of the classical solution

and the continuous dependence on the initial data.

Existence. = We first construct the functional space in which we

prove the existence of a solution of (2.1). Set

N/1 1 N (1T 1
=3(hy) =3(e) e
By (2.9), we get

a4+ bp < 1 ca+dp < 1. (2.17)
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Let
W = L>((0,T); L" x L*),

be the Banach space with norm [[w(w = sup;er{t*[lu()|, +
tPllo(t)|le}. Given wy € E™ x E™%2 T < 1, and M > 0 such
that || wolry sym.s0 < M, let K be the closed ball of radius M + 1 of
W. If (u,v) € K, define ®(u,v) = (P1(u,v), Po(u,v)) as

Oy (u,v) = S(t)uo + /0 S(t — 8)|ul u(s) v o (s) ds,

Dy (u,v) = S(t)ve + /0 S(t — s)|ul“ u(s)v]* o (s) ds.

We will show that ®(K) C K if T is chosen appropriately. First, we
have by (2.13) that

t)[S()uolly + 1S t)volle < Nluollrysr + vollras, < M. (2.18)
Note that by (2.14), we get from 1 > ry, £ > ry that
N (a -1 N b) -1
2\ n ¢ ’

Using this, the smoothing effect of the heat semigroup, Holder’s in-

equality and (2.17) we get
t
] / S(t — 8)[ul*"u(s)[o]*Vo(s) ds],
0
t
<o / (t — ) FEFHO u(s) |2 o(s)]1 ds
0
1
S (M + 1)a+bt1g(aﬁl+rb2)/ (1 . S)—%(O’T_l-l-g)sfaafbﬁ dS,
0

Thus
@1 (u, )|l < M +1,
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if T is small enough, see (2.18). Analogously, taking T eventually

smaller, we obtain
t7]|@a(u, v)||e < (M + 1),

This shows that ®(K) C K for T small. Similar computations,
taking a smaller T if necessary, show that ® is a contraction in K.

This gives the existence of a local weak solution w = (u,v) of (2.1).

Regularity.  We use the bootstrap argument of [11] to prove that
u(t) € L (RY) for s; < 1 < oo, v(t) € L2(RY)) for s5 < 7y < 00
and that there exists C' = C(7y1,72) > 0 such that for all ¢t < T,

N1

YA (5-5)
t>n o u(t)]y, <Otz lu(d)], < C (2.19)

Note that the existence part of the proof ensures that this is valid
for 1 = n and v, = £. Consider first s; <, < 7. Using (2.13) and
the fact that w € K, we get

02 G u(b)lly, < O 260 1)/“8
<o+ 20T )/(1—3)]5(”2%)s—w—bﬁds).
0

A corresponding estimate holds for ||v(t)]|,, when sy < 75 < §. Thus
(2.19) is valid for v; € [s1,7], 72 € [s2,&]. Suppose now that (2.19)
holds for some v; > 1, 792 > £ and let 6;, 5 be such that

a b 1 2 & d 1 2

_l_
é! 2 91 T V2 92
Write

u(2t) = S(t)u(t)—l—/o S(t—s)|u(t—s)|* u(t+s)|v(t—s)|" " v(t+s) ds
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to obtain
N( E(L L)

200 w2t g, < 2T u()]y,

+CT1‘J2V(GT_11+TP2)/

0

o 1 \
<C(1+ Tl‘g(nl*rbz)/(l )y RGN (g 1) B I -5
0

1 b1

(1-5) 2Grt 7o) (1 4 5) OG5 g

Writing an analogous estimate for ||v(2t)]|q,, we verify (2.19) for 6,
fy. In this way, we can bootstrap starting from 7, £&. Lemma 2.3
ensures that 0; = 6, = +oo can be reached in a finite number of

steps.

Uniqueness.  Uniqueness of classical solutions is proved in [2] for

the scalar case. Their arguments extend readily to the present case.

Continuous dependence. Consider wy = (Uw,0,Vwo), 20 =
(Uz0,v20) and let w(t) = (uy(t), vu(t)), 2(t) = (u.(t),v.(t)) be their
corresponding solutions, defined in [0,77). Call Aug = wuy o — u.,

AU = Uy — Uy, AUy = Vy o — V0, AV = v, — v,. We have

)AUO
/S (t = 8)(Juw|*™ " (S)Ww‘bilvw(s) - ’U2|a71uz(5)‘UZIbilvz(S))dsa
S(t)Avg

/ St — ) (] Mty ()|t () — sl Vs ()]s (8)) ds.
(2.20)

By (2.8), we may define p > 1 such that

==
I
o
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Using that
| |Uw|a_1uw - |uz|a_1UZ‘ < 207! max{|uw|a_la ‘uz|a_1}|Au|,

and an analogous inequality for v, we get

||(|uw|a71uw(3) - |u2|a71u2(3>)|vw|b”p

(2.21)
< (2M + 2) 0 s DB Ay (s) |,

[(lvul* 0w (s) = vz~ oz () Jua]*l,

(2.22)
< (2M + 2)0 Lm0 008 A(s) |,

Define (f) = sup,cq 5 Au(s)ly, $(f) = supoce 82| Av(s)]le. We sce
from (2.20), (2.13), (2.21) and (2.22) that

() < C||Atio]lyy e +° / (t— )" 2T 5700 (o(5) 4 (s) ds).
(2.23)

Analogously,

D(t) < C(| Aty sy +t° / (t—5) 2G50 (o(5) +4h(s) ds.)

(2.24)
Note that
N -1 b N —1 b
l+a—— ¢ +-)—ax—-08=1—-— ¢ +—1>0,
2 n § 2 T &)
N —1 N —1
1+ﬁ——<£+d—>—ca—dﬁ:1——(£+d )>0.
2 \n 19 2 \rg 79

It then follows from (2.14) and Lemma 2.1 that

£ (8) = ws ()]l + o (t) = v2(O)le < Cllwo = 20/l 0,72,50-
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This shows the continuity of wy +— w(t) from E™51 x B2 to L"x LS.
To obtain uniform convergence, we extend (2.7) beyond n and & by

bootstrapping, as for regularity result.
O

We next consider initial data in measure spaces. Existence results
are still valid under (2.3), with the following modifications. If ug € M
(vg € M) set 11 =1 (ro = 1). Note that, as a consequence, N = 1 is
the only case of interest. We refer to [4] and [6] for the corresponding

scalar case and the weakly coupled system, respectively.

Theorem 2.5. Let N =1,1<r <s, a,b,c,d > 1 satisfy bc — (a —
1)(d—1) >0 and

—1
max{E +d—1,0+ a_} < 2. (2.25)
r r

Endow E™ with the strong topology, M with the weak-* topology and
E™% x M with the product topology. Given wqg € E™* x M there exists
T > 0 and a unique ( classical for t > 0) solution C((0,T]; E™* x L")
of (2.1) such that u(t) — ug in E™*, v(t) — vy weak-* in M as
t—0.

In addition, let {wyo}nen C E™ X M and wy € E™ x M be such
that u, o — ug in E™° and v, o — vy weak-*in M. Then fort small

enough wy,(t) — w(t) uniformly.

Proof: We proceed as in the proof of Theorem 2.4. Taking N =1,
ro = 1 we define n, £ by (2.7), (2.8) and «a, 5 by (2.16). A similar fixed
point argument in L°((0,T); L" x L%) yields the existence of a weak
solution of the problem. Regularity also follows as before. To obtain
the continuous dependence on the initial data, consider w = (ty,, vy)
and z = (u.,v.) two solutions and define ¢(t) = sup,<; 5*||uw(s) —
uz(8)|ln, () = sup,<; $°||vw(s) — v2(s)|le. Then (2.20) holds and,
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consequentely, so does (2.23). We further set B(t) = t°||S(t) Avgl¢.
Now, we replace (2.24) by

t
W(t) < B(t)+Ct / (t—s) "2 G5 57008 (o(5) 4a)(s)) ds. (2.26)
0
We apply Lemma 2.1 for (2.23), (2.27). This is possible because of
(2.26). We obtain

tfAut)l, +t7Av(t)]le < C([|Auollr .5 +7]15(£) Avolle

t (2.27)
—i—/ 7|15 (s) A e ds.

0
Consider now wu, g — ug in E™*, v, 9 — vy weak-* in M as n — 0.
Using (2.25), it follows from the Lebesgue Dominated Convergence
Lemma that w, (t) — w(t) in L" x L¢ for ¢ small enough. Uniform

convergence is obtained by bootstrapping, as for regularity result.
O

We omit the proof of our next result, which can be done as in
Theorem 2.5.

Theorem 2.6. Let N =1, a,b,c,d > 1 satisfy be—(a—1)(d—1) >0
and max{b+a,c+d} < 3. Given wy € M? there exists T > 0 and a
unique (classical for t > 0) solution C'((0,T); L* x L') of (2.1) such
that w(t) — wqy as t — 0 in the weak-* topology of M?>.

In addition, let {wno}lnen C M?* and wy € M? be such that
Wno — wo weak-*in M?. Then for t small enough w,(t) — w(t)

uniformly.

3  Further Results

In this section we present some further results concerning blow-

ing up positive solutions of (2.1). Below, we assume that ug, vy €
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Co(RY) and that w is the solution corresponding to w(0) = (ug, vo)-

We have the following.

Proposition 3.1. Let a, b, ¢, d be nonnegative real numbers such
that By, By given by (1.5) are positive. There exists C' > 0 such that
if

liminf |z|*u(z) > C, liminf |z|*2ve(x) > C. (3.1)

then the corresponding solution w of (2.1) blows up.

Proof: We construct blowing up subsolutions of (2.1) as in [5], [10].
We may assume that 8, > ;. Let R > 0 be such that |z|*tug(z) > C
and |z|2v9(x) > C if |z| > R. Define ¢(z) such that ¢(z) = 0 if
|z| < R and p(x) = |z|7P" if |x| > R. Given ¢ > 0 define

- (5000 7 - ﬁ)_m e (e -2 o

IS

B B
u, — Au = %glﬂ/ﬂl — 4;1—2551(S(t)cgo)‘2(“51)/5@”4/51]VS(t)cgth
< Q1+2/61 — Qagb
and

v, — Ay = p'+2/5
— 52 (S(t)ep) 2B P T S () e (B2(B2 — B1)(S(t)ep) ™!
+(4 + 28))t) < v P2 =yt

Therefore, (u,v) is a subsolution as long as it is defined. We get from
(3.1) that S(t)p =~ t=%/2 for t large. Hence, we may find c large
enough such that HS(t’)cgoH;f/ﬁl = 26—’;/ for some ¢' > 0. This shows
that u blows up. If C' in (3.1) is large, then u(0) = cp; < wy and
v(0) = (cip1)?/P < . We this choice, u < u, finishing the proof.

O
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The following result establishes an upper bound on the growth of

w(t) near the blowup time.

Proposition 3.2.  Consider N =1 and assume (1.2), (1.3), (1.4)
to hold. Then, given R > 0 there exists C' > 0 such that for all
positive solutions w = (u,v) of (2.1) satisfying ||u(0)|lso + |[0(0)|lee <
R. We have

u(x,t) < O(T — )™, v(z,t) < C(T —t) ", (3.2)
inR % [0,T), where T < oo is the blowup time of w.

Proof:  The proof follows from a careful analysis of the arguments
employed by Chlebik and Fila [3] to show a similar result for the
weakly coupled system crresponding to a = d = 0. In [3], the authors
studied the Cauchy problem in RY associated to the weakly couple
system (a = d = 0). They assumed that

max{f, fo} > N (3.3)

to ensure that all positive solutions blow up in finite time. It follows
from the results of [8] discussed above that (3.3) should be replaced
here by (1.4) (that is why we consider N = 1). One may then verify
that their arguments may be applied in the present context with no
further modifications.

The result announced in [3] concerns a single solution. However,
one can easily check in the proof that C' in (3.2) can be taken inde-
pendently of w(0) in a ball of L™ x L*.

O

It is shown in [6] that (3.2) ensures the continuity of the blowup

time.
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Proposition 3.3.  Let P = {wy = (ug,v9) € L®XL>® ug > 0,v9 >
0} and define T : P — R such that T'(wy) is the blowup time of the
corresponding solution w = (u,v). Under the assumptions of Propo-

sitton 3.2, T 1s continuous.

For the proof of Proposition 3.3 see Proposition 3.3 of [6].

Remark 3.4. Proposition 3.3 may be applied to singular initial
data in E™° or M (endowed with the weak-* topology). This is a

straightforward consequence of the results discussed in Section 2.

4  Proof of the Main Results

We will now prove our main results concerning the growth as
A— 0 of the blowup time T of the solution w, of (1.1). We re-
call that we restrict ourselves to the onedimensional case N = 1.

It follows from (1.2), (1.4) that bc — (a — 1)(d — 1) > 0. We set

Debe—(a—d—1) p=2br1=d
D
~ 2(c+1-a) c—a+1
P2 = D Ty —d+ 1

Note that b >d —1, ¢ > a —1 and D > 0 are equivalent assertions.

Thus (1, B2 and ~ are positive numbers. We also have the following.

Lemma 4.1. If (1.2), (1.4) hold then max{fi, B2} > 1. As a con-
sequence, if o1 < 1 is such that yo1 <1 then p; = 1 — o1 > 0.

Proof:  To show that max{f;, 82} > 1 we may assume that a+b <
c+d. Then a+b < 3 implies that a < 2. Thusc+1—a >c—12>0.
Using (1.2), we get that b+1—d >0and D > 0. Let 0 =c+1—a >
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b+ 1—d. Using (1.4),
D = bec—(a—1)(d—-1)
= (a—1)(b+1—-d)+bd <d(a+b—1)<2i=2(c+1—a).

This shows that 8y > 1.
Assume now o7 < 1, yo1 < 1. Then ) = 5y/y > 1/ > oy, so
that p; > 0.
O

In our proofs we will systematically use the following dilation in-
variance of (1.1). Given wy = (uy,v)) and g > 1, the rescaling

w,, = (U, 7,) defined by

(1) = P un (pe, 1) 0w, t) = p oy (ue, ) (4.1)
is also a solution of (1.1). We write @y ,(x) = (o ,(2), Uo,u(x)), where

tou(,t) = W N~y (ua) o, t) = p2 AT oo (ux).  (4.2)

Clearly, if wy blows up at T) then , blows up at TM, where
Ty = 1T, (4.3)
We next consider ¢, € I(0y,1), see (1.8).

4.1. The Case ¢, € I(01,1), 01 <1, vo; <1
We consider without loss of generality ¢; € I(oy,1).

Theorem 4.2.  Assume (1.2), (1.3), (1.4) and consider ¢, € I(01,1),
w2 € I(o9,l), where I > 0, 09 < 1 and o9 = o < 1. Then
p1 =P — o1 >0 by Lemma 4.1. We have

2(b+1—d)

lim A v T\ =T(0y,los),
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where T'(01,log) is the blowup time of w(oy,los), the solution of (1.1)
for wg = (Jz|~7, l|x|~72) given by Theorem 2.4 for N = 1.

Proof: = We first verify that w(oy,los) = (u(oy,los),v(0o1,lo9)) is

well defined. Choose € > 0 small enough so that 1, ro, s1, $2, defined

by%:aﬁ—s %20'24-8, slzgil—l—a, 32:é+8,satisfyr1>1,

)

ro > 1. Since ro; < 1 < s101, 109 < 1 < s909, we see that
|z|~7 € B 1|z~ € E™°2. We have that

b a—-1 20

— + = ——+¢eb+a—1),
() ™ /31 ( )
C d—1 20’1

— + = —+¢elet+d—-1).
1 T 51 ( )

Using that 3; > oy, we take ¢ > 0 small enough so that (2.14)
takes place. Choosing ¢ eventually smaller; s, s; may be taken so
that Theorem 2.4 applies. This shows the existence of w(oy,log).
It follows from (1.3), (1.4) that w(oy,lo2) blows up at a finite time
T(oy,lo3).

To study the behaviour of Ty, consider x such that \+1=4pf—o1 =
1 and w, = (a@,,0,) defined by (4.1). Thus g ,(z) = p7e1(pz),
Do () = p7@2(pz), see (4.2). Note that p—> 00 as \— 0. Let B
be the unitary ball of R and set D = R\ B. It follows from domi-
nated convergence that, as u — 0o, u” 1 (px)lp — ||~ Igin L™,
potor(px)lp — x|~ Ip in L*', where Ig denotes the characteris-
tic function of @ C R. As a consequence, g ,(z) — ||~ in B
Analogously, Uopu(z) — x|~ in  E™%, Thus
Wo () —(J| 7%, l2| %) in E™% x E™*2. Using Proposition 3.3
and Remark 3.4, we get that T}, — T(oy,103) as g — oo. This fin-

2(b+1—d)

ishes the proof, since Tﬂ =pu2T\=) 7 T, see (4.3).

O
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Theorem 4.3. Assume (1.2), (1.3), (1.4). Suppose 1 € 1(01,1),
where oy < 1 andyo, =1, o € L, 9 > 0 such that M = /902 > 0.
Then,

2(b+1—d)
lim A v T\ =T(o1, M),

A—0
where T'(o1, Mdy) is the blowup time of w(o1, Mdy), the solution of
(1.1) for wy = (|z|~7*, Mdy) given by Theorem 2.5 for N = 1.

Proof:  Using that v > 1 it follows from Lemma 4.1 that 5, > 1.
Note that b= (1—a)/v+2/62 and ¢/ = 2/B2+ 1 —d, so there exist
l<r<~,0<6<1<6 such that

a—1 20 ¢ 20’

b+ =—, —4+d—-1=—.
r B r B

(4.5)

We may choose 6 and €' close enough to 1 so that (2.26) holds.
Taking s > 7, Theorem 2.5 ensures the existence of w(oy, Mdy) €
C((0,T7); E™* x M). In addition, (1.3), (1.4) yield that w(cy, Mdy)
blows up at a finite time T'(oy, Mé).

Consider again w, = (4, 0,), where \*™ =417t = 1. As be-
fore, g, (x) = p” 1 (px) — |z~ in E™°. Moreover, 7y ,(r) =
ppo(pz) — Mdy weak-* in M. It then follows from Theorem 2.5
that w,(t) — w(o1, Mdy)(t) uniformly for all ¢ € (0,7]. Using the
continuity of the blowup time, we get the result.

(I

4.2. The Case ¢, € L*

We set now p; = f; — 1. Note that by Lemma 4.1, if a + b =

¢+ d then p; > 0. Below, we assume without loss of generality that

@1:1.
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Theorem 4.4. Assume (1.2), (1.3), (1.4) and suppose further that
a+b=c+d<3. Let 1,05 € L' be nonnegative functions such that

/@1:1,M:/<p2>0. Then

2(b+1

—d)
lim \» ~ - T\ = T (60, M),

A—0

where T'(8, Mdg) is the blowup time of w(dy, Mdy), the solution of
(1.1) for wg = (8o, M o) given by Theorem 2.6 for N = 1.

Proof:  Using that a +b = c+ d < 3, we may obtain ws, s, from
Theorem 2.6. It is also clear that ws, a5, blows up.

Define w, = (i, 0,) by (4.1) and set N1~ =1 = 1. Then
o () = ppr — do, Topul(x) = ppo(pr) — Mdy. Using again Theo-
rem 2.6 and the continuity of the blowup time we get the result.

O

4.3. The Case ¢; € I(1,1)

We suppose c+d < a+b. Then p; = f1—1 > 0, see Lemma 4.1. We
also consider without loss of generality ¢, € I(1,1). Define g(u) =
pP* log pu for pn > i := e'/P. The function g is invertible and we call

h = ¢g~! its inverse.

Theorem 4.5. Assume (1.2), (1.3), (1.4). Let a +b = ¢ + d,
o1 € I(1,1) and py € I(1,1) for some | > 0. Then wy blows up at a
finite time T such that

lim (h(A™CTD) "2 Ty = T(6, 100),

A—0

where T(dg, 10g) is the blowup time of w(dy, (dy), the solution of (1.1)
for wy = (do,100) given by Theorem 2.6 for N = 1.
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Proof: Using that a+b = c+d < 3 and Theorem 2.6 we conclude
that w(dg, do) is well defined. Consider w, = (4,,?,), where p =
h(\~®*1=49)). As shown in Theorem 1.5 of [4], we may decompose
U, = Y1, + 1o, such that ¢, € L* for any s > 1, ¢y, € L'
and as g — +00 [[p1,lls —> 0, 2, — & weak-* in L'. A similar
decomposition holds for ©,,. The rest of the argument follows as in
the previous cases.

(Il
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