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Abstract

In this work, we present some results for local and global in

time solutions (defined in the time interval (0, T ) with T < +∞
or T = +∞) for the model of mass diffusion by using the spectral

semi-Galerkin approximations. We establish results related to the

global existence of weak solutions, to the existence of strong solutions

(local in time or global in time for small enough data in 3D domains

or general data in 2D case), to the regularity of strong solutions

and the effects of the exponential decay of the external force in the

asymptotic behavior when t→ +∞ for global solutions.

1 Introduction

1.1 Model

Let Ω ⊆ Rd (d = 2 or 3) be a bounded domain with boundary Γ of

class C1,1. We will use the notation Q = Ω× (0, T ), Σ = Γ× (0, T ) being

0 < T ≤ +∞ and n the unit outwards normal vector on Γ. We consider
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the following initial-value problem concerning fluids with mass diffusion

ρut +
(
(ρu− λ∇ρ) · ∇

)
u− µ∆u− λ(u · ∇)∇ρ+∇p

+λ2
(
∇ ·

(
1

ρ
∇ρ⊗∇ρ

))
= ρf in Q,

∇ · u = 0 in Q, u|Σ = 0, u(0) = u0 in Ω,

ρt − λ∆ρ+ u · ∇ρ = 0 in Q,
∂ρ

∂n

∣∣∣∣
Σ

= 0, ρ(0) = ρ0 in Ω,

(1)

where the unknows are u the incompressible velocity, p the pressure and ρ

the fluid density. The data are, f the external force acting on the system

and µ > 0, λ > 0 the viscosity and density coefficients respectively.

An extensive physical discussions and derivation of problem (1) can be

seen in Frank-Kamenestskii [5], Kazhikhov and Smagulov [12], Antoncev,

Kazhikhov and Monakhov [1].

Throughout this paper we will assume that there exists some constants

m,M > 0, such that

0 < m ≤ ρ0 ≤M in Ω. (2)

1.2 Known results

For the model (1) considered in this paper, Beirão da Veiga [2] and

Secchi [17], established the local existence of strong solutions by using

linearization and fixed point argument. Indeed, in [2] the local existence

of strong solutions (defined in (0, T )) imposing smallness constraints on

data or on final time for 3D domains is proved. In [17], λ/µ small enough

is imposed in the 2D case, obtaining existence and uniqueness of global

strong solution (defined in (0, T )). Moreover, it is showed the convergence,

as λ → 0, towards a weak solution of the Navier-Stokes problem with

variable density. In the 3D case, global existence of (1) and convergence

(as λ→ 0) towards weak solutions of Navier-Stokes with variable density

is proven in [7], imposing only positive initial density (ρ0 ≥ 0). In [9], the

existence and regularity of strong solutions (and some error estimates) is

proved by means of an iterative method.
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The case where the solution is defined in t ∈ (0,+∞) is treated in [3],

imposing that the external force f ∈ L∞(0,+∞;L2(Ω)) and periodic in

time and studies the asymptotic behavior of the solution as t→ +∞.

1.3 Some functional spaces and semi-Galerkin method

In the sequel,
(
·, ·
)
denotes the L2 inner product. Also, ∥ · ∥ will denote

the L2-norm. We now introduce the standard spaces of the Navier-Stokes

framework:

H = {u : u ∈ L2(Ω),∇ · u = 0,u · n = 0 on ∂Ω},

V = {u : u ∈ H1(Ω), divu = 0,u = 0 on ∂Ω},

L2
0(Ω) = {p : p ∈ L2(Ω),

∫
Ω
p(x) = 0}.

The norms ∥u∥H1 and ∥∇u∥L2 are equivalent in V , and ∥u∥H2 and

∥Au∥L2 are equivalent in H2(Ω) ∩ V ([13, 19]). On the other hand, the

norms ∥p∥H1 and ∥∇p∥L2 are equivalent in H1(Ω) ∩ L2
0(Ω).

On the other hand, for the density, let us consider the affine space

(k = 2, 3)

Hk
N (Ω) =

{
ρ ∈ Hk(Ω) :

∂ρ

∂n
= 0 on ∂Ω,

∫
Ω
ρ(x) =

∫
Ω
ρ0(x)

}
.

Obviously, Hk
N (Ω) = ρ0 +Hk

N,0(Ω), where ρ0 =
1

|Ω|

∫
Ω
ρ0(x)dx and

Hk
N,0(Ω) =

{
ρ ∈ Hk(Ω) :

∂ρ

∂n
= 0 on ∂Ω,

∫
Ω
ρ(x) = 0

}
.

Therefore, Hk
N,0(Ω) (k = 2 or k = 3) is a closed subspace of Hk

N (Ω). Con-

sequently, thanks to the H2 and H3 regularity of the Poisson-Neumann

problem, norms ∥ρ∥H2 and ∥∆ρ∥L2 are equivalent in H2
N (Ω) and ∥ρ∥H3

and ∥∇∆ρ∥L2 are equivalent in H3
N (Ω) ([2]).

We also consider the Stokes operator A : D(A) → H defined by A =

P (−∆) with domain D(A) = H2(Ω) ∩ V where P : L2(Ω) → H is the

Helmholtz orthogonal projection and define V k = ⟨u1, ...,uk⟩ the finite
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vectorial space spanned by the first k ∈ N eigenfunctions associated to the

Stokes operator.

The spectral semi-Galerkin approximations of problem (1) are defined

for each k ∈ N as the solution (uk, ρk) ∈ C2([0, T ],V k)×C2([0, T ];H3
N (Ω))

of 

(
ρkuk

t ,v
)
+
(
((ρkuk − λ∇ρk) · ∇)uk,v

)
+ µ

(
Auk,v

)
−λ

(
(uk · ∇)∇ρk,v

)
+ λ2

(
∇ ·

(
1

ρk
∇ρk ⊗∇ρk

)
,v

)
=

(
ρkf ,v

)
, ∀ v ∈ V k, in (0, T ).

(3)


∂ρk

∂t
+ uk · ∇ρk − λ∆ρk = 0 in Q,

∂ρk

∂n
= 0, on Σ,

(4)

with the initial conditions

uk(x, 0) = Pku0 and ρk(0,x) = ρ0(x), ∀ x ∈ Ω.

respectively, where Pk is the proyection operator on V k.

Definition 1. A pair (ρ,u) is called a weak solution of (1) in (0, T ′) with

T ′ = T <∞ or T ′ = +∞ if it verifies:

a)

(u, ρ) ∈ L∞(0, T ′;H ×H1
N (Ω)),

(u, ρ) ∈ L2(0, T ′;V ×H2
N (Ω)) if T ′ <∞ or (u, ρ) ∈ L2

loc([0,∞);

V ×H2
N (Ω)) if T ′ = ∞,

0 < m ≤ ρ(x, t) ≤ M, a.e. (x, t) ∈ (0, T ′)× Ω.
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b) ∀ϕ ∈ C1([0, t];V ) such that ϕ(t) = 0, where t ∈ (0, T ′)∫ t

0

{
−
(
u, ρϕt + (ρu− λ∇ρ) · ∇ϕ

)
+
(
µ∇u− λρ(∇u)t,∇ϕ

)}
ds

=

∫ t

0

(
ρf , ϕ

)
ds+

(
ρ0u0, ϕ(0)

)
.

c) The equation of mass diffusion is verified almost everywhere in (0, T ′)×
Ω.

Definition 2. A weak solution (u, ρ) of (1) in (0, T ′) is said to be a

strong solution of Problem (1) in (0, T ′) with T ′ = T <∞ or T ′ = +∞ if

it satisfies (u, ρ) ∈ L∞(0, T ′;V ×H2
N (Ω)),

The rest of the paper is as follows. In Section 2, we study the existence of

global weak solutions imposing λ/µ small enough for 2D and 3D domains.

In Section 3, we prove the existence and regularity of strong solutions, first

for 3D domains and second for the 2D case, where the main difference

between these two cases is that smallness of the data is necessary only for

3D domains. In Section 4, we study the effects of exponential decay of the

external force on the global solution.

2 Existence of global weak solution

Theorem 3. Let Ω ⊂ R3. Assume u0 ∈ H, ρ0 ∈ H1
N (Ω) verifying (2)

and either f ∈ L2(0, T ;L6/5(Ω)) if T < ∞ or f ∈ L∞(0,∞;L6/5(Ω)) if

T = ∞. Then, if λ/µ is small enough, there exists a weak global solution

(u, ρ) of Problem (1) in (0, T ) and satisfies

0 < m ≤ ρ(x, t) ≤M in Q, (5)

∥(u(t), ρ(t))∥L2×H1 ≤ C ∀t ≥ 0, (6)

∀γ > 0, e−γt

∫ t

0
eγs∥(u(s), ρ(s))∥2H1×H2 ds ≤ C, ∀t ≥ 0. (7)

Moreover, in the finite time case (T <∞), one can take γ = 0 in (7).
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Proof: Since the Galerkin approximations (uk, ρk) will appear in the

proof everywhere, there will be no ambiguity in setting u = uk and ρ = ρk.

For brevity, we will only prove estimates (5)-(7) in the case T = +∞.

The maximum principle applied to (4) gives (5).

Working as in [17] we can find the differential inequality (whenever λ/µ

small enough)

d

dt

[
∥ρ1/2u∥2 + αλ∥∇ρ∥2

]
+ αλ2∥∆ρ∥2 + µ∥∇u∥2 ≤ C∥f∥2

L6/5(Ω)
. (8)

for a certain α > 0 (depending on the data).

Let us denote φ1 = ∥ρ1/2u∥2+αλ∥∇ρ∥2 and ψ1 = αλ2∥∆ρ∥2+µ∥∇u∥2.
Then, (8) is written as

φ′
1 + ψ1 ≤ C∥f∥2

L6/5(Ω)
≤ C (9)

Using φ1 ≤ P1ψ1 where P1 > 0 is a Poincaré constant and multiplying (9)

by eγ
∗t for γ∗ < 1/P1,(

eγ
∗tφ1

)′
+
( 1

P1
− γ∗

)(
eγ

∗tφ1

)
≤ Ceγ

∗t

which implies

eγ
∗tφ1(t) ≤ φ1(0) + C

∫ t

0
eγ

∗sds ≤ φ(0) +
C

γ∗
(eγ

∗t−1).

Thus, we obtain φ1(t) ≤ e−γ∗tφ1(0) + C(1 − e−γ∗t) ≤ φ1(0) + C for all

t ≥ 0, hence φ1(t) ≤ C, ∀t ≥ 0 and (6) holds.

Getting back to (9), multiplying by eγt for any γ > 0 we get(
eγtφ1

)′
+ eγtψ1 ≤ Ceγt + γeγtφ1 ≤ Ceγt.

From this last differential inequality is easy to deduce

e−γt

∫ t

0
eγsψ1(s) ds ≤ C,

for all t ≥ 0, hence (7) holds. □
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3 Existence of strong solution and regularity

This section is divided into two parts: the first part corresponding to

3D Case and the second one to 2D Case. In both cases we study local

and global existence of strong solutions and some regularity properties,

but the main difference is that for 3D domains some smallness constraints

(on data or on the final time) must be imposed, whereas for 2D domains

these constraints do not appear.

3.1 The 3D case

Theorem 4. Let Ω ⊂ R3. Assume u0 ∈ V and ρ0 ∈ H2
N (Ω) satisfying

(2).

Case 1: (T < +∞) Let f ∈ L2(0, T ;L2(Ω)). Then, there exists a

unique strong solution (u, ρ) of Problem (1) in (0, T ∗) for certain T ∗ ≤ T ,

verifying

∥(u(t), ρ(t))∥H1×H2 ≤ C, ∀t ∈ [0, T ∗], (10)∫ T ∗

0
∥(u(s), ρ(s),ut(s), ρt(s))∥2H2×H3×L2×H1ds ≤ C. (11)

Moreover, if ∥∇u0∥, ∥∆ρ0∥ are small enough, one can take T ∗ = T .

Case 2: (T = +∞) If ∥∇u0∥, ∥∆ρ0∥ and ∥f∥L∞(0,∞;L2(Ω)) are small

enough, then there exists a unique strong solution (u, ρ) of Problem (1) in

(0,∞) such that

∥(u(t), ρ(t))∥H1×H2 ≤ C, ∀t ≥ 0, (12)

∀γ > 0, e−γt

∫ t

0
eγs∥(u(s), ρ(s),ut(s), ρt(s))∥2H2×H3×L2×H1

ds ≤ C, ∀t ≥ 0.

(13)

Proof: Again, for brevity in the notation, we denote u = uk and ρ = ρk

and we will see estimates (10)-(11) and (12)-(13).

Taking as test function v = ut into (3), this gives
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µ

2

d

dt
∥∇u∥2 + ∥ρ1/2ut∥2 ≤

∣∣∣(((ρu− λ∇ρ) · ∇)u,ut

)∣∣∣+ λ
∣∣∣((u · ∇)∇ρ,ut

)∣∣∣
+ λ2

∣∣∣∣(∇ ·
(
1

ρ
∇ρ⊗∇ρ

)
,ut

)∣∣∣∣+ ∣∣∣(ρf ,ut

)∣∣∣.
(14)

Estimating the terms on the right-hand side of (14), taking into account

the Sobolev embedding H1(Ω) ↪→ L6(Ω) and the interpolation ∥w∥L3(Ω) ≤
C ∥w∥1/2∥w∥1/2

H1(Ω)
, recalling that 0 < m ≤ ρ(x, t) ≤M , one has ([9])

µ

2

d

dt
∥∇u∥2 + 3m

4
∥ut∥2 ≤ C∥f∥2 + C

(
∥∇u∥2 + ∥∆ρ∥2

)3

+ δ∥Au∥2 + γ∥∇∆ρ∥2,
(15)

being γ and δ positive constants to be chosen later (and C > 0 is a constant

depending on γ and δ). In order to control the term ∥Au∥2 which appears

in (15), we take as test function v = Au in (3) (that is possible because

the spectral basis of A has been considered), getting

µ∥Au∥2 = −
(
ρut, Au

)
−
(
((ρu− λ∇ρ) · ∇)u, Au

)
− λ

(
(u · ∇)∇ρ,Au

)
+λ2

(
∇ ·

(
1

ρ
∇ρ⊗∇ρ

)
, Au

)
−
(
ρf , Au

)
.

The terms on the right-hand side can be estimated in the same way as

before. We only bound the first term

|(ρut, Au)| ≤M∥ut∥∥Au∥ ≤ M2

µ
∥ut∥2 +

µ

4
∥Au∥2.

Then, we get the inequality

µ

2
∥Au∥2 ≤ M2

µ
∥ut∥2+C

(
∥∇u∥2+ ∥∇u∥2

)3
+γ∥∇∆ρ∥2+C∥f∥2. (16)

Multiplying (16) by
mµ

4M2
and adding to (15), one has (choosing δ small

enough)
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µ

2

d

dt
∥∇u∥2 + m

2
∥ut∥2 +

mµ2

8M2
∥Au∥2 ≤ C

(
∥∆ρ∥2 + ∥∇u∥2

)3

+ γ∥∇∆ρ∥2 + C∥f∥2.
(17)

On the other hand, multiplying the density equation (4) by−∆ρt+λ∆
2ρ

and integrating by parts, one obtains

∥∇ρt∥2 + λ
d

dt
∥∆ρ∥2 + λ2∥∇∆ρ∥2 =

(
∇(u · ∇ρ),−∇ρt + λ∇∆ρ

)
.

Using the Hölder ’s and Young ’s inequalities in the previous equality, it

becomes (for arbitrary δ > 0)

λ
d

dt
∥∆ρ∥2+∥∇ρt∥2+

λ2

2
∥∇∆ρ∥2 ≤ C

(
∥∇u∥2+∥∆ρ∥2

)3
+δ∥Au∥2. (18)

Finally, adding inequalities (18) and (19) and choosing γ and δ small

enough, we obtain

d

dt

{
µ

2
∥∇u∥2 + λ∥∆ρ∥2

}
+
m

2
∥ut∥2 + ∥∇ρt∥2 +

mµ2

8M2
∥Au∥2

+
λ2

4
∥∇∆ρ∥2 ≤ C

(
∥∆ρ∥2 + ∥∇u∥2

)3
+ C∥f∥2.

(19)

By setting φ2(t) =
µ

2
∥∇u(t)∥2 + ∥∆ρ(t)∥2, χ2(t) =

m

2
∥ut∥2 + ∥∇ρt∥2

and ψ2(t) =
mµ2

8M2
∥Au∥2 + λ2

4
∥∇∆ρ∥2, inequality (19) can be written as

φ′
2(t) + χ2(t) + ψ2(t) ≤ Cφ3

2(t) + C∥f(t)∥2. (20)

Thus, using that ψ2 ≥ P2φ2 (with P2 > 0) and classical results of

differential inequalities we shall obtain two results:

Case 1: There exists a time T ∗ ≤ T small enough such that φ2(t) ≤ C

for all t ∈ [0, T ∗] and

∫ T ∗

0

(
χ2(s) + ψ2(s)

)
ds ≤ C (see [11]), hence (10)

and (11) hold.

On the other hand, if φ2(0) is sufficiently small, we get T ∗ = T ([19]).
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Case 2: For ∥∇u0∥2, ∥∆ρ0∥2 and ∥f∥L∞(0,T ;L6/5(Ω)) sufficiently small,

one obtains φ2(t) ≤ C, hence (12) holds. Getting back to (20) and multi-

plying by eγt, we can get e−γt

∫ t

0
eγs

(
χ2(s) + ψ2(s)

)
ds ≤ C for all t ≥ 0,

hence (13) holds. □

Corollary 5. Assume hypotheses of Theorem 4, u0 ∈ V ∩ H2(Ω) and

ρ0 ∈ H3
N (Ω).

Case 1: (T < +∞) Let f ∈ L2(0, T ;H1(Ω)) and f t

∈ L2(0, T ;L6/5(Ω)). Then, the unique strong solution (u, ρ) of Problem

(1) in (0, T ∗) for certain T ∗ ≤ T given in Theorem 4 verifies the additional

estimates:

∥(u(t), ρ(t),ut(t), ρt(t))∥H2×H3×L2×H1 ≤ C, ∀t ∈ [0, T ∗], (21)∫ T ∗

0
∥(u(s), ρ(s),ut(s), ρt(s))∥2H3×H4×H1×H2 ≤ C. (22)

Moreover, if ρ0 ∈ H4
N (Ω)

∥(σ1/2(t)u(t), ρ(t), σ1/2ut(t), ρt(t))∥H3×H4×H1×H2 ≤ C, ∀t ∈ [0, T ∗],

(23)∫ T ∗

0
∥(σ1/2u, ρ, σ1/2ut, ρt, σ

1/2utt, ρtt)∥2H4×H5×H2×H3×L2×H1 ≤ C. (24)

where σ(t) = min{1, t}.

Case 2: (T = +∞) Let f ∈ L∞(0,∞;H1(Ω)) and f t ∈ L∞(0,∞;L6/5(Ω)).

Then, the unique strong solution (u, ρ) of Problem (1) in (0,∞) given in

Theorem 4, verifies

∥(u(t), ρ(t),ut(t), ρt(t))∥H2×H3×L2×H1 ≤ C, ∀t ≥ 0, (25)

∀γ > 0, e−γt

∫ t

0
e−γs∥(u(s), ρ(s),ut(s), ρt(s))∥2H3×H4×H1×H2 ≤ C.

(26)
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Moreover, if ρ0 ∈ H4
N (Ω)

∥(σ1/2(t)u(t), ρ(t), σ1/2ut(t), ρt(t))∥H3×H4×H1×H2 ≤ C, ∀t ≥ 0, (27)

∀γ > 0, e−γt

∫ t

0
eγs∥(σ1/2u, ρ, σ1/2ut, ρt, σ

1/2utt, ρtt)∥2H4×H5×H2×H3×L2×H1

≤ C,∀t ≥ 0.

(28)

Proof: Firstly, we are going to improve the a priori estimates obtained

in the previous Theorem for (ut, ρt). As a consequence, we will improve

the estimates obtained for (u, ρ) in D(A) and H3(Ω) norms respectively.

By differentiating the density equation (4) with respect to t and taking

the inner product of L2(Ω) with the term ∆ρt and integrating by parts

1

2

d

dt
∥∇ρt∥2 + λ∥∆ρt∥2 ≤ |(∇ut · ∇ρ,∇ρt)|+ |(ut · ∇2ρ,∇ρt)|

+ |(∇u · ∇ρt,∇ρt)|+ |(u · ∇2ρt,∇ρt)|.

In virtue of the bounds for ∥∇u∥ and ∥∆ρ∥ obtained in Theorem 4, the

terms on the right-hand side can be estimated using the interpolation in-

equalities ∥∇2ρ∥3 ≤ C ∥∆ρ∥1/2∥∇∆ρ∥1/2 and ∥∇ρ∥4 ≤ C ∥∆ρt∥1/4∥∇ρt∥3/4,
the Sobolev imbedding H1(Ω) ↪→ L6(Ω) and Young’s inequality, getting

1

2

d

dt
∥∇ρt∥2 +

3λ

4
∥∆ρt∥2 ≤ γ∥∇ut∥2 + C∥∇ρt∥2, (29)

for any γ > 0 (with C depending on γ).

Now, computing the derivative of system (3) with respect to t, taking

as test function v = ut and take into account equation (4), one gets

1

2

d

dt
∥ρ1/2ut∥2 + µ∥∇ut∥2

= −(ρt(u · ∇)u,ut)− (ρ(ut · ∇)u,ut) + (ρtf ,ut) + (ρf t,ut)

+λ {((∇ρt · ∇)u,ut) + ((ut · ∇)∇ρ,ut)}+ λ((u · ∇)∇ρt,ut)

+λ2
(
ρt
ρ2

∇ρ⊗∇ρ,∇ut

)
− λ2

(
1

ρ
∇ρt ⊗∇ρ,∇ut

)
− λ2

(
1

ρ
∇ρ⊗∇ρt,∇ut

)
.
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We observe that the terms (ρt(u · ∇)u,ut) and (ρ(ut · ∇)u,ut) can be

bounded as in the Navier-Stokes case ([11]) and the bounds for the terms

λ((∇ρt · ∇)u,ut) and λ((ut · ∇)∇ρ,ut) are similar. The other terms are

estimated as follows

|(ρt(u · ∇)u,ut)| ≤ |(u · ∇ρ (u · ∇)u,ut)|+ λ|(∆ρ(u · ∇)u,ut| (using eq. (4))

≤ ∥u∥∞∥∇ρ∥L6∥u∥L6∥∇u∥∥ut∥L6 + ∥∆ρ∥∥u∥L∞∥∇u∥L3∥ut∥L6

≤ C∥Au∥2 + γ∥∇ut∥2

|(ρtf ,ut)| ≤ ∥f∥∥ρt∥L3∥ut∥L6 ≤ C∥f∥2∥∇ρt∥2 + γ∥∇ut∥2(
ρt
ρ
∇ρ⊗∇ρ,∇ut

)
≤ C

m
∥∇ρt∥∥∆ρ∥2∥∇ut ≤ C∥∇ρt∥2 + γ∥∇ut∥2(

1

ρ
∇ρt ⊗∇ρ,∇ut

)
+

(
1

ρ
∇ρ⊗∇ρt,∇ut

)
≤ C

m
∥∇ρt∥L3∥∇ρ∥L6∥∇ut∥

≤ C∥∇ρt∥2 + ε∥∆ρt∥2

+ γ∥∇ut∥2

Thus, we obtain the differential inequality (choosing γ sufficiently small)

1

2

d

dt
∥ρ1/2ut∥2 +

3µ

4
∥∇ut∥2 ≤ C(∥f∥2∥∇ρt∥2 + ∥f t∥2L6/5(Ω)

)

+ C∥ut∥2 + C∥∇ρt∥2 + ε∥∆ρt∥2.

Adding this inequality with (29), choosing suitable γ and ε, and taking

the notation φ3 = ∥ρ1/2ut∥2 + ∥∇ρt∥2 and ψ3 = µ∥∇ut∥2 + λ∥∆ρt∥2, one
has

φ′
3 + ψ3 ≤ C∥f∥2φ3 + C∥f t∥2L6/5(Ω)

+ Cφ3. (30)

Case 1: Using Gronwall’s Lemma in (30), since φ3(0) ≤ C (in fact

∥ut(0)∥ ≤ C(∥u0∥H2(Ω), ∥ρ0∥H3
N (Ω), ∥f(0)∥) and ∥∇ρt(0)∥ ≤ C(∥u0∥H2(Ω), ∥ρ0∥H3

N (Ω)))

we obtain φ3(t) ≤ C for all t ∈ [0, T ∗] and

∫ T ∗

0
ψ3(s) ds ≤ C, hence (21)

and (22) for (ut, ρt) hold.
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Case 2: Multiplying by eγt in (30) (for any γ > 0) and integrating from

0 to t, we get

φ3(t) + e−γt

∫ t

0
eγτψ3(τ) dτ ≤ φ3(0) + Ce−γt

∫ t

0
e−γτ∥f t(τ)∥2L6/5(Ω)

dτ

+ Ce−γt

∫ t

0
e−γτφ3(τ) dτ.

(31)

Applying e−γt

∫ t

0
e−γτφ3(τ) τ ≤ C e−γt

∫ t

0
e−γτχ2(τ) τ ≤ C, we get (25)

and (26) for (ut, ρt).

Now, we improve the regularity in time for D(A) and H3
N (Ω) norms for

the velocity and density respectively. Multiplying (4) by ∆2ρ, integrating

over Ω and integrating by parts,

λ

2
∥∇∆ρ∥2 ≤ C∥∇ρt∥2 + C

(
∥∇u∥2 + ∥∆ρ∥2

)3
+ δ∥Au∥2 (32)

for any δ > 0. Adding (16) and (32), and taking suitable γ and δ, one

obtains the inequality

µ∥Au∥2 + λ∥∇∆ρ∥2≤C∥ut∥2 + C∥∇ρt∥2 + C
(
∥∇u∥2 + ∥∆ρ∥2

)3
(33)

From this last expression and the above estimates is easy to deduce (21)

in Case 1 or (25) in Case 2, for (ρ,u).

Now, we want to obtain better estimates in space for the velocity. By

taking A2u as test function in (3), one has

µ∥A3/2u∥ ≤ ∥A1/2(ρut)∥+ ∥A1/2(((ρu− λ∇ρ) · ∇)u)∥

+ ∥A1/2(ρf)∥+ λ∥A1/2((u · ∇)∇ρ)∥

+ λ2
∣∣∣∣A1/2

(
∇ ·

(
1

ρ
(∇ρ⊗∇ρ

))∣∣∣∣
hence, estimating on the right-hand side one has

∥A3/2u∥ ≤ C∥∇ut∥+ C, (34)

hence (22) in Case 1 or (26) in Case 2, for u, holds.
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Analogously for the density. Applying the operator ∆ to (4) and taking

the inner product by −∆2ρ, one gets

λ

2
∥∆2ρ∥2 = ∥∆ρt +∆u · ∇ρ+ u ·∆∇ρ∥2

≤ C(∥∆ρt∥2 + ∥∆u∥2∥∇ρ∥2∞ + ∥u∥2∞∥∇∆ρ∥2)

≤ C(∥∆ρt∥2 + ∥Au∥2∥ρ∥2
H3

N
) ≤ C(∥∆ρt∥2 + 1).

(35)

Therefore, we conclude (22) in Case 1 or (26) in Case 2, for ρ.

In what follow, we suppose that ρ0 ∈ H4
N (Ω). By differentiating the

approximate momentum system (3) with respect to t and considering v =

utt as test function, we have

∥ρ1/2utt∥2 +
µ

2

d

dt
∥∇ut∥2 = −

([
((ρu− λ∇ρ) · ∇)u

]
t
,utt

)
+λ

([
(u · ∇)∇ρ

]
t
,utt

)
−λ2

([
∇ ·

(
1

ρk
∇ρk ⊗∇ρk

)]
t

,utt

)
+
(
ρkf ,utt

)
.

Thus, bounding on the right-hand side, one obtains the following dif-

ferential inequality ([9])

∥ρ1/2utt∥2 + µ
d

dt
∥∇ut∥2 ≤ C∥∇ut∥2 + C∥∆ρt∥2 + C∥f∥2

H1

+ C∥f t∥2 + C.

(36)

Analogously, for the approximate density, we get

∥∇ρtt∥2 + λ
d

dt
∥∆ρt∥2 ≤ C∥∇ut∥2 + C∥∆ρt∥2 (37)

Case 1: Multiplying (36) by σ(t), where σ(t) = min{t, 1}, we have

σ(s)∥ρ1/2utt(s)∥2 + µ
d

dt

(
σ(s)∥∇ut(s)∥2

)
− µσ′(s)∥∇ut(s)∥2

≤ Cσ(s)(∥∇ut∥2 + ∥∆ρt∥2 + ∥f∥2
H1 + ∥f t∥2 + 1).

(38)
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Integrating (38) from ε to t, with 0 < ε < t and using that σ(t) ≤ 1 and

σ
′
(t) ≤ 1 a.e. in [0, t], we have

σ(t)µ∥∇ut(t)∥2 +m

∫ t

ε
σ(s)∥utt(s)∥2 ds ≤ µσ(ε)∥∇ut(ε)∥2

+ C

∫ t

ε

(
∥f(s)∥2

H1 + ∥f t(s)∥2 + ∥∇ut∥2 + ∥∆ρt∥2 + 1
)
ds.

Since ∇ut ∈ L2(0, t), we can choose a sequence (εn) such that 0 < εn < 1

for all n ≥ 1 and σ(εn)∥∇ut(εn)∥2 → 0 as εn → 0. Then, taking εn → 0,

we have

µσ(t)∥∇ut(t)∥2 +m

∫ t

0
σ(s)∥utt(s)∥2 ds

≤ C

∫ t

0

(
∥f(s)∥2H1 + ∥f t(s)∥2 + ∥∇ut∥2 + ∥∆ρt∥2 + 1

)
ds.

On the other hand, working for the density as for the velocity, we shall

obtain

λ∥∆ρt(t)∥2 +
∫ t

0
∥∇ρtt(s)∥2 ds

≤ λ∥∆ρt(0)∥2 + C

∫ t

0

(
∥∇ut∥2 + ∥∆ρt∥2 + 1

)
ds.

It is easy to bound ∥∆ρt(0)∥ ≤ C(∥u0∥H2 , ∥ρ0∥H4).

Then, we can conclude using the a priori estimates (ut, ρt) ∈ L2(0, T ∗;V ×
H2(Ω)) that σ1/2ut ∈ L∞(0, T ∗;V ), σ1/2utt ∈ L2(0, T ∗;H), ρt ∈
L∞(0, T ∗;H2

N (Ω)) and ρtt ∈ L2(0, T ∗;H1
N (Ω)). As well, from (34) and

(35) and previous estimates, we infer (u, ρ) ∈ L∞(0, T ∗;H3(Ω)×H4(Ω)).

Now, we want to obtain the following estimate∫ T ∗

0

(
σ(s)∥Aut(s)∥2 + ∥∇∆ρt(s)∥2

)
ds ≤ C.

Indeed, this bound can be obtained by taking v = Aut as test function in

the time derivative of the momentum system and applying the gradient

operator ∇ in the time derivative of the density equation multiplied by

∇∆ρt and then bounding the right-hand side of both equalities having in

consideration the previous estimates.
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On the other hand, taking v = A3ut as test function in (3) and bounding

the right-hand side using the estimates obtained up to the moment, we

get

∥A2u∥2 ≤ C(∥Aut∥2 + 1).

As a consequence, σ1/2u ∈ L2(0, T ∗;H4(Ω)). Analogously for the density,

we can obtain ρ ∈ L2(0, T ∗;H5(Ω)).

Case 2: Working as in Case 1 changing the weight σ(t) for σ̃(t) =

eγtσ(t) and using that σ̃(t) ≤ eγt and σ̃′(t) ≤ Ceγt, one has

µσ̃(t)∥∇ut(t)∥2 +
∫ t

ε
σ̃(s)∥utt(s)∥2 ds ≤ σ̃(ε)∥∇ut(ε)∥2

+C

∫ t

ε
eγs

(
∥f(s)∥2

H1 + ∥f t(s)∥2 + ∥∇ut∥2 + ∥∆ρt∥2 + 1
)
ds.

Choosing a special sequence (εn) → 0 such that σ̃(εn)∥∇ut(εn)∥2 → 0 as

n→ ∞ and taking limit, one obtains

µσ(t)∥∇ut(t)∥2 +
∫ t

0
σ(s)∥utt(s)∥2 ds

≤ Ce−γt

∫ t

0
eγs

(
∥f(s)∥2

H1 + ∥f t(s)∥2 + ∥∇ut∥2 + ∥∆ρt∥2 + 1
)
ds.

from which one deduces σ1/2ut ∈ L∞(0,∞;H1) and σ1/2utt ∈ L2(0,∞;L2(Ω)),

thanks to the estimate e−γt

∫ t

0
eγτψ3(τ) dτ ≤ C.

Multiplying (37) by eγt, we can get

λ∥∆ρt(t)∥2 + e−γt

∫ t

0
eγs∥∇ρtt(s)∥2 ds

≤ λe−γt∥∆ρt(0)∥2 + Ce−γt

∫ t

0
eγs

(
∥∇ut∥2 + ∥∆ρt∥2 + 1

)
ds.

Using e−γt

∫ t

0
eγτψ3(τ) dτ ≤ C, we deduce that ρt ∈ L∞(0,∞;H2(Ω))

and ρtt ∈ L2(0,∞;H1(Ω)).

In the similar manner as inCase 1, we deduce (σ1/2u, ρ) ∈ L2
loc(0,∞;H4(Ω)×

H5(Ω)) and

∀γ > 0, e−γt

∫ T

0
eγs

(
σ(s)∥A2u(s)∥2 + ∥∇∆2ρ(s)∥2

)
ds ≤ C, ∀t ≥ 0.
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□

3.2 The 2D case

Secchi needed to introduce in [18] the condition λ/µ sufficiently small

in order to obtain weak estimates. Now, we impose that condition in the

following theorem in the case of 2D domains, obtaining regularity of weak

solutions without constraints on data or on the final time .

Theorem 6. Let Ω ⊂ R2. Assume u0 ∈ V , ρ0 ∈ H2
N (Ω) verifying (2)

and λ/µ is small enough.

Case 1: (T < +∞) Let f ∈ L2(0, T ;L2(Ω)). Then, there exists a

unique strong solution (u, ρ) of Problem (1) in (0, T ), verifying

∥(u(t), ρ(t))∥H1×H2 ≤ C, ∀t ∈ [0, T ], (39)∫ T

0
∥(u(s), ρ(s),ut(s), ρt(s))∥2H2×H3×L2×H1 ≤ C. (40)

Case 2: (T = +∞) Let f ∈ L∞(0,∞;L2(Ω)). Then, there exists a

unique strong solution (u, ρ) of Problem (1) in (0,∞) such that

∥(u(t), ρ(t))∥H1×H2 ≤ C, ∀t ≥ 0, (41)

∀γ > 0, e−γt
∫ t
0 e

γs∥(u(s), ρ(s),ut(s), ρt(s))∥2H2×H3×L2×H1 ≤ C,

∀t ≥ 0.
(42)

Proof: Again there will be no ambiguity in setting u = uk and ρ = ρk.

From Theorem 3 (notice that we can choose f ∈ L2(0, T ;Lp(Ω) if T <∞
or f ∈ L∞(0,∞;Lp(Ω)) if T = ∞ with p > 1, since we are considering

Ω ⊂ R2), we can deduce the following estimates:

0 < m ≤ ρ(x, t) ≤M in Q, (43)

∥(u(t), ρ(t))∥L2×H1 ≤ C ∀t ∈ [0, T ∗], (44)
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∀γ > 0, e−γt

∫ t

0
eγs∥(u(s), ρ(s))∥2H1×H2 ds ≤ C, ∀t ≥ 0. (45)

In the finite time case (T <∞), one can take γ = 0 in (45).

On the other hand, by working as in Theorem 4 and taking into account

the Gagliardo-Nirenberg inequality ∥w∥L4(Ω) ≤ C ∥w∥1/2∥w∥H1 and (44),

we get

φ′
2(t) + χ2(t) + ψ2(t) ≤ Cφ2

2(t) + C∥f(t)∥2. (46)

where φ2(t) =
µ

2
∥∇u(t)∥2 + ∥∆ρ(t)∥2, χ2(t) =

m

2
∥ut∥2 + ∥∇ρt∥2 and

ψ2(t) =
mµ2

8M2
∥Au∥2 + λ2

4
∥∇∆ρ∥2.

Case 1: Using Gronwall’s Lemma in (46) jointly with (45) for γ = 0,

we obtain φ2(t) ≤ C for all t ∈ [0, T ] and

∫ T

0

(
χ2(t) + ψ2(t)

)
dt ≤ C,

hence (39) and (40) hold.

Case 2: We obtain from (46)

φ′
2(t) ≤ Cφ2

2(t) + C1.

We observe that

Cφ2
2 + C1 ≤ 2Cφ2

2

for all φ2 ≥ (C1/C)
1/2. Then, either we have 0 ≤ φ2(t) ≤ L for all t ≥ 0

or there exist some interval [t1, t2] with t2 ≥ t1 for which ∥φ2(t1)∥2 =

L and for all t ∈ [t1, t2] one has ∥φ2(t)∥2 ≥ L, where we take L =

max
{
(C1/C)

1/2, 1, ∥φ2(0)∥
}
. Then, if we consider the second case, thanks

to the choice of L, the differential inequality
d

dt
φ2 ≤ Cφ2

2 holds in the in-

terval [t1, t2], or equivalently,

d

dt
lnφ ≤ Cφ in [t1, t2].

Then, multiplying this differential inequality by eγ̄t this gives

d

dt

(
eγ̄t lnφ2

)
≤ Ceγ̄tφ2 + γ̄eγ̄t lnφ2 in [t1, t2]. (47)
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Taking into account the inequality lnφ2 ≤ k + kφ2, for all φ2 > 0 for a

certain k > 0 and integrating (47) between t and t1 for any time t ∈ [t1, t2],

one gets

eγ̄t lnϑ(t)− eγ̄t1 lnϑ(t1) ≤ (C + γ̄k)

∫ t

t1

eγ̄τϑ(τ) dτ + γ̄k

∫ t

t1

eγ̄τ dτ

hence, thanks to (45),

lnϑ(t)− e−γ(t−t1) lnL ≤ (C + γk)e−γt

∫ t

t0

eγτϑ(τ) dτ + γke−γt

∫ t

t0

eγτ dτ

≤ C(C + γk) := D

Since e−γ(t−t1) lnL ≤ lnL (here, L ≥ 1 is used), we have that ln
φ2(t)

L
≤

D, which implies,

φ2(t) ≤ LeD, ∀t ∈ [t1, t2].

Consequently φ2(t) ≤ LeD, for all t ≥ 0, hence one has (41).

Multiplying by eγt in (46) and considering (41) we get the estimate (42).

Remark 7. In the 2D case is possible to obtain the same regularity results

given in Corollary 5 but without smallness constraints on the data.

4 Global existence as the external force decay

exponentially

Theorem 8. Let Ω ⊂ R3. Assume u0 ∈ V , ρ0 ∈ H2
N (Ω) verifying (2)

and sup
t≥0

eγt∥f∥2L2(Ω) <∞. If ∥∇u0∥, ∥∆ρ0∥ and ∥eγt/2f∥L∞(0,∞;L2(Ω)) are

small enough, then there exists a unique strong solution (u, ρ) of Problem

(1) in (0,∞) and a positive constant γ∗ ≤ γ such that

eγ
∗t∥(u(t), ρ(t))∥H1×H2 ≤ C, ∀t ≥ 0, (48)∫ t

0
eθs∥(u(s), ρ(s),ut(s), ρt(s))∥2H2×H3×L2×H1ds ≤ C, ∀t ≥ 0. (49)

for any θ: 0 ≤ θ ≤ γ∗ and θ < γ (indeed, if γ∗ < γ then θ = γ∗ is valid).
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Proof: Multiplying (20) by eγ
∗t with γ∗ > 0 (to be chosen), we have

(
eγ

∗tφ2(t)
)′
+eγ

∗t
(
χ2(t)+ψ2(t)

)
≤ Ceγ

∗tφ2(t)
3+Ceγ

∗t∥f∥2+γ∗eγ∗tφ2(t).

Now, by choosing adequate γ∗ such that γ∗φ2(t) < ψ2(t), we get

φ̃2(t)
′ + χ̃2(t) + ψ̃2(t) ≤ C e−2γ∗tφ̃2(t)

3 + Ceγ
∗t∥f∥2

being φ̃2(t) = eγ
∗tφ2(t), χ̃2(t) = eγ

∗tχ2(t) and ψ̃2(t) = C1e
γ∗tψ2(t) where

C1 > 0 a constant depending on the data. Proceeding with similar ar-

guments as in Theorem 4 we prove (48) whenever ∥∇u0∥, ∥∆ρ0∥ and

sup
t≥0

eγt∥f∥L2(Ω) are small enough. Then, multiplying (20) by eθt and in-

tegrating in (0, t), we can arrive at (49). □

Corollary 9. Assume hypotheses of Theorem 8, u0 ∈ V ∩H2(Ω), ρ0 ∈
H3

N (Ω), sup
t≥0

∥f∥H1(Ω) < ∞ and sup
t≥0

eγt∥f t∥2L6/5(Ω)
< ∞ (γ is given in

Theorem 8). Then, the unique strong solution (u, ρ) of Problem (1) in

(0,∞) given in Theorem 8 verifies

∥eθt(u(t), ρ(t),ut(t), ρt(t))∥H2×H3×L2×H1 ≤ C, ∀t ≥ 0, (50)∫ t

0
eθs∥(u(s), ρ(s),ut(s), ρt(s))∥2H3×H4×H1×H2 ≤ C. (51)

for any θ as in Theorem 8. Moreover, if ρ0 ∈ H4
N (Ω)

eθt∥(σ1/2(t)u(t), ρ(t), σ1/2ut(t), ρt(t))∥H3×H4×H1×H2 ≤ C,

∀t ≥ 0,
(52)

∫ t

0
eθs∥(σ1/2u, ρ, σ1/2ut, ρt, σ

1/2utt, ρtt)∥2H4×H5×H2×H3×L2×H1

≤ C, ∀t ≥ 0.

(53)
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Proof: Multiplying (30) by eθt and taking into account (49) and
∫ t
0 e

θτ∥f t∥2L6/5 ≤
C, we get (50) and (51) for (ut, ρt). Now, multiplying (33), (34) and (35)

by eθt, it is easy to deduce (50) and (51) for (u, ρ). The rest of estimates

can be obtained as in the proof of Theorem 4. □

Remark 10. The above result also is valid in the 2D case without con-

straints on the data.

Remark 11. By using the results of the above sections together with the

arguments used by Heywwod [8], it is possible to prove, when Γ is of class

C∞, the following regularity for the solution

u ∈ C∞((0,∞)× Ω), ρ ∈ C∞((0,∞)× Ω).

Remark 12. In this work we have used technics which are similar to

those ones used in [14], in the case of 2-dimensional viscous compressible

flows.
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