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with D(Λ) = {u ∈ H2(0, 1) : ux(0) = ux(1) = 0}, Λ : D(Λ) ⊂
X → X, Λu = −uxx + δu, δ > 0, a > 0, η ≥ 0 as the

discretization step goes to zero.

1 Introduction

For each η > 0, we consider the strongly damped wave equation

utt + 2ηΛ1/2ut + 2a ut = −Λu+ f(u), 0 < x < 1, t > 0

ux(0) = ux(1) = 0, t > 0,
(1.1)

and its discretization given by

Ü + 2ηΛ1/2
n U̇ + 2a U̇ = −ΛnU + f(U) (1.2)

where a > 0, Λu = −uxx + δ
2
u, Λn is a n× n matrix, Λn = ∆n +

δ
2
I,

δ > 0 and ∆n is the discretization of the Laplacian with Neumann

boundary conditions given by

∆n = n2



1 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −1 1


, (1.3)

f : IR → IR is a C2 function satisfying the dissipative condition

lim sup
|u|→+∞

f(u)

u
≤ −δ, (1.4)

f(U) = (f(u1), · · · , f(un))⊤ and U = (u1, · · · , un)⊤.
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In this paper we study how the dynamics of the continuous equa-

tion (1.1)can be approximated by the dynamics of the discretization

(1.2). More precisely, we prove that the family of global attractors

of the discretization (1.2) is upper semicontinuous to the global at-

tractor of the continuous problem (1.1), as n goes to ∞.

We study the problem (1.1) in an abstract form (in the sense of

Henry [8]). Let’s denote by Λ, the operator Λ : D(Λ) ⊂ X0 →
X0 given by Λu = −uxx + δ

2
u, X = L2 = X0 and D(Λ) = {u ∈

H2(0, 1);u′(0) = u′(1) = 0} = X1. So we can write (1.1) as

d
dt

[
u

v

]
= Aη

[
u

v

]
+ h(

[
u

v

]
) (1.5)

where D(Aη) = X1 ×X
1
2 = Y 1,

Aη =

[
0 I

−Λ −2(ηΛ1/2 + a)

]
and h(

[
u

v

]
) =

[
0

f e(u)

]
.

For η > 0, −Aη is a sectorial operator and generates an analytic

semigroup of contractions (see [6, 7]). For η ≥ 0, the equation (1.5)

generates a C1-semigroup Tη on Y 0 = H1 × L2. Tη(t), t ≥ 0, is a

gradient system asymptotically smooth. Furthermore, as proved in

[5] to a more general case, Tη(t) admits a global attractor Aη. By

using regularity results we have Aη ⊂ Y 1.

In order to keep the similarity, we rewrite (1.2) in a matrix form

d

dt

[
U

V

]
= Aηn

[
U

V

]
+H(

[
U

V

]
) (1.6)

where

Aηn =

[
0 In

−An −2(ηA
1/2
n + a)

]
and H(

[
U

V

]
) =

[
0

f(U)

]
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For (1.6), we have a global attractor Aηn.

Considering

δY (A,B) = sup
x∈A

inf
y∈B

dY (x, y) (1.7)

we can define the continuity of a family of setsBη ⊂ Y in the following

form: a family Bη is continuous in η0 if it is upper semicontinuous at

η0, that is, δY (Bη, Bη0) → 0 as η → η0; and it is lower semicontinuous

at η0, that is, δY (Bη0 , Bη) → 0 as η → η0.

In most problems, the ideal situation is having the asymptotic dy-

namics of one equation the same of the asymptotic dynamics of its

discretization. Nevertheless, studying the linear wave equation, we

noted that the spectrum of the discretization and the spectrum of its

continuous counterpart are far away from each other, no matter how

fine the discretization is. That also happens to some parabolic equa-

tions but in this set of problems the nonconvergent part is controlled

by the fact that the real part of the eigenvalues is negative and very

large in absolute values (the corresponding modes do not interfere in

the asymptotics). The spectrum of Aη with η = 0 do not have this

property. That is restrictive to the hyperbolic equation, i.e. η = 0.

In order to overcome this problem we propose to approach the

semilinear damped wave equation with η = 0 (hyperbolic case) by a

“parabolic equation” strongly damped (η > 0) and then to make the

approximation of this equation by its discretization.

In [3], they proved that the family of global attractors Aη, η ≥ 0

is continuous (lower and upper) in η = 0 . Note that η = 0 in (1.5)

give us the damped wave equation.

In order to compare the problems (1.5) and (1.2) it was necessary

to consider the space Rn × Rn embedded in the phase space of the

continuous problem. We also consider two norms in Rn × Rn which
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are the discretization of norms in the continuous space (Y 0 and Y 1).

Studying the problem, we realize it was not possible to reduce the

phase space dimension using a finite dimensional invariant manifold.

The reduction to a finite invariant manifold was used to prove the

topological equivalence between the dynamics of the discretization

and the continuous heat equation, see [4]. The spectrum of Aη do

not satisfy the existence of a large gap, since limk→∞ Re(λ±(k+1)) −
Re(λ±k) = η, where λk is the k

th eigenvalue of Aη, therefore we could

not use this technic.

We workout this problem for a fix η > 0 as follows. First, we

analyze the closeness of the linear semigroups in the norm Y 0. In

order to do that, we decompose the semigroups in two parts. One of

them, is defined on an infinite space dimension, such that Re(λ±k) →
−∞, where k → ∞. It means that the semigroup norm can be set

arbitrarily small. So our problem becomes to compare the semigroups

in a finite dimension space. We did that using the convergence of the

eigenvalues and eigenvectors of the discrete problem to the continuous

problem. Then, we compare the nonlinear semigroups and, finally,

we prove the upper semicontinuity of the global attractors Aη n. This

procedure was used in [1]

The main result of this paper is

Theorem 1.1. The family of global attractors Aη n is upper semi-

continuous at n = ∞, for any η > 0.

Theorem 1.1, and the fact that the family Aη is upper continuous

(see [3]), leads to the following important result

Theorem 1.2. Let A be the attractor of (1.1) for η = 0. Then, there

exists a sequence (η, nη) such that δ(Aη nη ,A) converges to zero when

η → 0.
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These results can be summarized in the following diagram

A
η→0 // Aηoo

Aη n

``

n→∞, η fixed

OO

where the arrows denotes upper semicontinuity when it points to the

limit problem and lower semicontinuity when it points to the family

problems.

This paper is organized as follows. Section 2 recalls some spectral

properties of Aη and Aηn. We also define the norms and some rela-

tions between Rn × Rn and Y 0 and Y 1. In Section 3 we make the

comparison of the linear semigroups. The comparison of the nonlin-

ear semigroups is done in Section 4. Finally, the last section proves

the upper semicontinuity of attractors Aηn.

2 Spectral properties of Aη and Aηn.

In this section, we recall from [6, 7] some important spectral prop-

erties of Aη and Aηn. We also define the norms and some relations

between Rn × Rn and Y 0, Y 1.

Let νk = (kπ)2 + δ
2
be the eigenvalues of Λ for k = 0, 1, · · · . The

eigenvalues, λ±k, of Aη are the solutions of

λ2 + (2ην
1
2
k + 2aνk)λ+ νk = 0

and they are given by:

λ±k = −(ην
1/2
k + a)±

√
(ην

1/2
k + a)2 − νk
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For each η > 0, there exist an k0 = k0(η) ≥ 0 such that λ±k is a

real number for k < k0 and λ±k is a complex number for k ≥ k0.

The correspondents eigenfunctions are given by:

ϕ±k =

[
ek

λ±kek

]
(2.1)

where ek = cos(kπx) is a eigenfunction of Λ with respect the eigen-

value νk. If λ±k is a double eigenvalue then ψk =

[
0

ek

]
is a gener-

alized eigenfunction associated with λ±k. If λ±k is a complex eigen-

value then we consider the following vectors ψ+k = Re(ϕ±k) and

ψ−k = Im(ϕ±k), in the real eigenspace associated with λ±k.

We have the following properties:

1) the family (ϕ+k)
k0
k=0, (ψ+k)

∞
k=k0

is orthogonal in Y 0;

2) the family (ϕ−k)
k0
k=0, (ψ−k)

∞
k=k0

is orthogonal in Y 0;

3) ⟨ϕ−i, ϕ+j⟩Y 0 = 0, ⟨ψ−i, ψ+j⟩Y 0 = 0, ⟨ϕ−i, ψ+j⟩Y 0 = 0, ⟨ψ−i, ϕ+j⟩Y 0 =

0 if i ̸= j.

Using the same arguments of [3] in section 2, we have that there

are K ≥ 1 and γ > 0, independent of η, such that ∥eAηt∥ ≤ Ke−γ,

for η > 0.

Similarly, the eigenvalues of Λn are given by νnk = 4n2 sin2 kπ
2n

+ δ
2

and the associated eigenvectors are enk = (cos kπx1, · · · , cos kπxn) for
k = 0, · · · , n− 1 and xi =

2i−1
2n

. The eigenvalues, λn±k, of Aηn are the

solutions of the equation λ2 + (2η(νnk )
1
2 + 2aνnk )λ + νnk = 0 and are

given by:

λn±k = −(η(νnk )
1/2 + a)±

√
(η(νnk )

1/2 + a)2 − νnk

The correspondents eigenvectors are given by:

ϕn
±k =

[
enk

λn±ke
n
k

]
(2.2)
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where enk is the eigenvector of Λn associated with the eigenvalue νnk . If

λn±k is a double eigenvalue then ψ
n
k =

[
0

enk

]
is a generalized eigenvector

associated with λn±k

If λn±k is a complex eigenvalue then we consider the following vec-

tors ψn
+k = Re(ϕn

±k) and ψ
n
−k = Im(ϕn

±k), in the real eigenspace asso-

ciated with λ±k.

We also get that for each η > 0 and n > 0 exist a k0 = k0(η, n) ≥ 0

such that λn±k is a real number for k < k0 and λn±k is a complex

number for k0 ≤ k < n.

In order to compare the problems (1.5) and (1.6), it is necessary

to consider in Rn × Rn a compatible norm with the norm in Y 0.

Therefore, we define in Rn × Rn the following inner product:

⟨

[
U

V

]
,

[
W

Z

]
⟩0 = ⟨ΛnU,W ⟩Rn + ⟨V, Z⟩Rn (2.3)

where ⟨U,W ⟩Rn =
∑n

i=1
1
n
uiwi is the inner product L2 discretized.

We denote for Y 0
n the space Rn × Rn with the inner product given

above.

About the eigenvectors of Aηn in the space Y 0
n we have:

1) the family (ϕn
+k)

k0
k=0, (ψ

n
+k)

n
k=k0

is orthogonal in Y 0
n ;

2) the family (ϕn
−k)

k0
k=0, (ψ

n
−k)

n
k=k0

is orthogonal in Y 0
n ;

3) ⟨ϕn
−i, ϕ

n
+j⟩Y 0

n
= 0, ⟨ψn

−i, ψ
n
+j⟩Y 0

n
= 0, ⟨ϕn

−i, ψ
n
+j⟩Y 0

n
= 0, ⟨ψn

−i, ϕ
n
+j⟩Y 0

n
=

0 if i ̸= j.

We also need to consider another inner product in Rn × Rn com-

patible with the inner product in Y 1, that means,

⟨

[
U

V

]
,

[
W

Z

]
⟩1 = ⟨ΛnU,ΛnW ⟩Rn + ⟨ΛnV, Z⟩Rn (2.4)



UPPER SEMICONTINUITY OF ATTRACTORS FOR THE 47

We denote by Y 1
n the space Rn × Rn with the inner product given

above. We make the distinction in the inner products by the index

0 or 1.

With a simple evaluation we get that

⟨AnU,W ⟩Rn =
n−1∑
i=1

n(ui+1 − ui)(wi+1 − wi) +
δ

2

n∑
i=1

1

n
uiwi.

We use the notation Y 0
n or Y 1

n to indicate the inner product and the

norm considered in Rn×Rn. Furthermore, we use in Rn, three differ-

ents norms given by ∥U∥L2
d
= ⟨U,U⟩1/2Rn which we call L2-discretized,

∥U∥H1
d
= ⟨ΛnU,U⟩1/2Rn which we call H1 discretized and ∥U∥H2

d
=

⟨ΛnU,ΛnU⟩1/2Rn which we call H2 discretized. In order to avoid mis-

takes, we denote by ∥U ′∥L2
d
= ⟨∆nU,U⟩

1
2 the L2 norm discretized of

the discretized derivative.

We also decompose the spaces Rn × Rn and H1 × L2.

We writeH1×L2 = ⊕Ek where Ek is the generalized real eigenspace

2-dimensional associated with the eigenvalues λ±k. If λ±k are real

then Ek = [ϕ+k, ϕ−k]. If λ±k are complex, we consider the vectors

ψ+k = Reϕ+k and ψ−k = Imϕ+k the base of Ek. We observe that the

family Ek is orthogonal.

We denote by ∢−k
+k the angle between ψ+k and ψ−k. We observe

that cos(∢−k
+k) < 1 − ξ, for some ξ > 0 and for any k. In fact,

considering ∥ek∥L2 = 1 we get

cos(∢−k
+k)=

∥ek∥2H1 +Re(λ+k)Im(λ+k)√
∥ek∥4H1+ (Re2(λ+k)+ Im2(λ+k))∥ek∥2H1 + (Re(λ+k)Im(λ+k))2

,

remembering that Re(λ+k) = O(−η∥ek∥H1) and Im(λ+k) = O((1 −
η2)

1
2∥ek∥H1) then,

lim
k→∞

cos2(∢−k
+k) ≤

(1 + η(1− η2)
1
2 )2

2 + η(1− η2)
1
2

≤ 1− ξ
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for some ξ > 0. With this fact, we obtain the equivalence between

the sum norm, the max norm and inner product norm in each Ek,

with equivalence constants independent of k.

Therefore, for (u, v) ∈ H1 × L2 we write

(u, v) =
∞∑
k=1

(
(u, v)+k ϕ+k + (u, v)−k ϕ−k

)
=

∞∑
k=1

(u, v)k.

Using the orthogonal properties of Ek, we have ∥(u, v)∥Y 0 = (
∑∞

k=1 ∥(u, v)k∥2)
1
2

where (u, v)k is a projection of (u, v) in the space Ek.

Similarly, we write Rn × Rn = ⊕En
k where En

k is a two dimen-

sional space associated with the eigenvalues λn±k. If λn±k are real

eigenvalues then En
k = [ϕn

+k, ϕ
n
−k], where ϕ

n
±k is the normalized eigen-

vector associated with λn±k. If λ
n
±k is complex we consider the vectors

ψn
+k = Reϕn

+k and ψn
−k = Imϕn

+k a base de En
k .

Thus, (U, V ) ∈ Rn × Rn is

(U, V ) =
n∑

k=1

(
(U, V )+k ϕ

n
+k + (U, V )−k ϕ

n
−k

)
and ∥(U, V )∥Y 0

n
= (

∑n
k=1 ∥(U, V )k∥2)1/2, where (U, V )k is a projection

of (U, V ) in the En
k which are orthogonal.

In order to make the comparison proposed, we use a technique

of Numerical Analysis which is denominated Internal Approximation

of a Normed Space, see [9]. We define a family {Rn × Rn, P2n, i2n},
n ∈ N where P2n : Y 0 → Rn × Rn and i2n : Rn × Rn → Y 0 are

denominated projection and inclusion respectively.

Let (U, V ) = (u1, u2, · · · , un, v1, v2, · · · , vn) ∈ Rn × Rn, the inclu-

sion application, i2n, is defined by i2n(U, V ) = (u(x), v(x)) where

u(x) and v(x) are given by
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u(x) = u1χ[0, 1
2n

)+

n1∑
i=1

(ui+(ui+1−ui)n(x−xi))χ[ 2i−1
2n

, 2i+1
2n

)+unχ[ 2n−1
2n

,1]

(2.5)

and

v(x) =
n∑

i=1

viχIi (2.6)

where Ii is the interval [ i−1
n
, i
n
).

We also defined a projection of Y 0 in Rn × Rn in the following

way. For each ek we define Pn(ek) = U = (u1, u2, · · · , un) ∈ Rn

where ui = ek(xi), hence, Pn(ek) = enk . We define P ′
n : L2 → Rn

by P ′
n(
∑∞

k=1 akek) =
∑n

k=1 ake
n
k , P

′′
n : H1 → Rn by P ′′

n (
∑∞

k=1 akek) =∑∞
k=1 ake

n
k , and P2n : H1×L2 → Rn×Rn by P2n(u, v) = (P ′′

n (u), P
′
n(v)).

For the inclusion and projection applications we have

Theorem 2.1. The inclusion application, i2n : Rn × Rn → H1 × L2

is continuous. Furthermore, the continuity is uniform in n.

Proof: In fact, let u(x) given by (2.5), then

∥u(x)∥2L2 =
u21
2n

+
n−1∑
j=1

∫ xj+1

xj

u2(x)dx+
u2n
2n

≤ u21
2n

+
n−1∑
j=1

(
u2j+1

2n
+
u2j
2n

) +
u2n
2n

=
n∑

j=1

u2j
n

= ∥U∥2L2
d

and,

∥u(x)∥2H1 =
n−1∑
j=1

n(uj+1 − uj)
2 = ∥U∥2H1

d

and let v(x) given by (2.6), then ∥v(x)∥2L2 =
∑n

j=1
1
n
v2i = ∥V ∥2

L2
d
.

Thus,

∥i(U, V )∥Y 0 = (∥u(x)∥2H1 +
δ

2
∥u(x)∥2L2 + ∥v(x)∥2L2)

1
2 ≤ ∥(U, V )∥Y 0

n
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Theorem 2.2. The projection application, P2n, is continuous. Fur-

thermore, the continuity is uniform in n.

Proof: In fact, let U = Pn(cos(kπx)) = (cos(kπx1), . . . , cos(kπx1))

then we have

∥U∥2L2
d
=

n∑
1

1

n
u2i =

n∑
1

1

n
cos2(kπxi) ≤ 1 = 2∥ cos(kπx)∥2L2 (2.7)

and

∥U∥2H1
d

=
n−1∑
1

n(ui+1 − ui)
2 =

n−1∑
1

n(cos(kπxi+1)− cos(kπxi))
2

=
n−1∑
1

n(kπ)2 sen2(kπx̄i)
1

n2
≤ (kπ)2 ≤ 2∥kπ sen(kπx)∥2L2

Thus,

∥P2n(ϕ±k)∥Y 0
n

= ∥(Pn(ek), λ±kPn(ek))∥H1
d×L2

d

= (∥Pn(ek)∥2H1
d
+
δ

2
∥Pn(ek)∥2L2

d
+ |λ±k|∥Pn(ek)∥2L2

d
)
1
2

≤ (2∥ek∥H1 +
δ

2
2∥ek∥L2 + |λ±k|2∥ek∥2L2)

1
2

=
√
2∥ϕ±k∥Y 0

By using Theorems 2.1 and 2.2 we have that these applications are

stable (see [9]).

Another result is

Theorem 2.3. i) Let λ±k be the eigenvalues of Aη and λ
n
±k the eigen-

values of Aηn, then for each k fixed we have that λn±k → λ±k when

n→ ∞.

ii) Let ϕ±k be the eigenvectors of Aη and ϕn
±k the eigenvectors of Aηn,

then for each k fixed we have that i(ϕn
±k) → ϕ±k when n → ∞, and

Pn(ek) = enn.

For the inclusion application we use only i and the dimension of

the space is omitted.
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3 Comparison of Linear Semigroups

Let be eAηt and eAηnt the semigroups generated by Aη and Aηn

respectively. We have the following result comparing the semigroups

Theorem 3.1. For each ϵ > 0, there is a no(ϵ) such that ∀n ≥ n0

∥eAηt(u0, v0)−i(eAηntP2n(u0, v0))∥Y 0 ≤Mϵt−β∥(u0, v0)∥C1+α×Cα , t > 0

(3.1)

for all (u0, v0) ∈ C1+α × Cα and

∥eAηti(U0, V0)− i(eAηnt(U0, V0))∥Y 0 ≤Mϵt−β∥(U0, V0)∥Y 0
n
, t > 0

(3.2)

for all (U0, V0) ∈
⋃

n Aη n.

Proof: We make the proof for the first inequality and when it is

necessary we note the changes for the second one.

Let ϵ > 0 be a real parameter. We consider two cases

i) for 0 < t ≤ ϵ. In this case, when t is small, we use that e−γt is

bounded by Kϵνt−β for β > ν > 0. Hence,

∥eAηt(u0, v0)− i(eAηntP2n(u0, v0))∥Y 0 ≤ K ′e−γt∥(u0, v0)∥Y 0

≤ Mϵνt−β∥(u0, v0)∥Y 0 .

ii) for t > ϵ, we need estimate

∥eAηt(u0, v0)− i(eAηntP2n(u0, v0))∥Y 0 .

In this case, we decompose Y 0 in two subspaces. In the subspace

of finite dimension, we have the uniform convergence of eigenvalues

and inclusion of eigenvectors for the eigenvalues and eigenfunctions

of the continuous problem. In the subspace of infinite dimension, we

have that the real part of eigenvalues goes to −∞.
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By using that λn±k → λ±k when n → ∞ and Re(λ±k) → −∞,

when k → ∞ and considering β ∈ (0, 1) a fixed number then there

are K(ϵ) and N(ϵ) such that

eRe(λn
±k)t ≤ ϵt−β, eRe(λ±k)t ≤ ϵt−β for all n ≥ N(ϵ) and k ≥ K(ϵ).

(3.3)

UsingK = K(ϵ) given in (3.3), we consider the following subspaces

⊕En
k , 1 ≤ k ≤ K, ⊕En

k , K + 1 ≤ k ≤ n of Rn × Rn and ⊕Ek,

1 ≤ k ≤ K, ⊕Ek, K + 1 ≤ k <∞ of Y 0. Then,

∥eAηt(u0, v0)− i(eAηntP2n(u0, v0))∥Y 0

≤ ∥eAηt

K∑
k=1

(u0, v0)k − i(eAηnt

K∑
k=1

(P2n(u0, v0))k)∥Y 0

+ ∥eAηt

∞∑
k=K+1

(u0, v0)k∥Y 0 + ∥i(eAηnt

n∑
k=K+1

(P2n(u0, v0))k)∥Y 0

By the continuity, uniform in n, of the applications inclusion and

projection, we have:

∥i(eAηnt

n∑
k=K+1

(P2n(u0, v0))k)∥Y 0 ≤M∥eAηnt

n∑
k=K+1

(P2n(u0, v0))k∥Y 0
n

=M(
n∑

k=K+1

∥eAηnt(P2n(u0, v0))k∥2Y 0
n
)1/2

≤M(
n∑

k=K+1

(eReλn
±t∥(P2n(u0, v0))k∥Y 0

n
)2)1/2

≤Mϵt−β(
n∑

k=K+1

∥(P2n(u0, v0))k∥2Y 0
n
)1/2 ≤Mϵt−β∥P2n(u0, v0)∥Y 0

n

≤M ′ϵt−β∥(u0, v0)∥Y 0
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In the similar way, we have

∥eAηt

∞∑
k=K+1

(u0, v0)k∥Y 0 ≤Mϵt−β∥(u0, v0)k∥Y 0

We consider another operator Bn, which possess the same eigen-

values of Aηn but, associated with the eigenvectors of Aη. Thus, we

have

∥eAηt

K∑
k=1

(u0, v0)k − i(eAηnt

K∑
k=1

(P2n(u0, v0))k)∥Y 0

≤ ∥eAηt

K∑
k=1

(u0, v0)k − eBnt

K∑
k=1

(u0, v0)k∥Y 0

+ ∥eBnt

K∑
k=1

(u0, v0)k − i(eAηnt

K∑
k=1

(P2n(u0, v0))k)∥Y 0

If each λn±k, for 1 ≤ k ≤ K, is real then

∥
K∑
k=1

eAηt(u0, v0)k −
K∑
k=1

eBnt(u0, v0)k∥Y 0

≤ (
K∑
k=1

∥(eλ+kt − eλ
n
+kt)(u0, v0)+k + (eλ−kt − eλ

n
−kt)(u0, v0)−k∥2Y 0)1/2

≤ 2M max
1≤k≤K

{|eλ+kt − eλ
n
+kt|, |eλ−kt − eλ

n
−kt|}.(

K∑
k=1

∥(u0, v0)k∥2)1/2

≤ 2Mt max
1≤k≤K

{|eλ̃n
+kt||λ+k − λn+k|, |eλ̄

n
−kt||λ−k − λn−k|}∥(u0, v0)∥Y 0

≤ ϵt−β∥(u0, v0)∥Y 0

for n ≥ n1 ≥ n0, where λ̄
n
−k is between λ−k and λn−k; and λ̃n+k is

between λ+k and λn+k.
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In the case λ±k complex, we denote by (u0, v0)k the component of

(u0, v0) in Ek and (u0, v0)k = 2a(cosδ,−senδ) in the base ψ+k, ψ−k.

In this case, we have

eAηt(u0, v0)k = 2aeαkt(cos(βkt+ δ)ψ+k − sen(βkt+ δ)ψ−k),

eBnt(u0, v0)k = 2aeα
n
k t(cos(βn

k t+ δ)ψ+k − sen(βn
k t+ δ)ψ−k),

where λ±k = αk ± βk and λn±k = αn
k ± βn

k , then

∥eAηt(u0, v0)k − eBnt(u0, v0)k∥Y 0

≤ ∥2aeαkt[(cos(βkt+ δ)− cos(βnk t+ δ))ψ+k− (sen(βkt+ δ)− sen(βnk t+ δ))ψ−k]∥

+∥2a[cos(βnk t+ δ)ψ+k − sen(βnk t+ δ)ψ−k]∥|eα+kt − eα
n
+kt|

≤ eα+ktt|βk − βnk |∥ − 2a sen(β̄nk + δ)ψ+k − 2a cos(β̄nk t+ δ)ψ−k∥

+eᾱ+ktt|αk − αn
k |∥2a cos(βnk t+ δ)ψ+k − 2a sen(βnk t+ δ)ψ−k∥

≤ L(eα+ktt|βk − βnk |+ eᾱ+ktt|αk − αn
k |)∥(u0, v0)k∥

If (P2n(u0, v0))k = an+kψ
n
+k +a

n
−kψ

n
−k and (u0, v0)k = a+kψ+k +a−kψ−k

then

∥eBnt
K∑
k=1

(u0, v0)k − i(eAηnt
K∑
k=1

(P2n(u0, v0))k)∥Y 0

≤ ∥
K∑
k=1

eBnt(u0, v0)k −
K∑
k=1

eBnt(an+kψ+k + an−kψ−k)∥Y 0

+∥
K∑
k=1

eBnt(an+kψ+k + an−kψ−k)−
K∑
k=1

i(eAηnt(P2n(u0, v0))k)∥Y 0

≤ eα
n
1 t

K∑
k=1

(|a+k − an+k|∥ψ+k∥+ |a−k − an−k|∥ψ−k∥)

+∥
K∑
k=1

eBnt(an+kψ+k + an−kψ−k)−
K∑
k=1

i(eAηntan+kψ
n
+k + an−kψ

n
−k)∥Y 0

Hence, we need to estimate |a+k − an+k| and |a−k − an−k|. In order to

calculate this, we write an+k =
bn+k

cn+k
and a+k =

b+k

c+k
where

bn+k = ⟨P2n(u0, v0), ψ
n
+k⟩∥ψn

−k∥2 − ⟨P2n(u0, v0), ψ
n
−k⟩⟨ψn

−k, ψ
n
+k⟩,
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cn+k = ∥ψn
+k∥2∥ψn

−k∥2 − ⟨ψn
+k, ψ

n
−k⟩2

and

b+k = ⟨(u0, v0), ψ+k⟩∥ψ−k∥2 − ⟨(u0, v0), ψ−k⟩⟨ψ−k, ψ+k⟩,

c+k = ∥ψ+k∥2∥ψ−k∥2 − ⟨ψ+k, ψ−k⟩2

and

|a+k − an+k| ≤
|cn+k||b+k − bn+k|+ |c+k − cn+k||bn+k|

|c+k||cn+k|
.

Thus, it is sufficient estimate |b+k−bn+k| and |c+k−cn+k|. We consider two

cases:

I)(u0, v0) = i(U0, V0) and P2n(u0, v0) = (U0, V0) for (U0, V0) ∈ Aη n;

II) (u0, v0) in C
1+α × Cα.

Since that

i) ∥ψ+k∥Y 0 = ∥ψn
+k∥Y 0

n
+O( 1n),

ii) ⟨ψ+k, ψ−k⟩Y 0 = ⟨ψn
+k, ψ

n
−k⟩0 +O( 1n)

iii)⟨i(Pn(u0)), cos(kπx)⟩H1 =
∑n−1

i=1

∫ xi+1

xi
n(ui+1 − ui)kπ sen(kπx)dx,

iv)⟨Pn(u0), Pn(cos(kπx)⟩H1
d
=

∑n−1
i=1

∫ xi+1

xi
n(ui+1 − ui)kπ sen(kπx̄i)dx.

then

|⟨i(Pn(u0)), cos(kπx)⟩H1−⟨Pn(u0), Pn(cos(kπx)⟩H1
d
| ≤ k2π2

n−1∑
i=1

1

n
(ui+1−ui).

If (u0, v0) = i(U0, V0) for some (U0, V0) ∈ Aη n then, by [2], we have⋃
nAη n is bounded in H2

d ×H1
d and n|ui+1−ui| ≤ ∥U∥H1

d
+ ∥U∥H2

d
≤ 2K

for 1 ≤ i ≤ n− 1, thus

|⟨i(Pn(u0)), cos(kπx)⟩H1−⟨Pn(u0), Pn(cos(kπx)⟩H1
d
| ≤ k2π2

n
(∥U0∥H1

d
+∥U0∥H2

d
).

We also have

v)⟨i(Pn(v0)), cos(kπx)⟩L2 =
∑n

i=1

∫ i
n
i−1
n

vi cos(kπx)dx,

iv)⟨Pn(v0), Pn(cos(kπx)⟩L2
d
=

∑n
i=1

∫ i
n
i−1
n

vi cos(kπxi)dx.

Hence,

|⟨i(Pn(v0)), cos(kπx)⟩L2 − ⟨Pn(v0), Pn(cos(kπx)⟩L2
d
| ≤ kπ

n∑
i=1

1

n2
vi.
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We are in the case of (u0, v0) = i(U0, V0) for some (U0, V0) ∈ Aη n then,

using that
⋃

nAη n is bounded in H2
d×H1

d and |vi| ≤ ∥V ∥L2
d
+∥V ∥H1

d
≤ 2K

for 1 ≤ i ≤ n then,

|⟨i(Pn(v0)), cos(kπx)⟩L2−⟨Pn(v0), Pn(cos(kπx)⟩L2
d
| ≤ k2π2

n
(∥V0∥L2

d
+∥V0∥H1

d
).

Therefore,

|⟨i(P2n(u0, v0)), ψ±k⟩Y 0 − ⟨P2n(u0, v0), ψ
n
±k⟩Y 0

n
| ≤ K̃

n
∥(U0, V0)∥Y 1

n
.

If (u0, v0) ̸= i(U0, V0) and (u0, v0) ∈ C1+α × Cα then we have |ui+1 −
ui| ≤ n−1∥u0∥C1+α , |vi| ≤ ∥v∥Cα . Thus

|⟨u0, cos(kπx)⟩H1 − ⟨Pn(u0), Pn(cos(kπx)⟩H1
d
|

≤ |⟨u0, cos(kπx)⟩H1 − ⟨i(Pn(u0)), cos(kπx)⟩H1
d
|

+|⟨i(Pn(u0)), cos(kπx)⟩H1 − ⟨Pn(u0), Pn(cos(kπx)⟩H1
d
|.

However,

∥(u0, v0)− i(P2n(u0, v0))∥Y 0 ≤ 1

nα
∥(u0, v0)∥C1+α×Cα .

Hence,

|⟨(u0, v0), ψ±k⟩Y 0 − ⟨P2n(u0, v0), ψ
n
±k⟩Y 0

n
| ≤ K̃

nα
∥(u0, v0)∥C1+α×Cα .

Therefore, for case I)

|b+k − bn+k| ≤Mn−1∥(U0, V0)∥Y 1
n
,

for case II),

|b+k − bn+k| ≤Mn−α∥(u0, v0)∥C1+α×Cα

and in analogous form, for k, 1 ≤ k ≤ K we get

|c+k − cn+k| ≤Mn−1.

Analogously, we obtain |a−k − an−k|.
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We came back to estimate eα
n
1 t
∑K

k=1(|a+k−an+k|∥ψ+k∥+|a−k−an−k|∥ψ−k∥).
In the case I)

eα
n
1 t

K∑
k=1

(|a+k − an+k|∥ψ+k∥+ |a−k − an−k|∥ψ−k∥)

≤ eα
n
1 tM̃n−1∥(U0, V0)∥Y 1

n

K∑
k=1

(∥ψ+k∥+ ∥ψ−k∥)

≤ ϵt−β∥(U0, V0)∥Y 1
n

and in the case II)

eα
n
1 t

K∑
k=1

(|a+k − an+k|∥ψ+k∥+ |a−k − an−k|∥ψ−k∥)

≤ eα
n
1 tM̃n−α∥(u0, v0)∥C1+α×Cα

K∑
k=1

(∥ψ+k∥+ ∥ψ−k∥)

≤ ϵt−β∥(u0, v0)∥C1+α×Cα

Now we go to estimate

∥
K∑
k=1

eBnt(an+kψ+k + an−kψ−k)−
K∑
k=1

i(eAηntan+kψ
n
+k + an−kψ

n
−k)∥Y 0

In order to do this, we consider a complex inclusion, that means the

inclusion of real part and the inclusion of imaginary part. In this case, we

are considering complex solutions.

Since that an+kψ+k+a
n
−kψ−k = dn+kϕ+k+d

n
−kϕ−k and a

n
+kψ

n
+k+a

n
−kψ

n
−k =

dn+kϕ
n
+k+d

n
−kϕ

n
−k where d+k = 1/2(an+k−ian−k) and d−k = 1/2(an+k+ia

n
−k)

then

eBnt(an+kψ+k + an−kψ−k) = eλ
n
+ktdn+kϕ+k + eλ

n
−ktdn−kϕ−k

and

i(eAηnt(an+kψ
n
+k + an−kψ

n
−k)) = i(eλ

n
+ktdn+kϕ

n
+k + eλ

n
−ktdn−kϕ

n
−k)

= dn+ki(e
λn
+ktϕn+k) + dn−ki(e

λn
−ktϕn−k)
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Therefore

∥eBnt(an+kψ+k + an−kψ−k)− i(eAηnt(an+kψ
n
+k + an−kψ

n
−k))∥

≤ |dn+k|∥e
λn
+ktϕ+k − i(eλ

n
+ktϕn+k)∥+ |dn−k|∥e

λn
−ktϕ−k − i(eλ

n
−ktϕn−k)∥

= |dn+k|∥e
λn
+ktϕ+k − eλ

n
+kti(ϕn+k)∥+ |dn−k|∥e

λn
−ktϕ−k − eλ

n
−kti(ϕn−k)∥

≤ |dn+k|e
αn
+kt∥ϕ+k − i(ϕn+k)∥+ |dn−k|e

αn
−kt∥ϕ−k − i(ϕn−k)∥

≤ |dn+k|e
αn
+ktK/n∥ϕ+k∥+ |dn−k|e

αn
−ktK/n∥ϕ−k∥

≤ eα
n
+ktK̃/n∥(u0, v0)k∥ ≤ ϵt−β∥(u0, v0)k∥

Hence,

∥
K∑
k=1

eBnt(an+kψ+k+a
n
−kψ−k)−

K∑
k=1

i(eAηntan+kψ
n
+k+a

n
−kψ

n
−k)∥Y 0 ≤ ϵt−β∥(u0, v0)∥Y 0

Finally, in the case I),

∥eBnt
K∑
k=1

(u0, v0)k − i(eAηnt
K∑
k=1

(P2n(u0, v0))k)∥Y 0 ≤ ϵt−β∥(u0, v0)∥Y 0 ,

and in the case II)

∥eBnt
K∑
k=1

(u0, v0)k−i(eAηnt
K∑
k=1

(P2n(u0, v0))k)∥Y 0 ≤ ϵt−β∥(u0, v0)∥C1+α×Cα .

4 Comparison of nonlinear semigroups

About the nonlinear semigroups we have

Theorem 4.1. Let Tη(t) and Tηn(t) be the nonlinear semigroups generated

by (1.5) and (1.6), respectively, then

∥Tη(t, i(U0, V0))− i(Tηn(t, (U0, V0)))∥Y 0 ≤MϵK0t
−β, (4.1)

for t ∈ (0, τ), (U0, V0) ∈ Aη n and for n ≤ n(ϵ)
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Proof: By the variation of constants formula and for (U0, V0) ∈ Aη n we

have

Tηn(t, (U0, V0)) = eAηnt(U0, V0) +

∫ t

0
eAηn(t−s)H(Tηn(s, (U0, V0)))ds (4.2)

Tη(t, i(U0, V0)) = eAηti(U0, V0) +

∫ t

0
eAη(t−s)h(Tη(s, i(U0, V0)))ds (4.3)

Then, for t ∈ (0, τ)

∥Tη(t, i(U0, V0))− i(Tηn(t, (U0, V0)))∥Y 0

≤ ∥eAηti(U0, V0)− i(eAηnt(U0, V0))∥Y 0

+∥
∫ t

0
eAη(t−s)h(Tη(s, i(U0, V0)))− i(eAηn(t−s)P2nh(Tη(s, i(U0, V0))))ds∥Y 0

+∥
∫ t

0
i(eAηn(t−s)P2nh(Tη(s, i(U0, V0))))− i(eAηn(t−s)H(Tηn(s, (U0, V0))))ds∥Y 0

≤ ϵt−β∥(U0, V0)∥Y 0
n

+

∫ t

0
∥eAη(t−s)h(Tη(s, i(U0, V0)))− i(eAηn(t−s)P2nh(Tη(s, i(U0, V0))))∥Y 0ds

+

∫ t

0
∥i(eAηn(t−s)P2nh(Tη(s, i(U0, V0))))− i(eAηn(t−s)H(Tηn(s, (U0, V0))))∥Y 0ds

Since that i(U0, V0) is bounded in H1 × L2 we have (Tη(s, i(U0, V0)))1

is bounded in Cα, thus ∥h(Tη(s, i(U0, V0)))∥C1+α×Cα is bounded for all

(U0, V0) ∈
⋃

nAη n. We also haveH(Tηn(s, (U0, V0))) = P2n(h(i(Tηn(s, (U0, V0)))))

then

∥Tη(t, i(U0, V0))− i(Tηn(t, (U0, V0)))∥Y 0

≤ ϵt−β∥(U0, V0)∥Y 0
n
+ ϵ

∫ t

0
(t− s)−β∥h(Tη(s, i(U0, V0)))∥C1+α×Cαds

+

∫ t

0
∥eAηn(t−s)∥∥P2n(h(Tη(s, i(U0, V0))))− P2n(h(i(Tηn(s, (U0, V0)))))∥Y 0

n
ds

≤ ϵt−βK0 + ϵτ
t−βK0

1− β
+ L

∫ t

0
∥(Tη(s, i(U0, V0)))− i(Tηn(s, (U0, V0)))∥Y 0ds
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Hence, by Gronwall Inequality, we have that exists a constant M(β, τ, L)

such that

∥Tη(t, i(U0, V0))− i(Tηn(t, (U0, V0)))∥H1×L2 ≤MϵK0t
−β, (4.4)

for t ∈ (0, τ), (U0, V0) ∈ Aη n and for n ≤ n(ϵ)

5 Upper Semicontinuity of global attrac-

tors Aη and i(Aη n) in H1 × L2

Now we can prove the main result

Theorem 5.1. The family of global attractors Aη n is upper semicontin-

uous at n = ∞, for any η > 0.

Proof: Since that
⋃

nAη n is bounded in Rn×Rn and also ∥i(U, V )∥H1×L2 ≤
∥(U, V )∥Rn×Rn then ∥i(

⋃
nAη n)∥H1×L2 ≤ ∥

⋃
nAn∥Rn×Rn ≤ K.

The global attractor Aη attracts bounded of H1 × L2 thus, ∀δ > 0,

exists τ = τ(δ) such that

δY0(Tη(τ, i(ϕn)),Aη) ≤ δ/2

for all ϕn ∈ Aη n and for all n.

The attractors Aη n are invariant, thus if ψn ∈ Aη n then exists ϕn ∈ Aη n

such that Tηn(τ, ϕn) = ψn.

Hence, we choose n0(δ) = n(ϵ(δ)) > 0 such that

∥Tη(τ, i(ϕn))− i(Tηn(τ, ϕn))∥ ≤Mϵτ−β∥ϕn∥ ≤ δ/2

for n ≥ n0(δ).

Therefore,

δY0(i(ψn),Aη) ≤ δY0(i(ψn), Tη(τ, i(ϕn)) + δY0(Tη(τ, i(ϕn)),Aη) ≤ δ

for all ψn ∈ Aηn and for all n ≥ n0(δ).



UPPER SEMICONTINUITY OF ATTRACTORS FOR THE 61

References

[1] Arrieta, J. M.; Carvalho, A. N.; Rodŕıguez-Bernal, A., Upper Semi-
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