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MAXIMUM PRINCIPLES AT INFINITY ON
RIEMANNIAN MANIFOLDS: AN OVERVIEW

S. Pigola® M. Rigoli® A. G. Setti®

To Renato on his 60th birthday

Introduction

Maximum principles at infinity in the spirit of H. Omori and S.T. Yau are re-
lated to a number of properties of the underlying Riemannian manifold, ranging
from the realm of stochastic analysis to that of geometry and PDEs. We will
survey some of these interplays, with a special emphasis on results recently
obtained by the authors, and we shall move a first step in some quite new di-
rections. We will also present crucial applications of the maximum principles
both to analytic and to geometric problems. Along the way, we will take the op-
portunity to introduce some unanswered questions that we feel are interesting

for a deeper understanding of the subject.

1 Stochastic completeness and the weak maxi-
mum principle

We recall that stochastic completeness is the property for a stochastic process
to have infinite (intrinsic) life-time. In other words, the total probability of the

particle being found in the state space is constantly equal to 1. From now on,
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until otherwise specified, we shall concentrate only on the Brownian particle.
A classical analytic condition to express stochastic completeness is given in the

following

Definition 1 A Riemannian manifold (M, (,)) is called stochastically com-

plete if, for some (and hence any) (z,t) € M x (0,400)

/ p(z,y,t)dy =1, (1)
M

where p (x,y,t) is the (minimal) heat kernel of the Laplace-Beltrami operator
A.

We note that in this definition the metric (,) is not assumed to be geodesi-
cally complete. Indeed, following J. Dodziuk, [6], one can construct a mini-
mal heat kernel on an arbitrary Riemannian manifold as the supremum of the
Dirichlet heat kernels on an exhausting sequence of relatively compact domains
with smooth boundary. The analytic condition expressed in (1) is equivalent
to a number of other properties for instance reported in [9] or [22]. In what

follows we will be interested in the next recently proved characterization, [24].

Theorem 2 A Riemannian manifold (M, (,)) is stochastically complete if and
only if the following holds. For every u € C? (M) with u* = supy;u < +00,
and for every v < u*,

inf Au <0, (2)

where Q. = {o € M :u(z) > ~}.

We shall refer to the above property as to the validity of the weak maximum

principle (at infinity).
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It is immediate to realize that this “function theoretic” characterization of
stochastic completeness often enables us to analyze consequences of this latter
in a simple way. This is the case, for instance, of Khas’minskii’s test; for a
proof which uses the maximum principle approach see [22]. See also Theorem

20 below.

Theorem 3 Let (M, (,)) be a Riemannian manifold and assume that M sup-

ports a C? function v (x) such that
v (x) = +00, as x — 00 (3)

and

Ay <y (4)

for some A > 0, outside a compact set. Then (M, (,)) is stochastically complete.

Note that, since the manifold is not assumed to be geodesically complete,
condition (3) means that + (z) gets positive and arbitrarily large outside com-
pact sets.

It is also worth to observe that condition (4) is equivalent to
Ay < f(v) ()
outside a compact set, with
i) feC'(R), i) f(t)>0fort>>1,  iii) % € L' (+o0)

and

forsome N > 1, A >0, t >> 1 and where log(j) is the j-th iterated logarithm.
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If we restate the weak maximum principle in the form:

For every u € C? (M) with u* = sup,; u < +00, there exists a sequence

{zn} C M such that, for every n,

1) o s P — % ) Aoles) 2

; (6)

3=

its relations with the Omori-Yau maximum principle becomes apparent. In-

deed, this latter is obtained by adding in (6) the further condition
Vo )| < (7
n n'

In [22] it has been pointed out that (6) together with (7) are a consequence of

the following “function theoretic” setting:

Theorem 4 Let (M, (,)) be a Riemannian manifold and assume that there

exists a C? function v and a compact set K C M such that

v (z) — o0, as z — (3)
V4] < AV, on M\K, ®)

for some A > 0,
Ay < By/vG (V7), on M\K, (9)

for some B >0, where G is a smooth function on [0,400) satisfying

i) G(0) >0, ii) G' (t) > 0 on [0,+00)
o L v w3 o tG (V1)
i) 10 ¢ L' (4o0) ) lirfigop am

(10)

< 400.
Then (6) and (7) are satisfied.

Remark 5 (a) The choice of G (t) = 2 yields (4) in Khas'minskii test
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(b) Although in the statement of Theorem 4 (M, (,)) is not requiered to be
geodesically complete, this follows by (3) and (8). See Remark 1.12 in
[22].

(c) A significant choice of the function G is, for instance,

N
5 %2
ct=2]] (log(]) t) Jt>>1
j=1
and some N > 1.

This “function theoretic” approach to the Omori-Yau maximum principle
enables us to apply it in different situations directly related to the geometric
setting at hand. The next are two typical examples respectively of an intrinsic

and extrinsic nature.

Example 6 Let G be a smooth function, which is even at the origin, i.e.,
GCE1) (0) = 0 for k = 0,1,..., and satisfies the conditions listed in (10).

Assume that

Ricci (Vr,Vr) > =G (r (2)),

where r (z) = dist(p,( ) (%, 0) for some origin o € M. Assume that (M, (,)) is
geodesically complete and set y (z) = 7 (). Then (3), (8) and (9) are satisfied.
Note that the fact that G is even at the origin is used to construct an

appropriate model manifold in the sense of R. Greene and H.H. Wu, [12], and

to estimate Ar from above.

Example 7 Let f: (M,(,)) — (N, (,)) be an isometric immersion. Let p € N
and assume that f (M) Ncut (p) = 0. Let G be a function with the properties

listed in Example 6 and set p(y) = dist(n () (y,p). Suppose that the radial
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sectional curvature of N, say N K,qq, satisfies
VKraa 2 =G (p(2)).

Let H (z) be the mean curvature vector of the immersion f. If

|H ()] < BVG (po f (2))

for some constant B > 0 in the complement of a compact set of M, then
v (z) = p?o f (x) satisfies (8) and (9). If we further assume that the immersion

is proper, then (3) is satisfied too.

Note that an example of D. Stroock, [31] page 133, shows that there exists a
proper, isometric, minimal immersion into Euclidean space with a bad behavior
of the curvature. Indeed, in this example, one can prove that along a special

sequence {z,,} C M one has
MK'rad (xn) S _Cer(zn)v

for some constant C' > 0 and n sufficiently large. This shows that Examples 6
and 7 are somewhat independent.

The following observation shows that in Example 6 the requirements on the
lower bound of the radial Ricci curvature cannot be relaxed. To fix ideas, let
M, be a surface model in the sense of Greene-Wu. Define on (0, +00) x S* the
metric

(,)=dr?*+g(r)*do> (11)
and choose the function g (r) to be smooth on [0, +00), positive on (0, +00)
and such that

b= r on [0,1]
A= 7 (logr) T er’dos )™ o [3, +00),
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for some p > 0. The above metric extends to a geodesically complete metric

on My = R2. Note that its Gaussian curvature satisfies
K, (@)= —r (ac)2 (logr (x))Z(lJr“) , as 7 (z) — +o0.

Therefore the growth of the Gaussian curvature barely fails to meet the re-

quirements in Example 6. On the other hand, the function

alz) :/Owg(z) (/Osg(t)dt) e

is of class C? on M, and bounded above because p > 0. A simple computation
yields
Au=1on M,. (12)

Thus, the Omori-Yau maximum principle does not hold on M,.

Also note that M, is an example of a geodesically complete manifold which
is not stochastically complete because (12) prevents the validity of weak max-
imum principle too. Here, the fast decay of the curvature to —oo produces a
drift which sweeps a Brownian particle to infinity in a finite time. On the other
hand, stochastic completeness does not imply geodesic completeness. For in-
stance, R™\ {0} ,m > 3, with the Euclidean metric is geodesically incomplete,
and yet it is stochastically complete. Indeed, consider the smooth function on
R™\ {0}

2 2—m
v (@) = laf” + |27

A direct computation gives

Ay (z) = 2m.

Hence, we can apply the Khas'minskii test with (4) replaced by (5) and f (t) =

2m, to conclude that R™\ {0} is stochastically complete.
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Thus, stochastic completeness and geodesic completeness are two indepen-
dent concepts.

The above example also shows that the “function theoretic” requests of the
Khas’minskii test do not imply geodesic completeness. This is in contrast with
those of Theorem 4 which force the metric to be complete. We shall come back
to this point in Section 3.

It is clear that assumptions that guarantee the validity of the Omori-Yau
maximum principle also yield that of the weak maximum principle. We now
look for a more specific condition which implies the validity of the weak maxi-
mum principle, or equivalently, that of stochastic completeness.

Towards this aim, we consider an m-dimensional model manifold M, with

metric in polar coordinates given by (11). Then,
g
voldB, = wmg (r)m71 , volB, = wy, / g (t)m71 dt,
0

where w,,, denotes the volume of the unite sphere in R™. We define , similarly

to what we did above,

@) volB,
o ) = /O At (13)

Since, outside the origin, Ar = (m — 1) ¢’ (r) /g (), a computation gives

Ay (z) =1 on My, (14)
and if

vol By 1

volOB; # I Creo); 15)

then, by the Khas'minskii test, M, is stochastically complete. On the other
hand, if (15) is false, v (2) is bounded and (14) shows that the maximum

principle at infinity does not hold. We have thus proved the following
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Proposition 8 Let My be a model manifold. Then M, is stochastically com-
plete if and only if (15) holds.

It is an open conjecture that (15) is a sufficient condition for a general
complete Riemannian manifold (M, (,)) to be stochastically complete. In this
respect, it had been shown by A. Grigor’yan, [10], that the slightly stronger

assumption

4 1
16
log vol B, ¢ L (Fo0) e)

forces a complete manifold (M, (,)) to be stochastically complete. This can be

seen as a consequence of the following result proved in [22] page 52.

Theorem 9 Let (M,(,)) be a geodesically complete manifold satisfying

g 17
log vol B, gL (to0), i)

for some u € R. Then, for every u € C? (M) with u* = supy; u < +00, and
for every v < u*,

i(rzlf (1+7r)Au<0, (18)

where

Q,={zreM:u(z)>n~}.

In order to prove stochastic completeness, we can also use comparison with

a suitable model, and the aid of the next theorem. For a proof we refer to [9]

and [23].

Theorem 10 Let (M, (,)) be a geodesically complete manifold of dimension
m = dim M, r (z) = dist(p( )y (,0), 0 € M a fiwed origin. Let g € C™ ([0, +00)),
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g% (0) = 0 for every k =0,1,2,..., ¢ (0) =1, g(t) >0 on (0,+00) and con-

sider the corresponding model M, of the same dimension m. Assume that

g (r(2))
Ar(z) < (m—1) STl (19)

holds on M\ ({o} U cut (0)). If My is stochastically complete, then (M, (,)) is

stochastically complete.

As a consequence we have the following result which detects the “maximum
amount” of negative curvature that one can allow without destroying stochastic

completeness.

Theorem 11 Let (M, (,)) be a geodesically complete manifold with radial Ricci

curvature satisfying
Ricci (Vr,Vr) > —(m —1)G (r(x)) on M (20)

for some positive, non-decreasing function G with

1
G (1)
Then, (M, {,)) is stochastically complete.

¢ L' (+00). (21)

Proof: Without loss of generality, we can assume that G is smooth and odd
at the origin, i.e., G(2¥+1) (0)=0,k=0,1,2,....We let g be the solution of the

Cauchy problem

9(0)=0,4'(0) =1

Thus, g is smooth, positive outside zero and even at the origin, since G is odd.

{£0-00e0)=0 on 4o ()

We construct the model M. Letting r («) = dits(y,( yy (2,0) by the Laplacian

comparison theorem

f;:i) on M\ ({0} U cut (o)) .
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To obtain the desired conclusion, it is enough to show that the model M, is

stochastically complete. Towards this end, we define

h(r) {eD J§ VG )ds _ 1}

1
- D\/G(0)
and we observe that, since G’ > 0, we can choose D > 0 sufficiently large that
h is a sub-solution of (22). By the Sturm comparison theorem we have

W (r)
h(r)

My Ay = (m — g (r) -
Ar=(m—1) 275 < (m 1)

on My, and since

we conclude that

for » > 1 and for some constant C' > 0. Now apply the Khas’minskii test on
M, with the ~ defined as in (13) with voly,0B; = emg(t)™ 1 and volyy, By =
Cm fot g(s)™ 1ds. Note that since G(t) > 0, the function g(¢) diverges to infinity
as t — +00, and one shows that v(f) — 400 using (21) and de L’Hospital’s

rule.

O

We note that, in [23], we proved that for a stochastically complete model M,

we can find v satisfying (3) and (4) of Theorem 2, i.e., in a model manifold the
requirements of the Khas’minskii test are necessary and sufficient for stochastic

completeness.

Question 12 Is this fact true on a general geodesically complete manifold

(M, (,))?
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We have no answer, but we doubt that this is the case. As we shall see in
Theorem 21 below, this question is motivated by the fact that an analogous

characterization of parabolicity due to Kuramochi-Nakai, [17], [19], holds.

2 Some applications of the maximum principle
at infinity

The aim of this section is to show the usefulness of the maximum principle at
infinity both in the weak and in the Omori-Yau form, and to justify a possible

extension, with examples in different settings.

Estimates of the extrinsic diameter of a bounded immersion. Let
(N,(,)) be a Riemannian manifold and ¢ € N. A geodesic ball B (¢g) C N
is said to be regular if the following two conditions are satisfied: (a) Br(¢) N
cut (¢) = 0 and (b) denoting by N K, the supremum of the sectional curvatures
of N at p, one has
ap N i
max{O,Bs;l([;) KP} < R

The following result generalizes and extends previous work of many authors.

We limit ourselves to quote papers by T. Hasanis and D. Koutroufiotis, [13],
L.P. Jorge and F. Xavier, [14], and L. Karp, [16].

Theorem 13 Let Br(q) be a regular geodesic ball of (N, (,)) such that, for
some k € R,

sup NKP <k.
Br(q)

Let f: (M,{,)) — Br(q) be a smooth map with tension field 7 (f) satisfying

|T(f)| ST(M
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for some 79 > 0. Assume that (M,(,)) is stochastically complete. Then,
denoting by e (f) = 3 |df|? the energy density of f, we have
k=% arctan QT(;l\/Einij[e(f)) if k>0

R>q 275 infyre(f) Ph=1 (23)
(—k)ié arcth (275 'v/=kinfy e (f)) ifk<o.

Proof: We consider the case k < 0, the other cases being similar. Let p (y) =
dist(n,()) (y,q). Since VK, < k on Bgr(q), the Hessian comparison theorem

yields

Hess (p) > v/—k coth (\/f_kp) {(;,) —dp®dp}. (24)

To simplify the writings we set k = —1 and let u = %COSh (po f). Computa-
tions give
- i 1
Au = ZH@SS o coshp | (df (e;),df (e:)) +d 5 coshp | (7 (f)),
i=1

where {e;} is a local orthonormal frame on M. From (24) we then deduce
A ufze(f) + tanh (o0 f) (V.7 ()} (25)
Since u > 1/2 and
—tanh (R) < tanh(po f) (Vp, 7 (f)),
using Schwarz inequality we have:

1
Au > il{l/[fe () - 3 tanh (R) 7. (26)
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Since (M, (,)) is stochastically complete we apply the weak maximum principle
to obtain

. 1
ljrvljfe(f) < étanh (R) 7o.

O

The above theorem can be used to give, in the negative, an answer to
the following question of E. Calabi: does there exist a geodesically complete
minimal hypersurface of R™*! with bounded image?

Indeed, let f : M™ — R™t! be a minimal isometric immersion. Then
7(f) =0 and e(f) = m/2. Thus, if (M, (,)) is stochastically complete, Theo-
rem 13 applies to infer that f (M) is unbounded.

We point out that, in case of surfaces m = 2, in a recent paper, [20],
N. Nadirashvili has exhibited an example solving in the affirmative the above
standing problem; see also [5]. However, stochastic completeness is a really
mild geometric assumption on (M, (,)) which does not even require geodesic
completeness and, in our opinion, the search of “the best geometric conditions”
on a minimal immersion f : M™ — R™*! in order that f (M) be unbounded
remains a challenging task. In this respect we quote the striking paper [4] by
T. Colding a W. Minicozzi where (a more “ambitious” version of) the Calabi
conjecture is proved to be true for embedded minimal surfaces of finite topology.

In the same vein we quote the next consequence of Theorem 13 (compare

with [8]).

Theorem 14 Let f : (M,(,)) — R™ be an m-dimensional submanifold with

parallel mean curvature and suppose that (M,(,)) is stochastically complete.
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Let R =7n/2 ifn—m=1o0or R=7/2V2 ifn—m > 1. Finally, let
vr M — Gy, (R") be the Gauss map of f and assume that there exists a

decomposable n-vector q such that

{(v,a) 2 {Cos (%) }nim on M.

Then f is minimal.

Comparison and Liouville-type theorems for solutions of differential
inequalities. We now discuss an extension of the weak maximum principle
and we give an application to the uniqueness problem for the Yamabe equation
and to some Liouville problems for general differential inequalities.

Towards this aim, we consider the following example. On R™ with its

Euclidean metric consider the function u (z) = |#|* where o > 0. Then,
Au=a(m—2+a)lz|* 2.

Thus
if « >2, Auw is unbounded
fa=2, Au=2m
ifa<?2, infgm Au=0.

This suggests that we should look for “a weak maximum principle” in the

following form:

Let A >0, 6, u € R. For each u € C% (M) non-constant and such that

4 = limsup 2 < 400, Qy={zeM:u=)>y}#£0 (27)

r(z)—+oo i (x)tf

then

igIzlf (14 7)* Au < Amax {4,0} . (28)
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Note that, for A = o = 0, this is precisely the conclusion of Theorem 9 and in
the further assumption p = 0 we obtain the original form of the weak maximum
principle given before.

In [22] (see also [28]) we proved

Theorem 15 Let (M, (,)) be a complete Riemannian manifold, and let p,o €

R satisfy
o >0, o+ <2 (29)

Assume that

.. .logvolB,
lim inf e
r—4oo pLTO—H

=d, < +oo. (30)

Then, for every u € C%2(M) such that

4 = limsup )

< +o0 (31)
r(z)—+o0 r(x)a

and v € R with

Q,={zxeM: ulx)>~}#0,

we have

1{1215[1 + r(2)]*Au(z) < d, max{a,0}C(0, p), (32)

with
0 if co=0
Clop)=<2—c—w? if2(l—0c)>p,0>0
o(2—0—p) if2(1—0)<p,0>0.
Observe that for o = 0 we obtain the conclusion of Theorem 9 under as-
sumption (30) which is slightly stronger that the corresponding (17). However

since dg appears in (32), when o > 0 there is no hope to relax (30) to a condition

of the type (17).



MAXIMUM PRINCIPLES AT INFINITY: AN OVERVIEW 97

A direct application of Theorem 15 yields Liouville-type properties for entire
solutions of certain differential inequalities on the complete manifold (M, (,)).

For instance, we point out the following
Corollary 16 Let b(z) € C° (M) satisfy

&4
z on M

" T

for some constants C > 1 and u € R. Let f € C°(R) be a non-decreasing

function and suppose that, for some o > 0 with o + p < 2, we have

. . .logvolB,
lim inf —
r—foo a0 R

< +oo0. (33)
Then, any entire solution u € C? (M) of the equation
Au=b(z)f () (34
such that
u(z)=o(r(z)?), asr(z) — o0 (35)
sliifies

f(u(z)) =0 on M.

Note that, as a consequence, the function u () in the above statement is
harmonic. Thus, in particular, if (M, (, )) satisfies the strong Liouville property,
namely every positive harmonic function on M is constant, and (33) holds with
o =1, then we conclude that any entire sublinear solution of (34) is constant,

generalizing a well known result of R™.

Proof: Clearly, it suffices to prove that, if u solves

Au>b(z) f(u), (36)
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then

f(u(z)) <0on M.

Indeed, we can always reduce to this situation for then, replacing u (z) and
f(t) with @ (2) = —u(2) and f(t) = —f (=t), we conclude that f(u(z)) =0
on M, as required.

Now, in the case where u* = sup,; u < 400, by Theorem 15, f (u*) < 0.
Since f is non-decreasing, and u(z) < u*, we deduce that, for each x € M,
f(u(x)) <0. Suppose then that u* = 400, so that for every fixed v > 0, we
have €, # 0. By Theorem 15 with & = 0, for every € > 0 there exists zg € £,
such that f (u (o)) < e. Since f is non-decreasing and u (zg) > v, we deduce
that f(z) < e for every . € M\Q, = {& € M : u(x) < ~}. Letting v / o0
gives M\Qy /" M and f (u(z)) < e on M. Now let € \, 0 to conclude that
f(u(x)) <0on M, as desired.

a

To show why a weak maximum principle of the general form of Theorem 15

is interesting we also consider the Yamabe type equation
Au+a(z) —b(z)u? =0, (37)

where p > 1, a(z),b(z) € C°(M). Extending on [27] we shall prove the

following result; see [29].

Theorem 17 Let (M, (,)) be a complete manifold, let a(x),b(z) € C° (M),
p>1,7>0,8+7(p—1) > —2 and suppose that b(z) > a(z) and

b -
i) lminf & >0, ii) limsup fi{gt)
r(z)—+oo 1 (x) r(z)—+00 b (.’E)

r (@)™ < oo (38)
Let u,v € C? (M) be non-negative solutions of

Au+ta(z)u—>b(x)u? >0>Av+a(z)v—>b(z)vP (39)
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on M, satisfying

o . v(2) I u ()
i) liminf ——= >0, i) limsup —=% < 4o0. 40
) r(a)—too T () ) T(w)_,_go)o r(z) (40]
If
It 1B,
liminf —2 22" < oo, (41)

r——4o00 r2+/6+"'(17—1)

then u(z) < wv(x) on M.

Proof: We suppose u(x) #Z 0 otherwise there is nothing to prove. Next, we
observe that, by (39) and the strong maximum principle, v (2) > 0 on M. This

fact, u (z) # 0 and (40) imply

0<§=supﬂ<+oo.
M

v ()

If € <1 then u(z) < v (z). We assume by contradiction £ > 1 and define
p=u—Ev.

Note that ¢ <0 on M. We claim that

=0. (42)

Indeed, let {z,} C M be a sequence along which u/v tends to £&. Then

¢ (@) _ v(zn) {u(xn) _5}_ (43)

r(zn)”  r(en)” \v(zn)

Now, we observe that v (z,,) /r (x,)" is bounded, because otherwise (40) ii)
would imply € = 0. From (43) it then follows ¢ () /7 (zn)" — 0 as n — +o00

proving (42). The next step is to use (39) to obtain

Ap> —a(@)p+b(e) (W — (E0)) +b(@)wPE (€ ~1).  (44)
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‘We have

= (fv)’ =he (45)

where
&v (x)

v (z)

is continuous and non-negative on M. Furthermore, since v(z)r(z)” " is

Bf)=d P02 )1H if u (z) =
xl= u(z)
@@ Jev 7 1At Hu(z) £

bounded above on the set {@ : ¢(x) > —1} then so is u(z)r(2)~", and, chang-

ing variables in the integral, it is not hard to show that
h(z) < Cr()™®™Y (46)

on {z : p(x) > —1}, for some constant C > 0. Note also that, since b (z) > 0

on M, we can rewrite (38) i) as
b(z) > B(1+r ()" on M, (47)

for some appropriate B > 0. Using b (z) > 0 and (45), from (44) we deduce

L a,(x) z T VP (2 p—d, .
stz (58 @) e @+ e -

and, therefore, from & > 1, (38) ii), (46), (40) i) and ¢ (x) <0,

(1+r()™
b(z)

for some appropriate C; D > 0. Next, we may choose € > 0 sufficiently small

Ap>C(1+7(2) " @(x)+DE (1 —1) on {z : o(z) > -1}

so that

O +r(@) " o) > 2 DE(E ~1) (45)

Q={zeM:p(x)>—=c}.
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Then, on ., Ap > 0 so that (47) implies

A+r ()"

A m@) P Az 5

Ap,
and therfore, since £ > 1,
i 1
: B—pT 5, p—1 _
1§1215f (1+7(2)) Ap > 2Df (¢ 1) > 0.
This fact together with (41) contradicts Theorem 15.

O
Applications of this result are given, e.g., in the non compact Yamabe prob-

lem; see [29)].

More differential inequalities: the need of the full Omori-Yau max-
imum principle. As in Corollary 16 above, let (M, (,)) be a complete man-
ifold such that

log vol B,

liminf
r—+4oo p2=0—H

< 400, (33)
for some o > 0, u € R with 0 + p < 2.Assume that b (x) € C° (M) satisfies

b(z) > 7 on M,

C
T+ r@)
where C' > 0 and r (2) = dist(a,( ) (,0) for some origin o € M. Then, the
equation

Au=b(z)(|Vu|+a),a >0, (49)

has no entire solutions satisfying (35), namely
[u(z)|=o(r(2)7), as r(z) — +oo. (35)
Indeed, in the above assumptions Theorem 15 implies

[Vu|+a <0
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on each superset
Q,={zeM:u(z)>~}#0.
Since a > 0 we immediately obtain a contradiction.

Maintaining the same assumptions on (M, (,)) and b(z) we now suppose

that a < 0. Setting v = —u,
v(z)=o(r(x)?),asr(xz) — +o0
and
Av="b(z)(—|Vv| —a).

In order to reach a contradiction as above, we need (32) to be satisfied on a set
of the form

Qo e={reM:v(z)>n~,|Vv|<e} #0,

for some v and 0 < € < —a. Thus, in this case, a control on |Vv| seems to
be necessary. This fact appears difficult when v* = sup,; v = +00. Therefore,
we assume v* < 400 and we make the further simplification b (x) = 1. In this

case, if we assume, for instance, that
Ricci > =G (r (z)) on M (50)
with
G (r) =72 for r >> 1, (51)
then, applying Theorem 4 we have

0> inf Av>—e—a>0,

e
obtaining the desired contradiction. Hence, we can conclude that on a complete

manifold (M, (,)) with Ricci tensor satisfying (50) and (51), the equation

Au=|Vu|* +a,a<0
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has no entire solutions bounded below. We observe that the presence of the
factor b(x) in (49) in case a < 0 is not a serious problem. Indeed, the above
conclusion can now be reached using Theorem A in [25]. The relevant request
remains u, = infy; u > —00, or equivalently, v* = sup,; (—u) < +oo. Never-

theless we can argue with the help of the following

Theorem 18 Let (M, {,))be a complete manifold with Ricci tensor satisfying
Ricci > — (m — 1) H?, (52)

for some H > 0, where r (z) = dist(a,(y) (@,0) for some origin o € M. Let
b(x) € C° (M) satisfy

b(x) >b(r(z)) >0 on M (53)

where l;(r) € C°([0,400)), Z)(r) > 0, and l;(r) = OrP for some constants

—1 < B <0 and sufficiently large r. Let g € C°([0,+00)) satisfy

liminf g (s) > 0. (54)

s—0t

Finally, let f be a non-decreasing function. Consider an entire solution u €

C? (M) of the differential inequality
Au>b(x) f (u) g (|Vul) (55)

satisfying
s = o(r(w)ﬁﬂ) asr(xz) - 400 if —1<B<0
o(logr(z)) asr(z) —>4o0 if —1=0.
Then, for each x € M,

f(u()) <0. (57)
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Proof: We reason by contradiction and we assume the existence of xg € M
such that f(u(zg)) > 0. As it will become clear from the argument below,
there is no loss of generality if we suppose xg = 0. To simplify the exposition
we assume that o is a pole of M. The general case can be handled using a
classical trick by E. Calabi, [3].

For ease of notation, we set u, = u(0) and we let A = f (u,) > 0. By the

Laplacian comparison theorem and (52),
Ar(z) < (m—1) —)) (58)
where h(r) = H~!sinh(Hr). We define

a(r)=ao+ /OT RYT(t) /0 h(s)™ b (s) dsdt (59)

where ap = a(0) > 0 and o (0) = 0. It is immediate to verify that o’ > 0 on

[0, +00) and « solves the equation
a"—&—(m—l)ﬁ(r)o/:i)(r), (60)
Since o/ > 0, (60) and (58) imply

o’ (r (2)) + o (r(2)) Ar (2) < b(r (),

and therefore, having defined

¢ (z) = a(r(z)) - ao, (61)
we have
Ap<b(z) onM (62)
p>0on M, ¢(o)=0.
It is easy to check that
supa’ < 400 (63)

Rxo
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and
PPl —1<B<0
a(r)ZC’{ logr if —1=4, &4
for some appropriate constant C' > 0 and r >> 1. It follows that
sup |[Vo| = § < 400 (65)
M
and (56) together with (64) imply that
u(x) =o(p(x)), as r(x) — f00. (66)

Now, because of (54), there exist §, B > 0 sufficiently small such that, if [¢| < ¢,

g(t) > B. (67)
We choose
0<e< i AB - (68)
€ 5 min ' 5g

and we define the function v () on M by setting
v(z) =u(x) —u, —ep(z).

Then v (0) = 0 and (66) implies that v (2) takes its non-negative maximum v*
at some point € M:

v (z) = max v = v* > 0.
Note that, at z,

w(Z) > up + e (T) > u, (69)

and

|Vu (3)| = e (r (7)) = € |V (8)| < €8 < g (70)

Since f is non-decreasing, we deduce from (69) that

f (u (i')) > f(uo) = A, (71)
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while (70), together with (67), gives
g9(IVo(2)]) = B. (72)
Now by (53), (55), (62), (71), (72) we obtain
0> Av(Z) = Au(Z) — eAp (Z)
2 b(@){f(u(@)g(Vu(@)]) -}
>b(z){AB —¢}
>0,
a contradiction.
O
Applying Theorem 18 to —u with f(—u) =1 and g(t) = —a — |V(—u)|, we
immediately conclude that in the assumptions on Ricci and b () listed in the
statement, equation (49) with @ < 0 has no solutions u on M satisfying (56).

As the reader has certainly noted, in the previous proof the linearity of was

crucial in dealing with Av, and therefore comparing u and .

Question 19 Can we obtain the same kind of result for a more general class
of non-necessarily linear differential operators? For instance, for the p-Laplace

operator A, (withp > 1)?
3 Parabolicity

A Riemannian manifold (M, (,)) is said to be parabolic if the only subharmonic
functions bounded above are the constants.

It is not hard to see, specifying the regularity of the solutions u of Au >
0, that we can deal equivalently with either weak VVlloc2 N C° or classical C?

solutions.
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Suppose now that (M, (,)) is parabolic. Let u € C? (M) be a non-constant

function with «* = sup,; u < +00, and choose 7 < u*. Let
Q,={reM:u(x)>n}

and suppose that
Au>0on Q,.

Pick 0 < e < u* —n and define

v(x):max{u(m),n—ﬁ—%}.

Then, obviously, v* = sup,;v = u* < 400 and v () is again subharmonic
(in the weak sense). Therefore, parabolicity implies that v = n+¢/2 on M,
contradicting the fact that v* = u* > 1+ /2. We have thus proved that if
(M, (,)) is parabolic then, for every non-constant u € C? (M) with u* < +o0,

and for every n < u* we have
inf Au < 0. (73)
QTI

Since the converse is obviously true we can conclude that (M, (,)) is parabolic
if and only if it satisfies the somewhat stronger version of the weak maximum
principle given above. This explains why we expect that parabolicity and
stochastic completeness should exhibit strong analogies. We give a few results
to illustrate this point. We begin with an analogous of the Khas'minskii test

of Theorem 2 providing a simple proof.

Theorem 20 Let (M,(,)) be a Riemannian manifold and assume that M

supports a C? function v such that

v (x) = +00, as & — 00 (74)
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and

Ay <0 on M\K (75)

for some compact set K C M. Then, (M, (,)) is parabolic.

Proof: We reason by contradiction and assume that there exists a non-constant

function u € C? (M) with u* = sup,; u < 400 and such that
Au >0, on Q,

for some n < u*. By the strong maximum principle u cannot attain its max-
imum in Q,,. Thus, Q—n cannot be compact and, by choosing 7 closer to u*, if

needed, we may assume that Q, N K = (. Pick zy € Q,, such that

w(eo) > nt 3 (= m) = (u* +)

and, by adding and multiplying v by appropriate constants suppose that

Yeo) <3 —m), (@) >0

on M. Finally, let A be the connected component containing z of the set
{x € M:u(z) >n+~vy(x)}. Sincey > 0 and v(x) — 400 as & — oo, A is
compact subset of €2, and

Au>0>A(y+mn) on A
u=n+- on 0A.

Thus, by comparison, u < 1+ on A, contradicting the definition of A.

O

Contrary to the case of stochastic completeness, the validity of the converse

of this result is known. For Riemann surfaces it has been established long ago
by K. Kuramochi, [17]. The proof of this result has been later simplified by M.
Nakai, [19], and works for arbitrary Riemannian manifolds. In fact Kuramochi-

Nakai result is even stronger than this.
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Theorem 21 If (M, {,)) is parabolic, then there exists v € C? (M) satisfying

(74) and harmonic outside a compact set.

We observe that (74) forces us to require the validity of (75) only outside
a compact set. For, otherwise, we would get a non-constant , bounded below,
superharmonic function, against the parabolicity of M. We note however that
when the manifold M has at least two ends, there exist functions + which
are (super-)harmonic on all of M provided condition (74) is replaced with the

assumption that ~ is proper, i.e.,
|y (z) | — +o0, as z — 0.
We also point out the following

Proposition 22 Let (M, (,)) and (N, (,)) be non compact Riemannian man-
ifolds and assume that there exist compact sets H C M and K C N, and an
isometry ¢ : M\ H — N\K which preserves divergent sequences in the ambient

spaces. Then (M, (,)) is parabolic if and only if so is (N, (,)).

In particular, parabolicity of (M, (,)) is not affected by modifying (, ) inside
a compact set of M.

Results similar to those presented for stochastic completeness can be consid-
ered for parabolicity. We refer to [22] and [23] for a more complete treatment.

We would like to focus our attention here on some alternative approaches
to parabolicity related to vector fields. First, let us recall the following version

of the Kelvin-Nevanlinna-Royden criterion, due to T. Lyons and D. Sullivan,

[18].

Theorem 23 The manifold (M, (,)) is parabolic if and only if the following
holds. Let X be a vector field on M such that
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i) |X] e L* (M),
i) divX € L}, (M) and (divX)_ = min (div X,0) € L' (M),

i) 0 < fMdivX < +o0.

Then

/ div X = 0.
M

We get rid of integrals in the above statements using a minor modification

of a proof of Theorem 23 due to V. Gol’dshtein and M. Troyanov, [11].

Theorem 24 The Riemannian manifold (M,(,)) is parabolic if and only if
for each vector field X with |X| € L? (M) and div X > 0, we have divX = 0,
on M.

We now go back to functions. Toward this aim, let (M, (,)) be an oriented,

geodesically complete, non-compact manifold. Set
WL2AR (M) = O A* (M)

where AF (M) is the fiber bundle of k-forms on M and where the closure is

intended with respect to the norm
ol = [ fol®+ [ .
M M
Note that the space thus defined coincides with the space
{w € L2AF(M) : dw € L2A*TH (M)},

where dw is the distributional exterior differential of w. Indeed, it is clear that

if w is in WH2A* (M), then it has a distributional exterior differential in L?: by
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definition there exists wy, in C°A¥(M) such that wj, — w and dwy, converges

in L2 to a (k + 1)-form a. It follows that for every o € C°A* (M)

/<w,aa> zlilgn/@uk,(sa) :nl?l/@uk,@ - /<a,50>

where § is the formal adjoint of d with respect to the usual L? inner product.
This shows that the distributional exterior differential of w is the L2 (k + 1)—
form o and therefore that W12A*¥(M) C {w € L? : dw € L?}. The converse is
slightly more involved, and requires an approximation procedure which we only
outline. First note that if w is an L? k-form with L? distributional differential
dw, then by a cut off argument it may be approximated in the W2 norm
with forms with compact support. Indeed, if fj is a C$° cut off function which
equals one in By vanishes off By,; and such that |dfy| < C, then clearly,
|| few —w||r2 — 0 and ||dfx Awl||p2 — 0, so that d(frw) = frdw + dfy Aw — dw
in L?. We may therefore suppose that w is compactly supported. Let e ** be
the heat semigroup generated by the de Rham Laplacian A acting on forms.

Since w and dw are in L2, then, as t — 0, e~

w converges to w in the norm
of WH2A¥(M). A cutoff procedure then shows that there exists a sequence in
C A¥(M) which tends to w in the given norm, as required to show that {w €
L?:dw e L?} C WL2AF(M). As a consequence of this, the space W2Ak (M)
is complete. Indeed, let w; be a Cauchy sequence in W12A*(M). Then w; and
dw; converge in L? to L? forms w and «, respectively, and by definition of weak
exterior differential it is easily seen that dw = a, i.e., w € WH2AF(M).

By the definition of W2A¥ (M), and the fact that d* o d*"' = 0 on
cr (Ak (M )), the k-th exterior differential d* extends to a bounded operator,

still denoted by d¥,

d® : WYZA* (M) — WH2ARL (M)
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and gives rise to the L2-de Rham cochain complex. Using again the fact that
d* o d*=1 = 0, one shows that the closure of I'm(d*~1) with respect to the
norm of WH2 coincides with the closure in the L? norm. The corresponding

unreduced and reduced L2-cohomologies are therefore defined by
- 12
L*H* (M) =kerd®/Imd*™';  L2H* (M) = kerd" /TmdF—1 " .

Furthermore, by the definition of W12AF (M) and the continuity of di L,

2 =
Tmde-1° = dORAFT (M) .

The L?-cohomology of M is said to be reduced at the order k if the k-th L2-

torsion space vanishes, i.e.,
L2T* (M) = Tn 1" /Tmd*~1 = 0.
This happens whenever the inequality
ldw|* = C Jlw]? (76)

holds for every w € C® A¥~1 (M) and for some constant Cj, > 0. In case k = 1,
(76) says precisely that the bottom of the spectrum of the Laplace-Beltrami

operator satisfies

ATA (M) > 0. (77)

We observe that when k& = 1, and vol (M) = +oo then (76) is in fact equivalent
to the fact that L2T! (M) = 0. Indeed, if the latter holds, then kerd® = {0}
and using the open mapping theorem one realizes that d° has bounded inverse,
and therefore (76) holds. This was first observed by P. Pansu, [21], in the more

general setting of LP'4-cohomology.
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Now, the Hodge-de Rham-Kodaira decomposition theorem gives the direct

sum

L2A% (M) = dCR AT (M) @)ICEATT ()" ) LAHE (M), (78)

where L?H¥ (M) is the vector space of smooth k-forms w which are closed
and co-closed, i.e., (d+d)w = 0. Note that since we may regard d as a
closed unbounded operator from L2A¥(M) into L2A¥+1(M) with domain {w €

L2A*(M) : dw € L2A¥*+1(M)}, its adjoint d is also a closed operator.

Proposition 25 Let (M,(,)) be as above. Then, for every vector field | X| €
L? (M) there exists a function u € VVllof (M) satisfying |Vu| € L* (M) and

div X = Au, weakly on M.
Proof: Given the vector field X consider the differential 1-form w = X® €

L2A' (M), where b denotes the musical isomorphism. According to (78), there

exist sequences {uy} C C° (M), {vr} C C®A? (M) and a form v € L*H* (M)

such that
YdweDa, i#)ounp (79)
and
w=a+B+1.

Fix an arbitrary compact domain Q@ CC M with smooth boundary. Since
{|du|} is bounded in L? (2) using the local Poincaré inequality we have that
{ur} is bounded in W12 (Q). By Rellich-Kondrakov compactness theorem, a

subsequence of {uy}, which we call again {uy}, satisfies

L*(9)
u — U
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for some u € L? (Q). In fact, due to (79) i), {ux} is a convergent sequence in
W12 (Q). Therefore u € W12 (Q) and du = a. Repeating the argument on a
smooth exhaustion of M, and using a diagonalization procedure, we obtain a
function u € VVZL’C2 (M) satistying du = a.

Next, using the closeness of d, we note that (79) ii) implies 63 = 0. Since,

clearly, 0y = 0 we deduce

divX = —dw = —0a = —ddu = Au.

Combining Proposition 25 with Theorem 24 gives the following

Theorem 26 Let (M, (,)) be a complete manifold. Then (M, (,)) is parabolic
if and only if, for every u € C? (M) with |Vu| € L* (M), then Au >0 implies
Au = 0.

As a matter of fact, a stronger conclusion holds ([30], [26]):

Corollary 27 A geodesically complete manifold (M, (,)) is parabolic if and
only if for everyu € C?(M) with |Vu| € L2(M) and Au > 0 we have u = const.

Proof: In view of the previous theorem, we only need to show that, if M is
parabolic and u satisfies the conditions in the statement, then w is constant. To
this end, let f = (14+u?2)/2. Then |Vf| = |u|(1+u?)"Y/2|Vu| < |Vu| € L?, and
Af = (1 +u?)~3/2|Vul? > 0, so by the Theorem f is positive and harmonic,
and it follows from the assumed parabolicity of M that f, and therefore w is

constant.
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We note that the statement of Theorem 23 looks like a strict relative of
that of L. Karp’s version of the divergence theorem which can be expressed in

the following form ([15]):

Theorem 28 Let (M, (,)) be a geodesically complete manifold and X a vector
field on M such that:

i) | X| € LY (M)

i) divX € LL (M) and (divX)_ € L' (M)

loc
i) 0 < [;,divX < +oo.

Then,

/ divX =0.
M

Thus, the only qualifying difference (on infinite volume manifolds) is the

integrability class of X.

Question 29 Is there some deep reason behind this analogy?

4 Vector fields and stochastic completeness

In the previous section, we alluded to strong analogies between stochastic com-
pleteness and parabolicity of a Riemannian manifold. In this perspective, re-
calling the important role played by L? vector fields in the parabolic setting,

it seems quite interesting to investigate the following

Question 30 Have L? vector fields something to do with stochastic complete-

ness?
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Towards a possible answer to the question, the following brief discussion
could be of some interest. Consider the maximum principle viewpoint. In
accordance to it, one has that a stochastically complete manifold does not
support any bounded above function satisfying Au > ¢ > 0. Recall also that,
according to Theorem 8, the lower bound ¢ can be substantially relaxed by
imposing suitable volume growth conditions. In fact, if

i ool ¢ L' (+00)
log vol B,
for some u € R, then a function u € C% (M) such that u* = supy; u < +00

satisfies

inf 14 r(z)")Au <0,
(L @))

for every fixed n < u*. We shall prove the following

Proposition 31 Let (M, {(,)) be a complete manifold satisfying

Rk Y 80
log vol B,. I (Hea)y (59)

for some € R. Suppose also that
AMAM)=x1>0. (81)

Then, for every vector field X € C»* (M), a > 0, such that |X| € L? (M), it
holds
ijr\l/ff (1+r(x))"divX <O0. (82)

Observe that conditions (80) and (81) are compatible in situations where
the volume growth of balls is at least exponential; see [2]. In fact, by Bishop
and Mc Kean comparison theorems, every simply connected, complete manifold
of negatively pinched curvature enjoys both (80) and (81).

We need the following
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Lemma 32 Let (M,{,)) be a complete manifold. Let u € C% (M) be a sub-

harmonic function satisfying w € LP (M), for some p > 1. Then, either u is

constant or u < 0.

Proof: Recall that, by a result of S.T. Yau, [32], a subharmonic function
0 < w € C? (M) satisfying w € LP (M) for some p > 1 must be constant. As a
matter of fact, Yau’s argument relies only on integration by parts and, therefore,

works even for functions with low regularity. Indeed, suppose w € VVllo’coo (M)

is a weak solution of Aw > 0, i.e.,

[ v <o,
M
for every 0 < p € Lip. (M). Having fixed £ > 0, choose

p=¢"(w+e)’™!

where ¢ € C2° (M). Then, direct computations that use Scwharz’s inequality

and the elementary inequality 2ab < 6~ 'a? + §b%, § > 0, yields
02/ Vuw,V (¢? w+e)P!

[ (T (¢ w+er™))

>=2 [ plwtef ™ IVullVel + (o= 1) [ & (w7 Vol

M M

1 s

>3 [ @t Vel +0-1-9) [ ooy (vul.
8 Jm M

If § > 0is so small that (p — 1 — §) > 0, letting € \, 0 we deduce the Caccioppoli

inequality

1
2P2 szgi/ Vol? wP.
/Mso Vul < s /. 94l

Now, choosing

3
i) ¢ =1 on Bg; ii) ¢ = 0 on M\ Bag; iii) |Vy| < - on M,
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we get,
3 J5.0#
wp—va2< Bar ,
Jo v < s

whence, letting R — 400,

/ wP™2 | Vuw|* = 0.
M

This latter easily implies that w is constant.

Now, consider u, () = max (u(2),0). Then u, > 0 is subharmonic and
uy € LP (M), p > 1. According to what we have just proved, w4 is constant. If
uy > 0 then u = w4 is constant, so if w is not constant uy =0 and u < 0. But
then u < 0 is a non-positive non constant subharmonic function, and by the

maximum principle v cannot attain a maximum, so u < 0 on M as claimed.

d

Proof: [Proof (of Proposition 31)] By contradiction, suppose there exists a C*

vector field X € L? (M) satisfying

divX > 7, on M,

(147 (2))
for some constant C' > 0. As explained in the previous section, assumption (81)

implies that the first de Rham group of L? cohomology is reduced, namely,
dC (M) = dWh2 (M).

Applying the Hodge-de Rham-Kodaira decomposition to the differential 1-form
w= X" we get

w=du+ B+~

where u € W2 (M), 8 € 6C°A2 (M), and + is smooth and both closed and

co-closed. Co-differentiation of both sides of the latter, recalling that 68 = 0,
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since 0 is closed, gives

C
— < di =3 = 2
0< 0tr@) <divX dw = Au (83)

Since X € C1« (M), by elliptic regularity, u € C? (M). We have thus obtained
the existence of a subharmonic function u € L? (M) N C? (M). By Lemma 32,

u is bounded above and, by the maximum principle, we have
0> inf (147 (2))" Au>C >0,

a contradiction.

O

5 Maximum principle for the Hessian operator

The maximum principles at infinity as stated in Section 1 involve the Laplace-
Beltrami operator. Formally, one can extend the definitions to other differ-
ential operators both of linear and of non-linear nature. For instance, in the
linear setting, one can replace the Laplacian with the divergence form opera-
tor La (u) = A(x) " div (A4 («) Vu), 0 < A(2) € C* (M), which is related to a
suitable stochastic process X, called a symmetric diffusion. Following Dodziuk
construction, we can obtain a minimal heat kernel p4 (z,y,t) for the operator
L,. Its total mass fM pa (z,y,t)dy turns out to be related to the intrinsic
explosion time of the associated diffusion process X;. Accordingly, the (weak)
maximum principle at infinity for the operator L4 holds if and only if the
underlying manifold is stochastically complete with respect to X;; see [22].

In this section we consider a different (linear) extension of the maximum
principle at infinity which employs quadratic forms instead of their traces. This

should take into account the asymptotic behavior of a large class of stochastic
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processes generalizing the Brownian motion and, apparently, having no kernel
at all.

We say that the weak maximum principle for the Hessian holds on (M, (,))
if, for every u € C? (M) satisfying u* = sup,; u < +00, and for every v < u*,

one has

X X
o <|X|’ |X|> =%

where

Q,={zeM:u(z)>~}.
Equivalently, there exists a sequence {z}} C M along which

1 1

1) u(zg) >u* — o i) Hess (u) (zx) < T (,)

T

in the sense of quadratic forms. By adding the further request
1
iii) |Vul (z) < T

we get the original formulation of the full maximum principle at infinity due
to H. Omori.
As the weak maximum principle for the Laplacian gives information on the

intrinsic explosion time of the Brownian paths, one may ask the following

Question 33 Is there any probabilistic counterpart of the weak maximum

principle for the Hessian?

We conjecture that the relevant processes are represented by the whole fam-
ily of I'-martingales of M, and that the validity of the maximum principle for
the Hessian is related to the explosion time of every process in this family.
Thus, we arrive at the notion of stochastic completeness with respect to mar-

tingales, or shortly, martingale completeness; see M. Emery book [7] for the
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relevant definitions. There are some indications that martingale completeness
is related to the Hessian maximum principle. The starting point for our con-
siderations is the following result by M. Emery, see [7] Proposition 5.37 on page
68.

Proposition 34 Suppose that there exists a positive function f € C? (M) sat-

isfying the following conditions
i) f 1is proper; ii) [Vf| <C; i5) Hess (f) < C(,) (84)
for some constant C' > 0. Then (M, (,)) is martingale complete.

Observe that conditions (84) i) and ii) force divergent paths to have infinite
length. Therefore (M, (,)) is geodesically complete. We shall come back to
this fact momentarily.

Some remarks on the above statement are in order. On the one hand, we
know from the general theory developed in [22] (see especially Theorem 1.9)
that function theoretic properties like those listed in (84) are tightly related
with the validity of the maximum principles at infinity and in fact imply the

validity of the full maximum principles for the Hessian. Indeed, we have

Theorem 35 Suppose that (M,(,)) satisfies the assumptions of Theorem 4

above with condition (9) replaced by

Hess (7) < BA/7G (V7) (,), on M\K.

Then, the Omori maximum principle at infinity for the Hessian is satisfied.

On the other hand, conditions (84) i), iii) resemble the Khas’minskii test for
the completeness with respect to the Brownian motion. The following result is

from [22].
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Proposition 36 If (M, (,)) supports a function f € C% (M) such that
f(z) = 400 as x — +oo and Hess(f) < Af (,) off a compact set (85)

in the sense of quadratic forms, for some A > 0, then the weak maximum

principle for the Hessian holds on (M, (,)).
Thus, we naturally come to the following question.

Question 37 In the assumptions of the modified Khas’minskii test of Propo-

sition 36, is (M, (,)) martingale complete?

So far, we have considered some interplays between stochastic properties
and function theoretic properties of the underlying manifold (M, (,)). It is
time to take into account some geometric properties of (M, (,)).

We have already remarked that geodesic completeness and stochastic com-
pleteness for Brownian motion are independent concepts. In sharp contrast,

Emery proved the following result; see Proposition 5.36 in [7].

Proposition 38 If (M, (,)) is martingale complete then (M,(,)) is geodesi-

cally complete.
Thus, we are led to asking the following

Question 39 Does the weak maximum principle for the Hessian imply geodesic

completeness?
In this respect, we note the following partial answer.

Proposition 40 Suppose that (M, (,)) satisfies the weak mazimum principle
at infinity for the Hessian. Then (M, (,)) is non-extensible, namely, it is not

isometric to a proper, open subset of some connected manifold (N, (,)).
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Proof: Suppose the contrary. Pick a point p € 9M, the topological boundary
of M in N, and define r (z) = disty («,p). Next, fix 0 < R < injy (p) and let
f€C>®(N\{p})NCO(N) be a radial non-increasing function such that

Pl { e (@) if r(z) < R/2

0 ifr(z) >R

Clearly, f € C* (M) is bounded from above with
sup f = f (p) = L.
M
A computation shows that
Hess (f) (Vr,Vr) > e > e /250,

on NBR/2 (p) — {p}. Since any sequence {z,,} C M along which f reaches its
supremum must be eventually contained in ¥ Bg/s (p) \ {p}, we conclude that

the weak maximum principle for the Hessian is not satisfied.

O
It is well known that geodesic completeness implies non-extensibility and

that the converse is false. It is perhaps interesting to observe the following

Proposition 41 Under the assumptions of the modified Khas’minskii test with

the Hessian condition (85), the manifold is geodesically complete.

Proof: Let f be as in Proposition 36, and suppose condition (85) is satisfied
outside the compact set K C M. Without loss of generality, we can assume
A =1 Lety:[0,]) = M be a maximal geodesic path parametrized by arc-
length. We have to show that [ = 4-00. To this end, note that v is a divergent
path, i.e., it eventually leaves every fixed compact set of M. Pick {5 > 0

such that v (¢t) ¢ K for every t > tg and consider the unit-speed, geodesic
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T()=~(t+ty):[0,l —tg) > M — K. Set ¢ = foI'. A computation shows

that ¢ (¢) > 0 is a solution of

" (t) < o (t), on [0,1 —to). (86)

Furthermore

¢(l —to) = +400.

Using the classical comparison argument by Sturm, (86) implies that the func-
tion

sinh (¢) ¢ (t) — cosh (¢) ¢ (¢)
is non-increasing. As a consequence

¢ (t)
¢ (t)

< coth (t)

which integrated implies that ¢ cannot explode in a finite time.
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