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MINIMAL SURFACES OF FINITE TOTAL
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We dedicate this work to Renato Tribuzy, on his 60°th birthday.

1 Introduction

We consider complete minimal surfaces ¥ in H x R, H the hyperbolic plane.
Let C(X) denote the total curvature of ¥, C(¥) = [, KdA, K the intrinsic
curvature of ¥. We shall prove that C(X) is an integer multiple of 27, when
it is finite. We give examples of such ¥ with total curvature —27m, m any
non-negative integer.

In R3, complete minimal surfaces of finite total curvature have total cur-
vature an integer multiple of —4m. This results from the Gauss map of the
surface, that extends meromorphically to the conformal compactification. In
H x R, we have no conformal Gauss map. We have the holomorphic quadratic
differential of the harmonic height function: projection on the R factor of HxR.

Now we describe a simply connected example. Let I' be an ideal polygon in
H with m + 2 vertices at infinity, 2m + 2 sides, A1, B1, Aa, Ba, ..., Apm+1, Bt
Let D be the convex hull of T'.

In [3], the authors find necessary and sufficient conditions on the ”lengths”
of the A; and B; which ensure the existence of a minimal graph v : D — R,
taking the values 400 on each A; and —oo on each Bj;.

They prove the graph of such a u is complete and of total curvature —2wm.
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The I' obtained from the m + 2 roots of unity satisfies the ”length” conditions.

Thus this gives examples of total curvature —27m for each integer m > 1.
For m = 0, take ¥ = v x R, ~ a complete geodesic of H. It would be in-

teresting to construct non-simply connected examples of finite total curvature.

For example an annulus of total curvature —4r.

2 Preliminaries

We consider X : ¥ — H x R a minimal surface conformally embedded in
H x R, H the hyperbolic plane. We denote by X = (F,h) the immersion where
F : ¥ — H is the vertical projection to ¥ = ¥ x (0), and h : ¥ — R the
horizontal projection. We consider local conformal parameters 2 = x + iy on
Y. The metric induced by the immersion is of the form ds? = A\?(z)|dz|2.

If H is isometrically embedded in L3 the Minkowski space, the mean cui-

vature vector is (see B.Lawson [8], page 8)
2H = (AX)TxExB) — (AF)TrE AR) =0

Then F is a harmonic map and h is a real harmonic function. In the fol-
lowing, we will use the unit disk model for H. We will note (D, o?(u)|du|?)
the disk with the hyperbolic metric o (u)| dul?. We will denote |v|2 = o2|v|?,
{(v1,v9)s = 02{v1,v2) where |v| and (vq,vs) stands for the standard norm and
inner product in R%2. The harmonic map equation in the complex coordinate

u = uy +iuy of D (see [12], page 8) is

where 2(logo o F), = 2F(1 — |F|>)~!. In the theory of harmonic maps there

are two global objects to consider. One is the holomorphic quadratic Hopf
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differential associated to F":

Q(F) = (o0 F)*F,F,(d2)? := ¢(2)(d2)? (2)
The function ¢ depends on z, whereas Q(F') does not. An other object is
the complex coefficient of dilatation (see Alhfors [1]) of a quasi-conformal map,
which does not depend on z, a conformal parameter on X:

_E
-2

a

Since we consider conformal immersions, we have

|Falz + (ha)? = [Fy[5 + (hy)?

(Fuy By, + hyhy =0

hence (h,)?(dz)? = —Q(F) (see [10]).
Then the zeroes of @) are double and we can define 1 as the holomorphic one

form 1 = 42i1/Q. The sign is chosen so that:

h:Re/n (3)

When X is a conformal immersion then the unit normal vector n in H x R

has third coordinate:

< a> |g[2_1
n.—) = MN5 =
B =™ T g+
where
F, 1
P

Then we define the function w on ¥ (which has poles where ¥ is horizontal)

by ns = tanhw. By identification we have

()
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Using the equations above (2),(4) we can express the differential d F' inde-

pendently of z by:

1
dF = F;dz + F.dz = T — 6

The metric ds? = | dw|? is given [10] in a local coordinate z by:

ds® = (|Felo + |Fls)* d2|? (7)

Thus combining equations (6) and (7), we derive the metric in terms of g

and 7 by

1
ds? = Z(lgl~" + Jgl)?Inf? = dcosh? w[Q) (®)

We remark that the zeroes of @ correspond to the poles of w so that the
immersion is well defined. Moreover the zeroes of () are points of X, where the
tangent plane is horizontal.

It is a well known fact (see [12] page 9) that harmonic mappings satisfy the

Boéchner formula:

| 2|
| F|

Aoln =2 = _oKy J(F) 9)

where J(F) =2 (|Fz|2 — |F2|2) is the Jacobian of F' with |FZ|2 = F,F,. Hence

taking into account (2), (4), (5) and (9):

Agw = 2sinh(2w)|Q| (10)
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where Ay denote the laplacian in the euclidean metric |dz|?>. From this we

deduce

Asw = ng3

where Ay, is the Laplacian in the metric ds?.
The Gauss curvature is given by:

Ky = K(X,;,X,)+ K tanh? Vel
— 5 = — tan. w - -

= R = 4cosh4w|Q|

(the sectional curvature of the tangent plane to X at a point 2 is —n2.) The

total curvature is defined by

o) = /E K5 dA

3 Minimal surfaces of finite total curvature

Theorem 3.1. Let X be a complete minimal immersion of X in H x R with
finite total curvature. Then

a) ¥ is conformally M — {p1.....,pn}, a Riemann surface punctured in a
finite number of points.

b) Q is holomorphic on M and extends meromorphically to each puncture.
If we parametrize each puncture p; by the exterior of a disk of radius Ry, and
if Q(2) = 22™i(d2)? at p; then m; > —1.

¢) The third coordinate of the unit normal vector ny — 0 uniformly at each
puncture.

d)The total curvature is a multiple of 27:

/(deA) =2 (2292k2n:mi> :



70 L. HAUSWIRTH H. ROSENBERG

Proof. The proof of this theorem uses arguments of harmonic diffeomorphisms
theory as can be found in the work of Han, Tam, Treibergs and Wan [4], [5],
[13], and Minsky [11].

The conformal type is an application of Huber’s theorem ([7]). X is confor-
mally a compact Riemann surface minus a finite number of points (the ends).

b) We consider M (rg) = M —U; D(p;, r); the surface minus a finite number
of disks removed around the punctures p;. Around each puncture we consider
a conformal parametrization of the punctured disk D*(p;, 7). We parametrize
these ends by the exterior of the disk of radius Ry in C. In this parameter
we express the metric as ds? = A\?|dz|? with \? = 4 cosh® w|¢| in a conformal
parameter z. Then —KA\? = Agln A where Ay = 492,

Let us define u = In cosh? w, a subharmonic function by Béchner’s formula:

2|Vwl|?
cosh? w

Agu = 8sinh2w|¢| -+ >0,

The function w is globally defined, since w is globally defined on X.

Step 1: We prove that the holomorphic quadratic differential () has a finite
number of zeroes on M.

Since the zeroes are isolated, @ has a finite number of zeroes on the compact
part M(r). Then we assume that there is a disk D*(p;,r) which contains an
infinite number of zeroes of @, {z;}. We parametrize conformally this disk on
the exterior of the disk of radius Ry. In this parameter Q(z) = ¢(2)(dz)? and

if Ay is the laplacian in the flat metric |dz|? at the puncture:

Agln|¢| = Z 276,
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Then with —K\2 — %AO In|g| = %Aou we have on the annulus C(R) =
{Ro < |2| < R}

fC(R)(—KdA) —mr = %fC(R) Aou >0

Then m has to be finite and fc(r) Nou < Cy

Step 2: An upper bound.

du T Qu T Qu
Aou :/ = —Rd&—/ ——=Rodb
C(R) 0 8C(R) on 0 BRZ OR ¢ N
d g T Ou
—RE/O 0)de — RO/ —d0 2C.

Now let I(r) := fOQW u(r, ) d0. Then

— (B & =L

dR R

I(R) - I(Ro) < CyIn .
Ry’

Then for R >> Ry large we have, with a > 0,b > 0:

I(r)<alnr+b.
Step 3: Since ¢ has a finite number of zeroes, we prove at each puncture
cosh® w|g| < Blz]%|4)-

To prove ¢ extends meromorphically to the punctures, we will use a theorem
of Osserman [9] (recall that the metric is complete). For R > Ry, ¢ is without

zeroes and for |z| = R large enough, u is subharmonic, hence
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@) <=/
u(z) € — u
TR? Jp(. Rr/2)

4
< /
712> JB(0,3121/2)- B(0,I21/2)

i 3|z|/2 4 3|z|/2
—/ I(r)rdr < —/ (alnr +b)rdr
I \

u

\7T1Z|2 z|/2 7T|Z|2 z|/2
<alnlz|+ 8
Then
2InA=u+In|¢| < aln|z|+ B+ In|¢|
and

A% = cosh? w|| < €°|2|*|4)|

Thus the function ¢ extends meromorphically to the puncture by Osserman

(9.

Step 4: We now prove that the function ¢(z) = 2*™ with, m > —1 at each
puncture.

If m < =2, then we can conformally parametrize the end on the punctured
disk by w = 1/2. Then Q(w) = ¥(w)(dw)? with ¢(1/w) = w(w), where

1(w) has a pole of order 2m + 4. If 2m + 4 < 0, the following integral is finite:

/ |¢|dz < o0
D(pi;r)

Now, by the finite total curvature hypothesis we will show the area of the

end is finite:
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2
/—KgdA:/ Apln A :/ 8sinh2w|¢\+/ Z‘Vﬁl
D D D p cosh”w

2
:/ 8cosh2w|¢|—/ 8|qz5|+/ 2|VL;|
D D p cosh”w

Hence

Area(D) = / cosh? w|¢| < 0.
D

But a complete end of ¥ has infinite area by the monotonicity formula (see
2)).

¢) Now we prove that ng — 0 uniformly at each puncture. We adapt
estimates on positive solutions of sinh-Gordon equations by Minsky [11], Wan
[13] and Han [5] to our context.

At each puncture we can choose Ry such that ¢(z) is without zeroes on
|2| = Ro/2. Since ¢(z) is without zeroes, the minimal surface is transverse to
horizontal sections H x {c} and we parametrize locally simply connected subdo-
mains of the end by w = % (w3 +ia}) = [ /@ dz so that | dw|? = |¢(2)||d2[? is
a flat metric. If we consider z € Cr,, then on the disk D(%,|#|/2), we have the
conformal coordinate w = f\/Wz)dz, with the flat metric | dw|? = |¢|| dz|2.
In this metric, under the hypothesis that m > —1, the disk D(z, |2|/2) contains
a ball of radius at least cIn |z|, where c is independent of z.

The function w satisfies the sinh-Gordon equation

Ajgjw = 2sinh 2w

where Ay is the laplacian in the flat metric | dw|?. For |z| > Ry, we can find

a disk of radius at least » = cln|z| around # in the |dw|? metric. When z is
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large, the radius r diverges to +o0.
Then for Ry large enough we can find a disk with radius 1 in the |dw|?
metric around any point z with |z| > Ro. On this disk Djy(2, 1), we consider

the hyperbolic metric given by (w is w — 2z in the following step):

4 2
2|dw|

do? = p?|dw|? := ——
(1 = Jwl?)

Then p takes infinite values on 9D)4|(2,1) and since the curvature of this

metric is K = —1, the function wy = In p satisfies the equation
A 2w > 2wy _ —2w>s __ 2sinh 2
|plwe =€e"% > e e = 2sinh 2wy

Now we apply a maximun principle to bound w above as in Wan [13]. The
same holds with (0 = —w):

Let n = w — wy. Then

An — eQw _ 6—24;.) _ eng = e?ug (€2n o 6—4u26—2n _ 1)

which can be written in the metric d6? = 22| dw|?, as

Agn =¥ — g7 4w2e=2m _

Since wy goes to +00 on the boundary of the disk, the function 7 is bounded
above and attains its max at an interior point pg, 7(pg) = 77 and A7} < 0. At

this point we have

€2 — g7 4w2e72

Hence

2n 1++v1+a?
& ar il il

N



MINIMAL SURFACES OF FINITE TOTAL CURVATURE IN H x R 5

where a = e~22(P0) L sup u% < % Then at any point of the disk

71 1+\/1+1

w <L wy+
The same estimate holds with @ = —w. Then at z (i.e. w = 0) we have
1 + I+y1+1/4 1 +1/4
lw(z)] < In4 + = Kp

uniformly on R > Rp. Using this estimate we can apply a maximun princi-

ple as in Minsky [11]. For |z large, we can find a disk D4 (2,7) with r large too.

We consider the function

F(z,y) = Kﬁ . cosh V22 cosh \/iy,

Then F > Ky > w on 9Dy (z,7). Since AF = 4F, we apply the maximun
principle to have w < F. If pg is a point where w(py) > F(po) is a minimun of

F — w, then 0 < w(py) < sinhw(py) and

A(F —w) = 4F — 2sinh 2w < 4(F(po) — w(po)) < 0.

Hence w < F on the disk. We have |w| < F by considering the same argument

with '+ w. Hence
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and |w| — 0 uniformly at the puncture i.e. the tangent plane become vertical.
d) Now we compute the total curvature. We apply Gauss-Bonnet on the

compact piece M(r) = M — Zlgigk D(p;,r) and we obtain

KEdA-i-/ ky =2m(2 — 29 — k)

M(r) OM(r)

Here k, is the geodesic curvature of 9M(r) =TI’y U..I'y on the surface M(r).
Now consider a puncture p; parameterized on R > Ry. We consider w = z +1iy
a parametrization of the punctured disk (with w = f V$dz). In the w-plane,
if ¢(z) = 22™ there are 2m + 2 horizontal asymptotic directions i.e. directions
with Im(w) = 0 (diverging curves at zero level) which define some angular
sector in R > Ry. Now for Cy >> 0 large, we consider the ”polygon” I'(Cy)
which is the union of segments of curves Re(w) = £C; and Im(w) = +C4,
alternatively. At each change of direction the exterior angle is 7/2. These

curves, with I'; = {R = Ry} bound an annulus Q(r, C1, p;) and

/KEdA—f—/ kg—/ kg =—2m+2)7
Q T'(C1) L

Now we let C; — oo. If we prove fF(CI) kg — 0, we will establish that

Ky dA =27(2—-2g— 2k — m;
/| ( 5om)

where ¢(z) = 22™i at each p;.
Now we prove fF ) kg — 0. This fact comes from the exponential decreas-

ing property of the function w. First we prove

/ kgds — 0
Im(w)=C4
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The curve v; = {Im(w) = C’l} is a horizontal curve at level C, parameter-
ized by Re(w) = x. In Hauswirth [6], we find an expression of the curvature
k, of the curve in H x R as function of w. In the w variable (recall that the

Hopf differential is Q = i(dw)Q):

—wy

k‘% (.’L‘) =

coshw
Now we need a gradient estimate of w. Schauder’s estimate gives (with the

exponential decreasing property of w proved above):

|w|2,0 < C(|sinhw|o,a + |w|o) < Ce—E,

On the curve z +iCy, we have |Vw| < Ce~l€1le=V @207+ and

+o0
/ Ik, |ds </ Iy, | ds :/ lw,|de < C|Cy eI
Im(w)=Cy Im(w)=C, —o0

which is converging to zero as |C}| — 4o00.

Now we prove

/ kgds — 0.
Re(w)=C1

We compute the curvature k., in H x R of the curve v (y) = (F(C},y),y) with
|F"(Cy,y)|? := sinh® w(C,y) and 44 = X,. We denote by V the connexion in

H x R. For v an unit vector field along v, we have

1 wy sinhw

kv = Vx, Xy = Xy (11)

D) 3
cosh® w cosh” w

First recall that Q(w) = i(dw)2 and the second fundamental form is given

by (see [6])
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II=wyde®de —wy dy®@dy —w, (de @ dy +dy @ dz).

Since the unit normal vector of ¥ is given by n = (8F,,tanhw) with 5 =

= s
coshwsinhw? we obtain
A wyz gijX (BFy) = wa Xy + wzz X
¥ cosh? w Ot L cosh” w cosh” w
Hence, with VXy% =0

VXyXy = VXyFy = wy tanh™* wF, —w; tanhwF;

which give with (11):

—wysinhw 0 wy wy sinh w

Fy

by p= — -
Y2 z Yy
cosh®>w Ot sinhwcosh®w cosh®w

and

w? + w?sinh?® w
Yy x
- >0

2 2
|kg| g‘k72| - cosh* w

Now one can argue as above to prove the result.
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