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Abstract
For the first—order algebraic differential equation
a4dv4 + 4dasdu dv® + 6a2du2dv2 + 4a1du3dv + ao dut =0
subject to certain constraints, where a; = a;(u,v) with a;(0,0) = 0 for
i+ =0,1,2,3,4, we give a complete local classification of generic singu-
larities of the family of its phase curves up to topological orbital equiv-

alence. This equation is related to geometric objects such as curvature
and asymptotic lines of surfaces immersed in R?.

1 Introduction

Let M be a compact, connected, oriented two—manifold of class C*°. We let
Q(M) denote the set consisting of the smooth quartic differential forms w

defined on M which have the following property. If
(u,0)*(w) = agdv? + dazdvidu + 6agdv®du® + 4daydvdu® + aodu® (1)

is the expression of w in a local chart (u,v) : U C M — R2, then for all points

p € (u,v)(U), we have that either a;(p) =0 for i =0,1,2,3,4, or

ap aip a2
Jp) = | a ay a3 |(p) =0 (2)
a2 Az Qg
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az as

H(p) = (p) < 0 and I(p) = (agao —4a1az+3ad)(p) > 0. (3)

az Q4

For these quartic differential forms w, the points p for which w(p) = 0 are called
singular points of w. The remaining points, or in other words those that are
not singular, are called regular points of w. Conditions (2) and (3), which
hold over the regular points p of w, imply that w(p)~1(0) is the union of four
distinct lines, say Li(w)(p), L2(w)(p), Ls(w)(p), La(w)(p) of the tangent space
T,M . (See [B-P].) In general, these line fields do not define foliations over the
set of regular points of w. However, as a consequence of condition (2), these
lines may be grouped in a couple of pairs, say N;(w) = {L;(w), La(w)} and
No(w) = {L3(w), Ls(w)}, so that each N;(w), with i = 1,2, defines a net.
Associated with each w € Q(M) and each point p of M there are local

coordinates (u,v) where w has the simple form
(u,v)"(w) = 4a (du2 3 dv2)dudv + b (du4 — 6du’dv® + dv4) . (4)
In these coordinates, we have
b (u,v)*(w) = wh-w”
where
wt = b(dv? —du?) + 2(—at Va2 +b2)dudv.

Observe that the quadratic forms w™ and w™ are positive, or in other words at
each point p, either the set ((.ui (p))~1(0) consists of two transversal lines, or
wt(p) = 0. (See for example [Guil], [Gui2].) However, these quadratic forms
are not differentiable at the singular points of the quartic. Further generically,

each singular point p of the quartic w is the center of a smooth curve ~ :
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[-1,1] — M such that v(0) = p and that v(¢) is a singular point of the
quadratic w™ (resp. w™), for all ¢ > 0 (resp. ¢ < 0). The nets N;(w) and
Ns(w) correspond to the configuration of w™ and the configuration of w™,
respectively.

This type of quartic differential forms is related to principal curvature lines
of surfaces immersed in R*. In fact, the principal directions at a point p are
obtained by solving an equation w(p) = 0, with w € Q(M). Conversely, given
an w € Q(M), with analytic coefficients a;, and a point p € M, there exists
an immersion f : V — R* where V is some small open neighborhood of p so
that the differential equation of the principal lines of curvature of f is given
by w/V = 0. (See [GST], [GT1], [GT2], [GG], [Ga-S], [RS1], [RS2].) Further,
these quartics are related to the first—order algebraic differential equation

v

du)+a0(ua 1}) = 0»

dv dv dv
04 (0,0) (92 g 0,0) (D)4 6 0,0) 002 4 iy 0, )

which is singular at (u,v) = (0,0), subject to the constraints given by equations

(2) and (3). (See [BB], [Poi] [Mat].)

Globally, the quartic differential forms considered in this work are much
more general than those forms associated to principal directions. Notwith-
standing, we show that their generic singularities behave like the case of differ-
ential equations of principal directions. Thus all of the local results of [GT1],

[GT2], [GG], [Ga-S] are applicable to the nets associated to an w € Q(M).

The article is organized as follows:

Section 2 is devoted to showing that conditions (2) and (3) are preserved by
changes of coordinates. We establish the existence of local coordinates (u,v)

where w € Q(M) has the simple form (4).
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In Section 3, we introduce the simple singular points. We show that the
set of those w € Q(M) whose singular points are all simple is open and dense
in Q(M), where the set Q(M) is considered endowed with the smooth Whitney
topology. We give the local configuration of the nets N (w) and Nz(w) around
this type of points, and we characterize those singular points which are locally

stable.

In Section 4, we show that a non—locally stable simple singular point is of

codimension one or two, and we give its corresponding versal unfolding.

2 Preliminaries

We begin by showing that the coefficients ag,...,as of the local expression of
w € Q(M) in local coordinates (u,v) satisfy relationships similar to those in
the case of curvature lines of surfaces immersed in R%. (See [Ga-S, Lemma

2.1].)

Proposition 2.1. Condition (2) holds if and only if there exist smooth func-
tions E,F,G : (u,v)(U) — R such that (E,F,G)(p) # (0,0,0), for all

p € (u,v)(U), and furthermore that

Eag = —Ga() + 2FCL1,
E?a3 = —2FGag + (4F? — EG)a,, (5)
Flay = G(EG—4F?ay + 4F(2F* — EG)a, .

Moreover, if condition (2) holds, then condition (3) holds if and only if EG —

F? s positive.

Proof. Since J = 0 there exist smooth functions E, F,G : (u,v)(U) — R,
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with (E,F,G) # (0,0,0), so that

Gao = 2Fa1 + Eag = 0,
G(ll = 2F(12 + E(lg = 0 ) (6)
Gag = 2Fa3 + Ea4 = 0.

Observe that the first relationship of (6) corresponds to the first relationship of
(5), the second relationship of (6) multiplied by F corresponds to the second
relationship of (5), and the last relationship of (6) multiplied by E? corresponds
to the last relationship of (5).

Using relationships (5), we find
E}(H,I) = G*(Ea? — 2Fapa; + Ga?) (-1,4(EG — F?). (7)

Therefore EG — F? > 0 imply H < 0 and I > 0. To obtain the converse is
sufficient to prove that relationship (6), H < 0and [ > 0imply E#0. If E =0
we have G(ag,a1,a2) = 2F(ay,az,a3). Then F = 0 (resp. G = 0) implies G #
0 (resp. F' #0) and (ag, ay,az) = (0,0,0) (resp. (ay,as,as) = (0,0,0)), which
implies I =0 (resp. H = 0). Hence £ = 0 implies FG # 0 and (a1, as,a3) =
%ao (l, %, (%)2)7 which implies (H,I) = ag (a4 - (%)2) ((%)2,1),
that is impossible.
O
The following shows that the definition of the set Q(M) is independent of

the coordinates chosen.

Proposition 2.2. Conditions (2) and (3) are preserved by changes of coordi-

nates.
Proof. Assume that

(u,0)*(w) = agdv? + dazdvidu + 6aydvdu® + 4aidvdu® + agdu®
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and that there exist smooth functions E, F, G : (u,v)(U) — R so that both

EG — F? and E are positive, and relationships (5) hold. If

u=f(z,y), v=g(z,y)
is a coordinate change and

(@,9)" (w) = bydy* + 4bsdy’dx + 6bydy*da® + 4b dyda® + boda?,

then
by = (fz —(6f:Gg2)/E — (8Ff,Gg;)/E* + (G((—4F?)/E® + G/E)g;)/E)ao +
(fo9= + BFf292)/E + fo((4F?)/E® — G/E)gS +
(F((2F*)/E® - G/E)g;)/E)m
and
b = (Afify—(12f.£,Gg;)/E — 8F f,Gaz)/E* — (12£;Ggz9y)/ E
—(24F f.GgZgy)/ E® + (AG((—4F?)/E® + G/E)g39,)/ E)ao +
(3fafy9e + (BF fufyg2)/E + fy((4F?)/E® — G/E)g; + figy +
(6Ff29:9y)/E + 3f:((4F?)/E® — G/E)g3gy +
(4F((2F?)/E* — G/E)g39,)/E)as .
Setting
E = E(f2)?+2F foge + G92)?,
F = Efafy+F(fs9y + fy9s) + Gagy
G = E(f,)* +2Ffyg, +Glgy)
we have

EG—F? = (EG - F?)(fa9, — f,9:)%
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and thus we again obtain the relationships

Eby, = —Gby + 2Fb;

E?bs —2FGby + (4F% — EG)b, ,

E’by G(EG — 4F*)by + AF(2F* — EG)b; .

The Proposition results from these facts.
d
We next show the existence of local coordinates (u,v) where w € Q(M)
takes a very simple form. In the case of curvature lines, these coordinates

correspond to the isothermal coordinates.

Proposition 2.3. Given w € Q(M) and p € M, there exist an open neighbor-

hood U of p in M and a local chart (u,v) : U C M — R? such that
(u,v) * () = 4da(du® — dv?)dudv + b(du* — 6du*dv* + dv*). (8)

Proof. First observe that taking ' =0 and E = G in (5), the local expression
(1) has the form (8). Hence, given a local chart (u,v) at p and associated
(smooth) maps E, F,G to the quartic differential form w, it suffices to find a

(smooth) coordinate change

u= f(z,y), v=g(=zy)

so that, in a neighborhood of the origin, we have

Efyfy+ F(fogy + fy9s) + Ggzgy = 0 and
E(fs)? +2F fogs + Glgz)? = E(£,)? + 2F f,9, + G(g,)2.

Therefore, the problem is equivalent to finding isothermal coordinates in
a neighborhood of a point of a surface. (See [Spi, Vol. IV, Addendum 1 of

Chapter 9].) The conclusion follows.
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3 Simple singular points

Let w be a quartic differential form in Q(M), and let p be a singular point of w.
Assume that (1) is the local expression of w in a chart (u,v) : (M, p) — (R?,0)
with coefficients ag, a1, as, as, as satisfying relationships (5). The point p is
called a simple singular point of w if {ag = 0} and {a; = 0} are regular

curves meeting each other transversally at the origin.

The next two results, Lemma 3.1 and Proposition 3.2, which we state with-

out proof correspond to Lemma 3.2 and Proposition 3.1 of [GT1].

Lemma 3.1. Let w € Q(M), and let p € M be a simple singular point of w.
There are coordinates (u,v) : (M,p) — (R2,0) such that the quartic differential

form w in these coordinates is of the form
(u,v)*(w) = 4(Au+Bv+S)(du2—dv2)dudv+(v+R)(du4—6du2dv2+dv4) 9)

where A # 0 and B are real numbers, and S = S(u,v) and R = R(u,v) are

real-valued functions which satisfy

oS oS OR OR
For the rest of the article, we henceforth endow the set Q(M) with the

smooth Whitney topology.

Proposition 3.2. The set of quartic differential forms w € Q(M) whose sin-

gular points are simple is dense in Q(M).

Each simple singular point of a quartic differential form w € Q(M) has a
smooth continuation in a neighborhood of w. We explain this fact in the next

Proposition.
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Proposition 3.3. Let py be a simple singular point of a quartic differential
formwy € Q(M). Then there exist a neighborhood U of p in M, a neighborhood
V of wy in Q(M), and a smooth map P :V — U which associates each w € V
with the unique singular point of w in U. Furthermore, the singular point P(w)

is simple.

Proof. The local expression of a quartic differential form w in Q(M) associated

to an arbitrary chart (u,v) is given by

(’LL, ’U) k (w) = (A40a0 =+ A41a1)dv4 + (Ag()a() -+ Aglal)dvsdu (10)
+(A20a0 + Aglal)d’UQd’u/Q + aldvdu?’ + aodu4

where ag = ao(u,v), a1 = ai(u,v), and A;; = A;j(u,v), for i = 2,3,4 and
7 = 0,1, are smooth functions. Moreover, the singular points of w are given

by the equations ag = a; = 0.

Consider a local chart (u,v) : (M,p) — (RZ2,0) such that the local expres-
sion wy is of the form (9). Therefore, A # 0. For w in a neighborhood V of
wo in N (M), the local expression in the same coordinates is of the form (10),
where ag(wo)(u,v) = v+ R(u,v) and ai(wo)(u,v) = 4(Au+ Bv + S(u,v)) .

Consider next the smooth map F': Y x R2 — R? defined by
F(w, (u,v)) = (a0(w)(u,v), a1 (w)(u,v)) .

Since F'(wo, (0,0)) = (0,0), and since the matrix

D Fen,00) = (41 4P )

is non—singular, there exist a neighborhood U of (0,0) in R?, a neighborhood
V CVof wpin Q(M), and a smooth map @ : V — U such that Q(wo) = (0,0)
and F(w,Q(w)) = (0,0), for all w € V. The proof now follows.
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The next two results are contained in [GG, Theorem 1.1]. We do not give

their proofs.

Theorem 3.4. Let w € Q(M), and let p € M be a simple singular point of w.
Let (u,v) : (M, p) — (R2,0) be a local chart such that

(u, v)*(w) = 4(Aut+Bo+S(u, v)) (du? —dv?)dudv+(v+R(u, v)) (du* —6du’ dv?+dv*)

where A # 0 and B are real numbers, and S(u,v) and R(u,v) are real-valued

functions which satisfy

oS oS OR OR

Then, under each of the conditions (a) through (e), the corresponding phase
portrait is obtained by making into one, through a rigid translation, the pair of

pictures (that is, nets) of the indicated figure.
(a) Condition Hy : A <0. (Figure 1)
(b) Condition Hy : A >0, A<O0and A# —1/4. (Figure 2)
(c) Condition Hs : A >0, A>0. (Figure3)
(d) Condition Hzy: A >0 and A=—-1/4 and B #0. (Figure 4)
(e) Condition Hs: A= —1/4 and B=0. (Figure5)
Here

A = 16[4(1+ B?)?+24(1+ B*?A+8(5-B*)(1+B>)A?+ (11)

4(9 + B?)A3 + (17 + 4B?)A* + 44°].
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Figure 1

Figure 2

Figure 3
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Figure 4

Figure 5
Definition 3.5. Let p be a singular point of a quartic differential form w €
O(M). We will say that w is locally topologically stable at p when both

nets N1(w) and Na(w) are locally topologically stable at p.

Theorem 3.6. Letw € Q(M), and let p € M be a simple singular point of w.
Consider a local chart (u,v) : (M,p) — (R2,0) as in Theorem 3.4. Then w is
locally topologically stable at p if and only if either condition Hs, or condition

H,, or condition Hs holds.

4 Non-locally stable simple singular points

In this section, we obtain versal unfoldings of the singular points Hs, and

H,, thus showing that the former is of codimension one, and the latter is of
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codimension two. For this, we need the following characterization of simple

singular points.

Proposition 4.1. Let p be a simple singular point of w € Q(M). Consider a
local chart (u,v) : (M,p) — (R%,0) such that the local expression of w at p is
of the form

(u,v) * (w) = 4(Au+ Bv+ S(u, v))(du2 — dUQ)dudv +
(v + R(u,v))(du* — 6du*dv® + dv*) . (12)
Consider also the separatriz polynomial
9(s) = —sQ(s) (13)

where

Q(s) = s* —4Bs® —2(3 +24)s*> + 4Bs + 1 + 44.
Then the point p is:

a) a locally stable singular point if the separatriz polynomial (13) has only

stmple roots;

b) an Hsy—singular point if the separatriz polynomial (13) has a root of

multiplicity two;

¢) an Hsz—singular point if the separatriz polynomial (13) has a root of

multiplicity three.

Proof. This is a direct consequence of Theorems 3.4 and 3.6, and the result

[GG, Theorem 5.3].
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The notion of equivalence of families of quartic differential forms in Q(M)

used in this article is the following.

Definition 4.2. Consider two smooth families (w,) and (v,) in Q(M) with
(the same) parameter p € R¥. Let Nq(w,) and Na(w,) (resp. Ni(v,) and
Nz (v,)) be the nets associated to w, (resp. v,). The families (w,) and (v,)
are called equivalent (over the identity) if for every u € R, the nets Ni(w,)

and N;(v,) are topologically equivalent, with i = 1,2.

The problems in this section are local problems around a simple singular
point. Thus we will work with quartic differential forms in Q(R?). Our next

result gives a normal form for these quartics at a simple singular point.

Proposition 4.3. If (0,0) is a simple singular point of w € Q(R?), then there

exists a local chart (u,v) such that

(u,v) * (w) = 4(Au + Bv)(du? — dv2)dudv +v(dut — 6dudv? + dvt) +
Ag(u,v)dvt + As(u, v)dvidu + As(u,v)dv2du?® +
Aj (u,v)dvdu® + Ag(u,v)du?
(14)
0A;
ou

0A4;

where A # 0 and A;(0,0) = 3
v

(0,0) =

(0,0)=0, fori=0,1,2,3,4.

Proof. We refer the reader to [Ga-S, Proposition 3.1] for a proof.

A consequence of Proposition above, is that the phase portrait of the nets
Ni(w) and Na(w) at a small neighborhood of a simple singular point p is de-

termined by the linear part of w at p.

Our next result asserts that for a smooth family w(x) in Q(R?) such that

w(0) has a simple singular point at the origin, without loss of generality we
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may assume that the origin is a singular point of w(yu), for small | u |. Here is

a precise statement.

Lemma 4.4. Let w(p), with parameter u € R* | be an arbitrary smooth family
of quartic differential forms in Q(R?) such that w(0) has a simple singular point
at the origin. Let (u,v) : (U, (0,0)) — (R2,(0,0)) be a local chart. Then there
exists a change of coordinates of the form (x,y,n) = (h(u,v,p), p) such that,

for each p with small | |, the origin is a singular point of the quartic
(@,9)"(w(p) -
Proof. Assume that
w(p) = agdv* + azdv*du + axdvidu® + ay dvdu® + agdu® (15)

with a; = a;(u,v,p), for i =0,1,2,3,4.

By hypothesis we have that (ag,a;)((0,0), 0)) = (0,0), and that

Difa,ar) (0.0).0) = 00 22 )

ail  ai2

is non—singular.
Since the map (ag,a1) : R? x R¥ — R? is smooth, it follows from the
implicit function theorem that there exists a smooth map S defined on a small

neighborhood of 0 € R¥ so that S(0) = (0,0) and

(ao,al)(s(/")vlf‘) = (07 0)

for all p in such a neighborhood.

Using the change of coordinates

(xaya:u) = (u,v,p) - (S(/j,),ﬁ)
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we obtain the Lemma.

|

Our next result shows that the normal form (14) also holds for families in

Q(R?) which pass through a quartic having a simple singular point.

Lemma 4.5. Let (w(p)), with parameter i € R, be an arbitrary smooth family
in Q(R?), such that w(0) has a simple singular point at the origin. Then there
exits a local chart ¢ : (U x V,((0,0),0)) — (R? x R¥,((0,0),0)) of the form
o(p, 1) = (u(p, 1), v(p, p), 1), with ¢(p,0) = (u(p), v(p),0) for all p € Uy, such
that in the chart ¢, : (Uo,p(p)) — (R?,(0,0)) defined by ¢,.(p) = ¢(p, p) for

all €V, the local expression of w(p) is
ngZ(w(u)) = 4(A(p)u+ B(,u)v)(du2 = dvz)dudv + v(dut — 6du?dv? + dvt) +

Ag(p)(u,v)do* + Az(u) (u, v)dvddu + As(p) (u, v)dvidu? +
Ay () (w, v)dodu® + Ag (1) (u, v)du*

(16)

with A;(1)(0,0) = %Ai (1)(0,0) = aaAi (1)(0,0) =0, for i=0,1,2,3,4.
u v

Proof. For p in a neighborhood V' of the origin in R¥, there exists local chart

(s,t, u) such that the local expression of w(u) is
4(/1(;1)5 + B(p)t)(ds2 — dtQ)dsdt + (C’(,u)s + D(,u)t)(ds4 — 6ds2dt® + dt4) +
Ay(p) (s, t)dt* + Ag(p)(s,t)dt>ds + Ay () (s, t)dt*ds® +
Ap(p)(s,t)dtds® + Ao(p) (s, t)ds?

DA,

where A = A(0) # 0, C(0) = 0, D(0) = 1, and A;(1)(0,0) = 5 (1)(0,0) =
88‘? (1)(0,0) =0, for i=0,1,2,3,4.

Let L(q,g) : R* — R?, with parameter (a, 8) € R?, be the family of linear

isomorphisms such that the inverse of L = L, g) is given by

L7 (s, t, 1) = (14 )s — Bt, Bs + (1 4+ a)t, 1) .
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Observe that for all (a, 3) € R?, the map L4 p) is a linear rotation at the first

two coordinates. Therefore, in the chart

(57 ta :u) = ((1 + a)u - BU, ﬁu oR (1 + CV)U,}J,)

the local expression of w(p) is given by
(1,0 (1)) = A(A(a)s + Bu)o) (e — dv?)dudv
+(C(w)u + D(p)v)(du* — 6du?dv? + dv?)+
Ay(p)dv? + Az(p)dvddu + As(u)dvidu? + Ap(p)dvdu® + Ao (u)du?

with A;(12)(0,0) = %A" (1£)(0,0) = %Ai (1)(0,0) =0, for i=0,1,2,3, 4.
u v

To complete the proof, it suffices to show that there exists (o, 8) = (a(n), B(1))
so that (C(p), D(p)) = (0,1), for p € V sufficiently close to 0. In fact,

Clw) = 4(1+a)*A(u)B+4(1+ )’ B(n)B* — 4(1 + ) A(n)B* —
4(1+ @) B(u)B* + (1 +)*BD (i) — 6(1 + )*8°D(p) + B°D(u) +

(14 a)°C(p) — 6(1 + )*B2C () + (1 + a)B*C(p)

D(p) = 4(1+a)*'B()B — 41 +a)*A(n)B* —4(1 + @)* B(p)B° +4(1 +
a)A(p)B* + (1+ @)’ D(p) — 6(1 + a)*B*D() + (1 + &) 3* D () —
(1+a)*BC(1) +6(1 + )*8°C(w) — B°C () .

If C(u) =0, then D(u) #0. We may set 3=0 and 1+« = —-+ - Then

D(p)5

C(pu) =0and D(p) = 1.

If C(u)#0, weset 14+a=mf, with m a real root of the equation

Cu)a® +2(2B(u) — 30(n))a* + 2 2B(p) - 3C ())2” ~

2 (2A(w) +3D(n))a* + (O(p) — 4B(w))z + D(u) = 0.
Then C(p) =0, and we are under the condition of the first case. The proof

now follows. O
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To obtain a versal unfolding for a simple singular point, we will need the

following.

Lemma 4.6. Let (w(u)), with parameter u € R¥, be an arbitrary smooth fam-
ily in Q(R?) such that w(0) has a simple singular point at the origin. Consider
a local chart (u,v, p) as in Lemma 4.5 such that, in this chart, our family has

the local expression

w(p) = 4(A(p)u + B(p)v)(du? — dv?)dudv + v(du* — 6du?dv? + dv*) +
Ag(p)(u,v)dvt + Az (p)(u, v)dv3du + As(p)(u, v)dvidu? +
A () (u,v)dodu® + Ao (1) (u, v)du? -

where A;(1)(0,0) = %Ai (1)(0,0) = 88‘41' (1)(0,0) =0, for i=0,1,2,3,4.
u ()

Then, for small | |, the family (w(p)) is equivalent to the family
o(n) = 4(A(p)u + B(p)v)(du? — dv?)dudv + v(du* — 6dudv? + dv?). (18)

Proof. The Lemma is clear from the fact that both families have the same

linear part at the origin.

We next give a versal unfolding for singular points of type Hay .

Lemma 4.7. Let w € Q(R?) be a quartic with the origin an Hsy—singular

point. Then there exist coordinates (u,v) such that the local expression of w is

of the form (12), with A # _i .

Proof. Consider a local chart (u,v) such that the local expression of w at the
1
origin is of the form (12). Then A = ~1 if and only if the root of multiplicity
1
two of the polynomial g(s) is s = 0. Now if A = ~1 and sg is a simple

root of g(s), then we make a rotation which sends sy over s = 0. In the



QUARTIC DIFFERENTIAL FORMS ASSOCIATED TO COUPLES 47

resulting chart, the local expression of w is also of the form (12). Hence, the
1
corresponding coefficient A # 1 which completes the proof.

O

Theorem 4.8. A versal unfolding of an Hzs—singular point is the family of

quartic v(X\), with A € R, given by

v(\) = 4 (()\ — 13—225> U+ % v> (du? — dv?)dudv +v (du* — 6du?dv? + dv*).

Proof. Let (w(u)), with parameter i € R¥, be an arbitrary smooth family in
Q(R?) so that w(0) has an Hszs—singular point at the origin. By Lemmas 4.6

and 4.7 we may suppose that
w(p) = 4(A(p)u + B(p)v)(du? — dv?)dudv + v(du* — 6du’dv® + dv*)
with A(0) # —1-
Consider the real-valued function v defined on a neighborhood of the origin of
R* by
() = 16[4(1+ B(n)?)* + 24(1 + B(u)*)* A(u) +
8(5— B(1)*)(1+ B(1)*)A(n)* + 49 + B(u)*)A(w)* +

(17 + 4B()*) A(1)* + 4A(n)°].

Then the unfolding induced by ¢ from the family (v(\))rer is

o(p) = 4 ((1/)(p) - 13—225> u+ % v) (du® —dv?)dudv+v (du® —6du?dv®+dv*) .

Since the discriminant (11) associated to the family (w(p)) is A(p) = ¥ (p),

and since the discriminant associated to the family (o(x)) is of the form
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where h(z) is a degree 4 polynomial with ~(0) > 0, both families are equivalent

for small |p|. The proof is now complete.

We now consider the singular points of type H.

Theorem 4.9. A versal unfolding of an Hs—singular point is the family of

quartic v(A), with A = (A1, A2) € R2, given by

v(A) = 4 (()\1 — 711) u~+ Ao v> (du? — dv?)dudv + v (du? — 6du®dv? + dv?).

Proof. Let (w(y)), with parameter u € R¥, be an arbitrary smooth family
in Q(R?) so that w(0) has an H;—singular point at the origin. By Lemma 4.6
Wwe may suppose

w(p) = 4(A(p)u + B(p)v)(du? — dv?)dudv + v(du* — 6du®dv? + dv?)

with A(0) = —i and B(0) = 0. Let us consider the real bi—valued function

1 defined on a neighborhood of the origin of R* by

Then the unfolding induced by % from the family (v(X))\eg2 is
o) = 4 ((A(,u) — i) u+ B(p) v) (du? —dv?)dudv+v (du*—6du?dv?+dv?) .

Since the discriminant (11) associated to the family (w(u)) is equal to that
associated to the family (0(u)), for every u, we conclude that both families are

equivalent. The proof is now complete.

The next two theorems give the bifurcation diagrams of these types of sin-

gular points.
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Theorem 4.10. Consider the one—parameter family of quartic w(\) given by

wd) =4 (()\ — %) u+ 2—; v) (du? — dv?)dudv + v (du* — 6du’dv? + dv?) .

Then, for all values of A\, the origin is a singular point of w(X). Moreover, for
small | X |, the origin is of type Hs for A < 0, of type Hss for A =0, and of
type Hy for A > 0.

Proof. Since the associated discriminant is

A
A= @(6640625 — 48348750\ + 30426304\% — 6680064\ + 524288)\%) |

the proof follows.

O
Theorem 4.11. Consider the two—parameter family of quartic w(\), with A\ =
(M1, A2) € R2, given by
w(A) = 4 <</\1 = i) u+ Ao v> (du2 = dv2)dudv + v (du4 — 6dudv® + dv4) s
Then the origin is a singular point for all values of A = (A1, A2). Moreover, for

small | X |, we have that:
i) The origin is of type Hs if A < 0.
ii) The origin is of type Hzq if A=0 and Ay # 0, or if Ay =0 and Xy # 0.
iii) The origin is of type Hy for A >0 and Ay # 0.
w) The origin is of type Hs for A = (A, A2) = (0,0).
Here

1
A = i (6251 + 1200 Xy + 1376 X3 4+ 768 A% + 256 A + 12573 +
2080 Ay A2 + 1952 A2 A2 + 256 A7 A2 + 3523 + 1792\ A3

—51227 23 + 256 )5).
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A2

A

A>0

""""" A<0’ /\1

Figure 6

Proof. For the proof, it suffices to observe that the corresponding values of A

and B are

O
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