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A SPLITTING THEOREM FOR KAHLER
SUBMANIFOLDS OF SPACE-FORMS

M. J. Ferreira *®

Abstract

Isometric immersions from Kahler manifolds with parallel pluri-mean
curvature (ppmc) generalize, in a natural way, the constant mean curva-
ture (cmc) sufaces. The (2,0) part of the complexified second fundamen-
tal form is a holomorphic quadratic differential (Q) which plays a central
role in the study of the cmc sufaces. Likewise, for ppmc immersions, Q
is also a vector bundle valued holomorphic quadratic differencial, signifi-
cant in the study of the geometry of the immersion. It is well known that
those immersions with Q vanishing are extrinsically symmetric ([10] and
[11]). In this work we study ppmc immersions with big nullity index of

Q.

1 Introduction and statement of results

Let M™ be a Kéhler manifold with complex dimension m and ¢ be an isometric
immersion of M™ into a space form. We denote by « the second fundamental
form of ¢. The complexified « splits in a natural way, according to types,
giving rise to

o= oD 4 20 | 402)

Isometric immersions with a(t!) = 0 are called pluriminimal immersions.
Holomorphic immersions between Kéhler manifolds are examples of plurim-
inimal immersions. Pluriminimal immersions have been extensively studied

(see, by instance, [3] [4], [5], [6]). When M is a Riemann surface we have
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a) =< . > H, where H = trace o is the mean curvature of the im-
mersion. In this case the pluriminimal immersions are precisely the minimal
ones. In general, the immersion is pluriminimal if and only if its restriction to
each holomorphic curve of M is a minimal immersion. The operator a(t:1) is
naturally called the plurimean curvature of the immersion. When the ambient
space is R™, it is well known that oY = 0 if and only if H = 0 ([4]), so
that the class of pluriminimal immersions and the class of minimal immersions

coincide.

We are mainly interested in isometric immersions from K&ahler manifolds
which have a(1'1) parallel, called isometric immersions with parallel plurimean
curvature operator (ppmc isometric immersions). They constitute a natural
generalization to higher dimensions of the isometric immersions from Riemann
surfaces with parallel mean curvature. In fact ppme isometric immersions into
space-forms display some special features of the parallel mean curvature sur-
faces, namely the existence of a 1—parameter deformation through a smooth
family of ppmc isometric immersions which, up to a parallel isomorphism, have
the same normal bundle ([2]). Just as in the case of immersions with parallel
mean curvature, ppmc isometric immersions can also be characterized by the

pluriharmonicity of its Gauss map ([7]).

Studying immersed surfaces in R3, H. Hopf discovered in 1955 that for sur-
faces with constant mean curvature (cme surfaces) the complexification of the
traceless part of a is a holomorphic quadratic differential (). This holomorphic
quadratic differential has been an important ingredient in the investigation of
geometric properties of cme surfaces ([13], [14]). The operator @ is nothing
but the (2,0) part of the complex bilinear extension of a. A straightforward

computation shows that, for ppmc isometric immersions, ) is again a vector-
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bundle valued holomorphic quadratic differential. Isometric immersions with
a9 = o2 = 0 are called (2,0) — geodesic immersions. Curiously, that
is a strong condition. Indeed, it can be deduced from Codazzi equation that
(2,0) — geodesic immersions into space forms have parallel second fundamen-
tal form. Ferus ([11], [10]), Takeuchi ([16]) and Striibing ([15]) classified the
(2,0) — geodesic immersed immersions into space forms. It turns out that they
are extrinsically symmetric.

In ([3]) Dajczer and Rodrigues proved the following results:

Theorem 1 Let M be a complete Kahler manifold with complex dimension m
and ¢ : M — R™ be a pluriminimal immersion. Then if, for every x € M,
the index of relative nullity of « at x is greater or equal than 2m — 2, M™ =

R2m=2 x M and ¢ = id X ps.

Theorem 2 Let M be a complete Kahler manifold with complex dimension m
such that, at a point xog € M, the holomorphic sectional curvatures of M are
all different from 0, and ¢ : M — R"™ be a pluriminimal immersion. Then if,
for every x € M, the index of relative nullity of « at x is greater or equal than

2m — 2k, M™ = R*~2k x M* and ¢ = id X @s.

Notice that that for pluriminimal immersions, the index of relative nullity
of @ and the index of relative nullity of a(2) coincide.

From now on M™ will denote a connected complete Kéhler manifold with
complex dimension m, S (¢ > 0) the n-dimensional euclidean sphere with
sectional curvature ¢ and H' the n-dimensional hyperbolic space with constant

seccional curvature ¢ (c < 0).

For ppmc immersions we have proved [8] that:
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Theorem 3 Letp: M™ — R™ be a ppmc immersion. If the index of nullity of
a29) s everywhere greater or equal than 2m—2, one of the following conditions

hold:
1. ¢ is extrinsically symmetric

2. M™ =M™ 1 x M' and o = 1 X 03 : M™ 1 x M* — R™ x R"™, where
@2 has parallel mean curvature and o1 : M™~' — R™ is extrinsically

symmetric.

Corollary 4 Let ¢ : M™ — S™ be a ppmc immersion such that, for every
x € M™, the index of nullity of o/>9) at x is greater or equal than 2m — 2.

Then one of the following conditions hold:
1. fis extrinsically symmetric

2. M™ = M™ 1 x M and ¢ = ¢1 X oo : M™7L x MY — S™ x S)'2
(a™Y/2 +b71/2 = 1), where p; M' — S}'* has parallel mean curvature

and @1 : M™™1 — S™ s extrinsically symmetric.

Corollary 5 Let ¢ : M™ — H"™ be a ppmc immersion such that, for every
x € M™, the index of nullity of o/>9) at x is greater or equal than 2m — 2.

Then one of the following conditions hold:
1. ¢ is eatrinsically symmetric

2. M™ =M™t x M and ¢ = 1 X 2 : M™1 x M' — S™M x HJ?
(a7t +b71 = —1), where o2 M* — H}'* has parallel mean curvature and

o1 : M™™1 — S™ s extrinsically symmetric.
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3. M™ = M™ L x M! and ¢ = 1 X @p : M™L x M — HM x S}'2
(@™t +b71 = —1), where py: M* — Sp* has parallel mean curvature and

w1 M™Y — H™ s extrinsically symmetric.

In the present work we assume that M has non zero holomorphic sectional

curvatures and prove the following results:

Theorem 6 Let M be a Kdahler manifold with non zero holomorphic sectional
curvatures and ¢ : M™ — R"™ be a ppmc immersion. If the index of nullity of
a0 s everywhere greater or equal than 2m— 2k (k > 1), one of the following

conditions hold:
1. M is extrinsically symmetric;

2 M™m=M"xM™" 1<r<k)and p =1 Xpg : M" x M™™" —
R™ x R™, where @y : M™™" — R™ is extrinsically symmetric and ¢,

18 ppmec.

Corollary 7 Let M be a Kdhler manifold with non zero holomorphic sectional
curvatures and ¢ : M™ — S™ be a ppmc immersion. If the index of nullity
of a®9) s everywhere greater or equal than 2m — 2k (k> 1), then one of the

following conditions hold:
1. M is extrinsically symmetric;

2 M™m=M"xM™" 1<r<k)and p =1 Xpg : M" x M™™" —
S™M % Sp2 (a7l + b1 = 1), where g 1 M™" — Sp'? is extrinsically

symmetric and 1 is ppmc.

Corollary 8 Let Let M be a Kahler manifold with non zero holomorphic sec-

tional curvatures and ¢ : M™ — H™ be a ppmc immersion. If the index of
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nullity of a(>9 is everywhere greater or equal than 2m — 2k (k > 1), one of

the follwing conditions hold:
1. M is extrinsically symmetric;

2 MM =M"xM™" 1<r<k)and p=p1 Xpy: M"x M™" —
Smox Hy®, where (a™! +b71 = 1), ¢o : M™™" — H"™ is extrinsically

symmetric and @1 is ppme;

B M™ =M xM™" 1<r<k)andp =¢1 X pa: M" x M™ " —
H™M x Sp'2, where (™t + b7 = —1), g : M™™" — S s extrinsically

symmetric and ¢y is ppmc.

Remark 9 Theorem 6, Corolaries 7 and 8 remain true if we repalce the as-
sumption on the holomorphic sectional curvatires of M by the non negativity

of all sectional curvatures.

2 Preliminaries

Let (M™,J) be a Kahler manifold with complex dimension m and ¢ : M™ —
F. be an isometric immersion into a space form with sectional curvature c. We
let C(T'M) denote the space of smooth sections of TM. We use the notation
TM and T+ M for the the tangent and normal bundles of . The complexifi-

cation of TM, denoted by T M , decomposes as
T°M=T'M+T'M

where T'M and T" M are the eigenbundles of J corresponding respectively to
the eigenvalues ¢ and —i of J. The orthogonal projections of T¢M onto T'M
and T M will be represented respectively by n’ and 7”. Of course, for any

section X of TM, we have X = n/(X) + 7" (X).
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The complex bilinear extension of the second fundamental form « splits in

a natural way, according to types, giving rise to
a=alD 4 20 4 ,02)

‘We have
aB(X)Y) = a(X',Y") + (X", Y")

where Z' = n'(Z) and Z" = " (Z) for every Z € C(T°M). We can also write
aD(X,Y) = C(X,Y), where C(X,Y) = % {a(X,)Y) +a(JX,JY)}

Similarly
a0 (X,Y) = a(X',Y") = %Q(X,Y) - zéQ(X, JY)

where Q(X,Y) = % {a(X,Y) —a(JX,JY)}
We will use the same symbol V to represent, either the Levi-Civita connec-
tion of T'M, or the induced connections on ¢ 'TN and T*M ® ¢ 'TN. The

il 1
symbol V will be used to represent either the induced connection on T'M or

on T"M ® JL“M

Let A, ={X eT,M :Q(X,Y) =0 VY € T,M} and A} be its
orthogonal complement in 7T, M.

A, and A} are J, invariant.since Q(X,JY) = Q(JX,Y), for any X,Y €
T M.

Proposition 10 /8] On an open set where the dimension of A is constant, A

is a smooth integrable distribution whose leaves are totally geodesic in M.

We let U denote the open subset of M where dim A is minimal and let

r =dimA,, for z € U. From now on A will be considered defined on U.
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For the study of this nullity foliation it is useful to consider the tensor

Cr : A+ — At defined by
Cr(X) = —(VxT)*",
where T' € A and ( )AL denotes the orthogonal projection onto A+,
Proposition 11 [8] The following conditions hold:
1. Cp commutes with J, for all T € A.
2. Q(Cr(Y),2) =Q(Y,Cr(2)), for T € A and Y, Z € A+,

L
When & € T, M let A¢ denote the Weingarten operator at 2 associated to

a. We represent by N, (M) the first normal space of the immersion at .
Lemma 12 [8] Ays )Y, Aas,y)T € At whenever S,T € A and Y € A+

Lemma 13 The following equalities hold:

R(T,Y)S =0 (1)
Aar,s)Y = AaryyS + Aas T (2)
whenever T, S € A and Y € At
Proof. Equality (1) follows easily if we prove that
RM(T,Y)S = Aairy)S. (3)

Observe that the left hand side of equality (3) anti-commutes in the variables
Y and T, while in the right hand side the same variables commute.

We first prove equality (3) repeating a proof presented in [8].
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We conclude, from lemma 12 and Gauss equation, that < R(T,Y)S, X >=
0, whenever X € A, hence R(T,Y)S € A*.

Using Codazzi equation and fact that ¢ is ppmec we get that
VyuX' €Al VXeC(A),VY,WeC(TM), (4)

since a(Vy» X', W') = 0.

Condition (4) implies that
R(S", YT € A (5)
We also remark that, for every Z € AL,
<a(T,Y"),a(S",Z") >=< a(T",Y"), (5", Z") >= 0 (6)

Indeed, using Gauss equation and the fact that S and T are sections of A, we

have

0=< R(T",2"8,Y" >= - <a(T,Y"),a(S, 2" > .
From (5), (6) and Gauss equation we get that, for whenever Z € A+,
< RY VI8 5 vt BYT0, Y70 3 48 BT )8, 8" o=
=<o(T",8"),aY",Z') > + < (T",8"),a(Y", Z") >=
=<o(T,Y"),a(S",Z") > + < a(T",Y"),a(5,Z") >=< (T, Y), (S, Z) >,

thus RM(T,Y)S = Ayr,y)S-

We now prove the second equality.

Notice that

& Ay ¥oZ 5=3< ofT' T, ¥, 2% >3 < ofT' Tl ¥", ) >
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Then, again by Gauss equation and equation (6), we conclude that
<AarmY,Z>=2<ao(T',Z2"),a(T"Y") > +2 < a(T",Y"),a(T", Z") >=

2 < o(T,Y), (T, Z) 3=2 < Ay T; Z >,

hence 24,(7.v)T = Aar, 7)Y -

A polarization argument leads to A ry)S + Aas,y)T = Aa(r,5)Y -

|
Proposition 14 The following equality holds:
(VsCr)(Y) = CrCsY + CysrY (7)
where S,T € A and Y € A+
Proof. We have proved in [8] the equality
(VsCr)(Y) = CrCsY + CysrY + R(S, Y)T. (8)
Now the result is a consequence of equation (1) in lemma 13.
]

3 The splitting theorem

We will prove first that A+ is integrable. Assume that, on U, dim A = 2m — k
(k > 1). The case k = 1 was proved in [8] without the assumption on the

holomorphic sectional curvatures of M.
Lemma 15 Let T € A. Then the eigenvalues of Cp vanish identically.

Proof. Consider a geodesic «, definided on the real line, starting at 7" and let

T denote also the velocity field of 4. Along v take any vector field Y € A+,
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We know, from equation 7, that
(VrCr)(Y) — CrCrY =0

for all Y € AL,

Now, following the proof presented in[3], assume that A is a real eigenfunc-
tion of Cp along . We get then that ) is a solution of the equation ' = A2
defined on the real line, hence A vanishes identically, that is, C'r has no non-zero
real eigenvalues.

To conclude that zero is the only eigenvalue of C'r, assume that a + ib were
an eigenvalue of Cr. Then a® + b? would be an eigenvalue of Cyr_p 7 so that
a=0and b=0.

We have thus proved that Crp is nilpotent.

Proposition 16 Cr =0

Proof. From lemma 15 we know that Céi =0, since C7 is complex.
From lemma 13 and Gauss equation we know that < «(7,Y),a(7,Y) >=0

for every T € A and Y € A+, hence
o(T,Y) = 0. 9)

Assume that, for some T, Cr were not identically zero. Let I' represent,
the kernel of Crp.

Take Z € At such that Y = Cr(Z) # 0. We will prove first that a(Y, V) =
0, for any V in I

a(Y,V)=a(Cr(Z),V)=C(Cr(Z),V)+ Q(Cr(2),V) =

C(Cr(2),V)+Q(Z,Cr(V)) = C(Cr(2),V)
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Now, using equation 4, we know that CrZ" = CrnZ' = 0, so that

c(Cr(2),V) = C(Cr(Z),V")+C(Cr(2"),V') =

_CV((VZ/T/)AL : V”) _ Oc((VZNT”)AL, V’),
Using Codazzi equation and equation 9,

C(Cr(2),V) = —a(VzT V") - a(VzT", V')
AT, V2 V") + (T, V20 V') = (T, (V2 V")2) + o(T", (V21 V')2) =

= oT,(V2V")2) +a(T, (V2 V"))

Notice now that, for every S € A, (Vz.V",8") = (V" ,Cs/(Z")) = 0 since

Cs/(Z") =0, as we know from equation 4. Therefore,
T, (V2 V")) + (T, (V4 V')2) = (T, (VzV")™) + (T, (VzV')*) =
oT, (VZV)?)
We conclude then that
(@Y, V),a(Y,V)) = (T, (V2V)2), (Y, V) =
(AT, Y),a((V2Y)2, V) + (AT, V), a((VzY)2,Y)),

where we have applied lemma 13 to get the last equality. Thus, from equation
9, a(Y,V)=0.

Now we end up taking Z € Al such that Y = Cp(Z) € T (if Cécfl is
not identically zero choose W such that C*~1(W) # 0 and consider Z =

Ck=Y(W)). Clearly JY € I'. Therefore, using Gauss equation we conclude
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that, (R(Y,JY)Y,JY) = ((a(Y,Y),a(JY,JY)) — (Y, JY), (Y, JY)) = 0,
which cannot happen. Thus I' = 0.

According with remark 9, allowing the hypothesis that M has non negative
sectional curvatures we argue in the following way: taking Y as above, that is

Y = Cr(Z) €T, we obtain, through Gauss equation, that, for every Z € A+,
(R(Y,2)Y, Z) = —(a(Y, Z), (Y, 2)), (10)

since a(Y,Y) = 0. The assumption on the sectional curvatures implies that
a(Y,Z) = 0 for every Z € TM which entails that Y € ker, so that Y €

ker a(2:9) which cannot happen. Thus Cp vanishes identically.

A and At are now two parallel distributions. Since A and At are invariant
under the action of the holonomy group of M, we infer from the De Rham
decomposition theorem that U is a product of two Kéhler manifolds and ¢y
is a product of two immersions, since a(T,Y) = 0 whenever T € A, Y € A+
[12]. An analiticity argument allows the conclusion that M™ is a product of

two Kéahler manifolds and ¢ is a product immersion.

The proof of corollaries 4 and 5 is analogous to that of [8] for r» = 2.
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