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AN ISOMETRIC IMMERSION THEOREM IN Sol®
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Abstract

Using a recent result on the existence of G-structure preserving iso-
metric immersions (see [1]), we prove an existence result for isometric
immersion into the three dimensional Lie group Sol®. This group is one
of the eight simply connected homogeneous manifolds, as classified by
Scott (see [6]).

1 Introduction

It is well known that an isometrically immersed hypersurface needs to satisfy
the compatibility equations called the Codazzi, Gauss and Ricci equations. In
the case where the ambient spaces has constant sectional curvature (5", H* and
R™), these equations prove to be sufficient too. Recently, in [3], some isometric
immersion theorems were proven in an ambient space given by a Riemannian
product $” x R or H" x R; in [4] the author proves an immersion theorem in
homogeneous 3-manifolds whose isometry group has dimension 4. As presented
in [6], eight 3-dimensional Riemannian manifolds characterize all 3-dimensional
geometries. The only simply connected, homogeneous Riemannian 3-manifold
whose isometry group has dimension 3 is given by the Lie group Sol®, endowed
with a left-invariant metric. In this note we prove an isometric immersion theo-
rem in Sol®, and, more in general, into Lie groups endowed with a left-invariant
Riemannian metric, using a recent result of existence of affine immersions, due

to Piccione and Tausk (see [1]), that uses the notion of G-structure.
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2 Preliminaries

Let Vo and V' be arbitrary vector spaces having the same dimension and the
same field of scalars; a linear isomorphism p : Vo — V will be called a Vj-frame
of V. Let GL(Vp) denote the general linear group of Vq, i.e., the group of all
linear isomorphisms of V,. Then the set FRy, (V) of all Vp-frames of V is a
GL(Vp)-structure on the set V' modeled upon Vj.

Let M be a differentiable manifold, Ey be a real finite-dimensional vector
space, E be a set and 7 : E — M be a map; for each x € M we denote by E,
the subset 7~1(x) of E and we call it the fiber of E over z. Assume that for
each © € M we are given a real vector space structure on the fiber £, such that
Ey and E, have the same dimension. The set FRg, (E,) of all Ey-frames of E,
is thus a principal space with structural group GL(Ep).

Throughout this article we will use the concepts of Christoffel tensor and
inner-torsion of an affine manifold with G-structure (see [1]).

To define the Christoffel tensor we must notice that, if 7 : £ — M is a
vector bundle with typical fiber Ey and s : U — FRg,(E) is a smooth local

Eo-frame of E, we can define a connection ?* on E|y by:
(% V)(z) = s(x)[dVa(X)]

for all V' smooth section of E|y (V € I'(E|v)), X smooth section of TM (V €
[(TM)) and all z € U, where V is such that soV = V.
If V is a connection on E, we define the Christoffel tensor of V with respect

to s as the C'°°(M)-bilinear map
I:T(TM|y) x T(E|lv) — T(E|v)

such that I' = V — 0°%; recall that the difference of two connections is a tensor.

Let now 7 : E — M be a vector bundle with typical fiber Ey endowed with
a connection V, let G be a Lie subgroup of GL(Ey) and P C FRg,(E) be a
G-structure on E. For each z € M, denote by G, C GL(E,) the Lie subgroup
consisting of all G-structure preserving isomorphisms of F,, ie., ¢ € G, iff

gop€ P, for all p € P,; denote by g, C gl(E,) its Lie algebra.
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For x € M and p € P,, we can define o : GL(Ey) 3 g — p-g € FRg,(F) and
then I, : GL(Eo) 2 g+— 0o L,o0~ " € GL(E,). Define Ad, : gl(E,) — gl(E,)
as the differential of the Lie group isomorphism I, and Ad, : Lft’) — % the
map induced by Ad, in the quotient. Observe that Ad(g) C g..

Recall that V is associated to a unique principal connection Hor(FRg,(E))
on the GL(Ejp)-principal bundle FRg,(E) (see [1], Proposition 2.5.4); denote by
w the connection form of this principal connection. Let s : U — P be a smooth
local section of P. For x € U set p = s(z) and @ = s*w.

Define 37 : T,M — % as the composition of maps illustrated in the
following diagram:

Ad,

quotient

T, M —2— gl(Ey) gl(Eo)/g 9l(E.)/ 8. (1)

gP

=

It can be proved JF does not depend on the choice of the local section s (see
[1], Lemma 2.10.3). We call JF the inner torsion of the G-structure P at the
point = with respect to the connection V.

The result in [1, Lemma 2.11.1] gives a more convenient method for com-
puting the inner torsion J as the composition of the Christoffel tensor I', of
the connection V with respect to s and the quotient map gl(E,) — %ﬁ’”).

Now, let (M, V) be an n-dimensional affine manifold, let G be a Lie subgroup
of GL(R™) and let P C FR(T'M) be a G-structure on M. Denote by T and R
respectively the torsion and the curvature tensors of V. Given z,y € M, a map
o :T,M — T,M is G-structure preserving if o op € P, for some (and hence for
all) p € P,. A smooth map f: M — M is said to be G-structure preserving if
dfe : ToM — Ty M is G-structure preserving for all z € M.

Denote by Ad, is a linear isomorphism from @ to gI(%;M) defined by
passing to the quotient Ad, : g((T, M) — gl(T, M), the differential of the Lie
group isomorphism I, : GL(T,M) 3 T +— coT oo~ ! € GL(T,M) at identity

(it’s well defined since Ad, carries g, to g,).
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Definition 2.1 We say that the triple (M, V, P) is an infinitesimally homoge-
neous affine manifold with G-structure of for all x,y € M, every G-structure
preserving map o : T,M — T, M relates T, with T, R, with R, and 35 with

35, i.e., Ty(o+,0°) = 00T,, Ry(o+,0) =0coR(-,-)oo™" and 3500 = Al 03F.

With the notions of Christoffel tensor and inner-torsion presented let us
now describe the canonical 1-structure associated to a Lie Group H. Let H
be a Lie group and b its Lie algebra; assume that § is endowed with an inner
product. The choice of an orthonormal basis of h gives a 1-structure on the
tangent bundle T H; more precisely, if {E;} denotes an orthonormal basis of f
and {e;} the canonical basis of R", let s : H 3 p — F, € FRga(T,H) with
F, such that F,(e;) = E;(p) be a global smooth section of the frame bundle
associated to TG. Then P = s(H) is a G-structure on TH with G = {Idg~ }.

For each p € H, we have G, = {Idr,x} and g, = {0}.

Using the notions of Christoffel tensor and inner-torsion presented above
we see that, if V is the Levi-Civita connection in T'H, then the inner-torsion
3P T,H — gl(T,H) is equal to the Christoffel tensor T, : T,H — gl(T,H)

corresponding to s.

3 Isometric immersions into Lie groups

In this section we discuss an immersion theorem into Lie groups (Corollary 3.3)
as an application of Theorem 3.2 whose proof can be found at [1] (Theo-
rem 3.5.2).

Let 7 : E — M be a vector bundle on M with typical fiber R* endowed
with a semi-Riemannian structure g of index s. Denote by (-, -}, the standard
Minkowski metric in R* having index s, and let G = O(k,k — s) the be Lie
subgroup of GL(IR¥) consisting of all linear isomorphisms of R* preserving (-, -),.
Define FR°(E) as the G-structure consisting of all linear isometries p : RF — E,,

r € M; these will be called the orthonormal frames of E.
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Definition 3.1 Suppose we are given the following data:

e an m-dimensional semi-Riemannian manifold (M,q), where the semi-

Riemannian metric g has index 7;

an n-dimensional semi-Riemannian manifold (M,g), where the semi-

Riemannian metric g has index r;

a vector bundle w : E — M with typical fiber R* and a semi-Riemannian

structure g% of index s, where m =n+k andT =1+ s;

a connection VF on E compatible with g ;

a smooth section a° of Liny(T M, E).

By a local solution of the semi-Riemannian isometric immersion problem cor-
responding to the data above we mean a pair (f,S), where f : U — M is an
isometric immersion defined in an open subset U of M and S : E|ly — f* is

an isomorphism of vector bundles such that:
® i) (Sa(e), S:(€) = gZ(e, €), forallz € U and all e, € € E,;

e S is connection preserving if E is endowed with VE and f+ is endowed

with the normal connection V*;

e S carries a° to the second fundamental form o of the isometric immersion

f,ie, Syo0al=aqy, forallz e U.

We call U the domain of the local solution (f,S). By a solution of the semi-
Riemannian isometric immersion problem we mean a local solution (f, S) whose

domain s M.

Consider the vector bundle E = TM®E endowed with the semi-Riemannian
structure § whose restrictions to TM and E are g and g” respectively and such
that TM and E are orthogonal. Let G be a Lie subgroup of Ox(R™), P be
a G-structure on E and P be a G-structure on M such that P C FR"(E)
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and P C FR°(TM). A local solution (f,S) of the semi-Riemannian isometric
immersion problem with domain U C M is said to be G-structure preserving if

for all x € U, the linear isomorphism:

df. © S, : By = .M @ E, — Afo(TaM) @ fif = Ty M

x

is G-structure preserving.

Theorem 3.2 Suppose we are given data as in Definition 3.1; denote by V the
Levi-Civita connection of (M, g) and by V the Levi-Civita connection of (M, 7).
Consider the vector bundle E = TM ® E endowed with the semi-Riemannian
structure § whose restrictions to TM and E are g and g respectively and such
that TM and E are orthogonal. Let V be the connection on E that is compatible
with § and whose components are V, VE and o° (see [1, Subsection 2.8.1]). Let
G be a Lie subgroup of Ox(R™), P be a G-structure on E and P be a G-structure
on M such that P C FR®(E) and P C FRO(TM). Assume that (M, ¥, P) is
infinitesimally homogeneous and that for all x € M, y € M and every G-

structure preserving map o : Ex — T,M, the following conditions hold:
(a) o relates the inner torsion ofﬁ with the inner torsion of P, i.e.:
Ad, o Jf = jyﬁ o 0;
(b) the Gauss equation holds:
7,[Ry(0(v),0(w))o(u),0(2)] = go(Ra(v, w)u, z)
- ng(ag(w’ u)> Oég(’U, Z)) + gf (Olg(l), u)> ag(w> Z))7
for allu,v,w,z € T,M;
(c) the Codazzi equation holds:
9y [Ry(0(v), 0(w))a(u), a(e)] = g ((V*a")u(v,w, 1), )
- gf((wao)w(w7 v, U), 6)7

for all u,v,w € T,M and all e € E,, where V® denotes the connection
induced by V and V¥ on Liny(TM, E);
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(d) the Ricci equation holds:

9y[Ry (0(v), 0(w))o(e), o(e)] = g7’ (R7 (v, w)e, )

+ 9= (ag(v)* €, ag(w)* : el) — Yz (ag(w)* €, Ozg(’l))* : 61)7

for all v,w € T,M and all e,e’ € E,, where R¥ denotes the curvature

tensor of VE.

Then, for all xo € M, all yo € M and for every G-structure preserving map
0o : Exﬂ — T, M there exists a G-structure preserving local solution (f,S) of
the semi-Riemannian isometric immersion problem whose domain is an open
neighborhood U of o such that f(xo) = yo,

00 = Afno @ S : By = Tog M @ Epy — Afng(TogM) & [ = T,, M. (2)

If M is connected and simply-connected and if (M, V) is geodesically complete
then one can find a unique G-structure preserving global solution (f,S) of the
semi- Riemannian isometric immersion problem satisfying the initial condition

above.

Applied to the case of Lie groups endowed with a left invariant metric and
endowed with the 1-structure defined by the choice of a left invariant referential,

the theorem above leads us to the following Corollary:

Corollary 3.3 Let H be a n-dimensional Lie group with Lie algebra 'y, and let g
be a left-invariant Riemannian metric tensor on H, with Levi- Civita connection
V. Let (M,g) a n-dimensional Riemannian manifold (n = W — 1) with Levi-

Civita connection V. Let A be a smooth field of symmetric operators
A, T,M —T,M,

let T; (1 <1 < n) be smooth vector fields on M and let f; be smooth real
functions on M such that ||T||*+ f? = 1. Let {E; 1 <1 < n} be an orthonormal

basis of b, and set:

VeEj=> TSE, Vij=1,.. 7
k
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and
Eijkl ZE(E(EHE])EIHEZ) Vi?jﬂkvl: 17"'7ﬁ'
Assume that the following relations hold:

e forl1<i,j<n:

VT = fAT) = 3, 9(Ti, Ty, T
(A(T), T. T( i) = ng(TwTk)Fﬁwfz

Assume that, for all x € M:

—N

e the Gauss equation holds:

Z ’Ui’wjukzlﬁijkl = gm(Rz(U/ QU)U, Z)

ikl

= 92(A(w), 0)go(A(v), 2) + ga(A(u), v)ga(A(w), 2)

for allu,v,w,z € T, M;

Where, for 1 <i <mn:

V=00, i) W' =ga(w, Ti(x))
u'=go(u,Ti(z)) 2= gu(2 Ti())

e the Codazzi equation holds:

> viwt fi(z) Ry = v(g(AW),U)) — w(g(A(V),U))

2,9, kL

+ ¢.(A(u), W, V]) + g.(A(v), V,U) = g.(A(w), V,,U)

for all u,v,w € T,M (V', w' and u' as defined above) and U, V, W local

extensions of u,v,w respectively;

Then, for all xo € M and yo € H, there exists f : U — H (where U is an
open neighborhood of xo in M ) isometric immersion into H such that f(zo) = yo

and S : U x R — f+ isomorphism of vector bundles such that:
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® ) (Sz(e), Su(€')) = e€', for all x € U and for all e,e' € x x R;

o S is connection preserving if U x R is endowed with VF such that VEe =
V(e) (for V wvector field in U and e real function in U) and f* is endowed

with the normal connection V*;

o S carries a° = g(A(-), -)% to the second fundamental form « of the iso-

metric immersion f, i.e., Sy 0l = ay, for allz € U.

Moreover, if M is complete, connected and simply-connected there exists a

unique global isometric immersion (f, S) of M into H with the properties above.

Proof. As described in the preliminaries, we have 5 : H > p — F, €
FRyr(T,H) with F, such that F,(e;) = Ey(p) (1 < i < 7m) and P = 5(H)
the G-structure of H (G = {Idg=}). In the following, if x € H, we'll denote by
G, the Lie group {Idr, z} and by g, its Lie algebra.

Endow the vector bundle E = TM @ R with the Riemannian structure %
whose restrictions to TM and R are g and g% (¢F(a,b) := a(x)b(z), a,b real
functions in M) respectively and such that TM and R are orthogonal.

Let ¥ be the connection on E given by Vy (W, a) = (VyW—aA(V), g(A(V),
W) + V(a)) for V and W vector fields on M and a a real function on M
(connection which is compatible with §).

Consider §: M 3 p — F, € FRg=(T,M @ R) with F, such that F,(e;) =
(Ti(p), f:(p)) (1 < i <m) and P = §(M) a G-structure on E. Denote by G, the
Lie group {Idp } and by g, its Lie algebra (where 2 € M).

For x € M and y € H, let o : E, — T,H be the linear map such that
a(Ti(z), fi(z)) = Ei(y) (G-structure preserving map).

Since (H,V,P) is homogeneous, we can easily conclude from Proposition 6.4
of [2] that it’s indeed infinitesimally homogeneous.

Let’s prove now that our assumptions imply that Ad, o 3’3 e jﬁ o alr,u,

EI(EE) to BK(Ty

where Ad,, is a linear isomorphism from ) defined by passing to the

quotient Ad, : gl(E,) — gl(T,H), the dlfferentlal of the Lie group isomorphism
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~

I, :GL(E,) > T+ coToo ! € GL(T,H) at identity (it’s well defined since
Ad, carries g, to g,).

Since for the 1-structures already mentioned g, and g, are null Lie algebras
then, for all x € M and all y € H, we have Ad, = Ad,.

Remember now that T = V — 9%, where
(0% V)(z) = 5(x)[dVa(X (z))]

(X and V vector fields on H, and So V = V). And since 0%V = 0 when V is
left-invaiant (d‘N/x is constant), I' = V on left-invariant vector fields.
It’s also true that T(T3, (T}, f;)) = Vi, (T}, f;) because if Y is a section of E

i

such that $o Y; = (T3, f;) then Y;(p) = ¢; (which implies (dY;), = 0). Since
(% (Ti, £)(p) = () [(dY),(X(0))] = 0

we have T(T;, (T}, f;)) = Vo, (T}, f;) as previously mentioned.
Then Ad, o 37 = 3% 0 o,y if and only if T, (T3, (T}, f;)) = (Ad,-1 0 Ty o
o)(T;, (T}, f;)) (observe that T and T are tensors, Ad;! = Ad,— and the fol-

lowing diagram commutes).

Since
(T3, 0) = Za«nox (Ty, [T, f;) = Zg(ﬂ@)(% £)

it’s true that

ﬁTz(I}’fj) = i_‘\ar(Tlv (Tj’fj)) = (Adv’l Ofy °© U)(Tiv (Tﬁfj)) =

=> 9(T, Ti)o " oTy(Ey, B;) = Y g(T;, Ti)o ™" o Vg, E;
k k

And, since V5, (Tj, f;) = (V. Ty—fAT), (A(T), T)+T(f;)) and Ve, By =
> w5 By, for all 4,5 = 1,...,7, we have:
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{ V1T = fAT) = Y0 9(Ti T, T
9(A(T), Ty) + Tilf3) = Xk 9(Ti, Te) Ty f
This proves these equations are necessary and sufficient for Ad, o ﬁf =
35 o g|z,m to be true.

The Gauss equation as presented bellow follows immediately from Gauss
equation as presented in the Theorem 3.2.

In our case a,(-, ") = g.(A(:), ).
9y[Ry(0(v), o(w))o(u), 0(2)] = gu( Ro(v, w)u, 2)—

—92(A(w), v)g2(A(v), 2) + g2(A(u), v)ga(A(w), 2)

for all u,v,w,z € T, M,
Notice then that:

The Codazzi equation on the other hand follows easily when noticed that
(V¥a)a(v,w,u) = v(g(A(W),U)) — gu(Vu W, 1) = go(w, V.U)

for all u,v,w € T,M and U, V, W local extensions of u, v, w respectively.

y[Ry(o(v),0(w))o(u),0(1)] = v(g9(AW),U)) — w(g(A(V), U))+

+0a (A(u)v [Wv V]) + 9o (A(U>7 va) - gx(A(w>7 VUU>

for all u,v,w € T,,M and U, V, W local extensions of u, v, w respectively;
Asv =3 0Ty, fi)o, w = 2WH(T5, fi)as u = 2T, fi)o, 1= 32 fil@) (T, fi)e
Codazzi equation, as presented in the theorem, follows.

Ricci equation naturally holds:
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Notice that g,[R,(c(v),o(w))o(¢'),o(e)] = 0 and g.[RE(v,w)e’,e] = 0 for
all v,w € T,M and all e, ¢’ € E,, since:

gy[Ry('W)’?'] and gw[Rf(7)7] =0

are anti-symmetric in the last 2 variables and ¢’ and e are linearly dependents
(dim E, = 1).

Moreover, we have

0u(020)" - €,02(w)" - ¢) — gu(02(w)" - e, 0l(v)" - €)

= e€'[g:(A(v), A(w)) — 9o(A(v), A(w))] = 0

(v,weT,M, e e €R).
Then, Ricci equation holds immediately.

From the facts presented above, Theorem 3.2 concludes the proof.

4 TIsometric immersions into Sol®

By Sol®, or simply Sol, we mean the Lie group whose base manifold is R,

endowed with group operation:

(@,9,2) - (2., 2) = (e + e,y + €y, 2+ )

and the left-invariant metric ds? = e?*da? + e~ 22 dy? + d22.

We consider the {Idgs}-structure on Sol given by the orthonormal left-
invariant frame X;, X, and X3 defined by:

X; : 8013 (2,y,2) — (€7,0,0) € Tiyy,-)So0l

X5 : S0l 3 (2,9, 2) — (0,67%,0) € T4y, Sol

X5 : 5013 (2,y,2) — (0,0,1) € T(y, - Sol
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Corollary 4.1 Let (M, g) be a Riemannian surface with Levi-Civita connection

V. Let A be a smooth field of symmetric operators
A, T,M — T,M,

let T; (1 < i < 3) be smooth vector fields on M and let f; be smooth real
functions on M such that ||T;||> + f2 = 1.
Assume that the following relations hold:
e forie {1,2,3} and j € {1,2}:
{ VTT fj (CC (—1)jg(szTj)T3

o forie{1,2,3}:

VT3 — HAT) = Y54 (-1)V (T, T)T;
9(A(T2), T5) + Ti(f3) = '

Assume that:

e the Gauss and Codazzi equations as presented in the corollary above hold.

Then, for all o € M and yo € Sol, there exists f : U — Sol (where U
is an open neighborhood of xo in M) isomelric immersion into Sol such that

f(zo) =10 and S : U x R — f+ isomorphism of vector bundles such that:
® G (Sa(e), Sa(€)) = e€', for allx € U and for all e,e’ € x x R;

e S is connection preserving if U x R is endowed with V¥ such that VEe =
V(e) (for V wvector field in U and e real function in U) and f* is endowed

with the normal connection V= ;

e S carries a® == g(A(+),") & to the second fundamental form « of the iso-

metric immersion f, i.e., Sy o0l = qa,, for allx € U.

Moreover, if M is complete, connected and simply-connected there exists
a unique global isometric immersion (f,S) of M into Sol with the properties

above.
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Proof. First of all let’s calculate the value of T on the left-invariant vector

fields X; of Sol®.
The Lie brackets [X;, X;] can be deduced by its values on real functions. We

see that:

[X17X2] = 0 [X17X3] :Xl [XQaXS} = 7X2
Koszul formula for the Levi-Civita connection enable us to calculate V x, X

We obtain:

v)(1)(1 = _XS v)(1)(3 = Xl
szXZ = X3 v)(2)(3 = _X2

and in X; = 0 otherwise.

The first equations of the preceding corollary are, now, equivalent to:

{vTT JA(T) = (-1Yg(T,T)T,  fori € {1,2,3}
9(AT),T)) + Ti(f;) = (~17g(T. T}) s and j € {1,2}

vTiT3 - f3A(,]11) = Z?:l(_ ) j+1)g(T T; )T fOf (AS {17 27 3}
9(A(T), Ts) + Tu(fs) = X, () 9g(T, T)) s
These equations, together with the equations of Gauss and Codazzi, imply

our thesis, by the Corollary 3.3.

Remark 4.2 Sol’s curvature can be easily computed since:
2(2,VxY) = ([X,Y],2) — (Y, 2], X) + {[Z, X],Y),

where X,Y, Z are left-invariants vector fields of Sol (see [5] for more details).
We have:

Ewu =-1, §1313 = 17 E2323 =1

and the others Ejkl =0 or gien by curvature symmetries.
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