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Abstract

The Einstein equations on 4-dimensional Walker manifolds equipped
with a natural para-Hermitian structure are analyzed, providing new
examples of Osserman metrics whose Jacobi operators are neither diag-
onalizable nor nilpotent.

1 Introduction

Let (M, g) be an n-dimensional pseudo-Riemannian manifold with Riemann
curvature tensor R. The difficulty of working with the whole curvature tensor
in full generality leads to the analysis of other objects which allow to recover
the curvature tensor of the manifold. Among these objects the Jacobi operator
is one of the most natural and widely investigated (cf. [14]). For a point p € M
and a unit vector X € T,M, the Jacobi operator is defined by Rx = R(X, -)X.

Definition 1 (M, g) is called pointwise Osserman if, for every p € M, the
eigenvalues of the Jacobi operators Rx are independent of the choice of X, and
it is said to be (globally) Osserman if such eigenvalues are also independent of

the point p considered.
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Note that since the Ricci tensor is obtained by tracing the Jacobi operators,
any Osserman metric is Einstein.

In the Riemannian setting, Osserman conjectured that globally Osserman
manifolds should be locally two-point homogeneous [17] and this was proved by
Chi for n # 4k, k > 2 [6]. Recent work of Nikolayevsky has given an almost
complete answer to the Osserman Conjecture in the Riemannian case. More
precisely, it is shown in [15], [16] that a globally Osserman Riemannian man-
ifold of dimension n # 16 or a pointwise Osserman Riemannian manifold of
dimension n # 2,4, 16 is locally isometric to a two-point homogeneous space.
Note that in dimension two any Riemannian manifold is pointwise Osserman,
while globally Osserman manifolds are those with constant Gauss curvature.
In dimension four, pointwise Osserman spaces are those Einstein and self-dual
(or anti-self-dual) manifolds, and thus there exist pointwise Osserman four-
dimensional manifolds which are not locally symmetric. Therefore, in the Rie-
mannian case, only the 16-dimensional case is still open.

The Osserman Conjecture has also a positive answer in the Lorentzian case
(cf. [2], [10]). However, when the Osserman condition is considered in other sig-
natures the situation is completely different and more complicated, with many
examples of Osserman spaces which are not locally symmetric and even not
locally homogeneous (cf. [11], [12], [14]). Indeed, globally Osserman manifolds
are not even classified in signature (— — ++) where, besides the results in [3]
and [13], a description of all (— — ++)-Osserman spaces is not yet complete.
In this sense, the fact that all previously known examples of (pointwise) Os-
serman metrics had either diagonalizable or nilpotent Jacobi operators (see [3],
[11], [14] and the references therein) suggested that this should be true in the
general case. However, in [8], [9] explicit examples of Osserman metrics whose
Jacobi operators are neither diagonalizable nor nilpotent are constructed. Such
examples were motivated by an Einstein para-Hermitian structure on Walker
manifolds and the purpose of the present work is to develop a detailed study
of such Einstein para-Hermitian Walker manifolds, showing that the examples

in [8] are a particular situation of a more general family of Osserman metrics
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with neither diagonalizable nor nilpotent Jacobi operators. More precisely, the
following is the main result in this paper:
Theorem A Walker metric
g =dz' @dr®+ de® @ de' + da? @ dat + dat @ dx?
+ade® @ de® + bdat @ det + o(dz® @ dz* + dz* ® dz?)

equipped with the almost para-Hermitian structure
J(?l:—@l, Jagzag, ']83:—6181-‘!‘83, J84:b82—84,

15 Osserman para-Hermitian with non-nilpotent Jacobi operators if and only if
the defining functions a(z1, Te, T3, 4), b(T1, T2, 3, 74) and c(xq, T2, T3,T4) Sat-

18fy

=20} + o P+ 2 (PT—T° 4 90%),
b= a2+ 1:Q + & (QS — 52 +25,),

c=20120+ TS+ 2T+ 8 (ST + Qs — Ss+ Po—Ty),

for any smooth functions P(x3,x4), Q(z3,x4), S(3,24) and T(z3,24).

The paper is structured as follows. In Section 2 we motivate the study of
para-Hermitian structures on Walker 4-manifolds in the search of new examples
of Osserman manifolds. In §3 a natural para-Hermitian structure is defined on
any Walker metric and a characterization of the solutions of the Einstein equa-
tion for such a para-Hermitian Walker manifold is obtained. As a consequence,
three families of Walker metrics are obtained. Finally, in §4 we investigate the
Osserman condition for each one of the three families of metrics, showing that

exactly one of them generalizes the examples in [8].

2 Motivation: Four-dimensional Osserman and
Walker metrics
Four-dimensional Osserman metrics

For any non-null vector X in the (— —++)-setting, the induced metric on X* is

of Lorentzian signature and hence the eigenvalue-structure does not completely
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characterize the Jacobi operators. This led to the consideration of the Jor-
dan normal form of the Jacobi operators and in [3] the following four different

possibilities were considered:

« a —0 J6] «
ﬁ ) ﬁ Q ) (8 5 1 «
v 5 1 « 1 «
Type la Type I Type 11 Type 111

Type Ia corresponds to diagonalizable Jacobi operators and it is known that
any such Osserman metric is locally a real, complex or paracomplex space form
[3]. Type Ib corresponds to Jacobi operators with a complex eigenvalue and
it is proved in [3] that no four-dimensional Osserman metric may have such
structure. Finally, Type II (respectively, Type III) corresponds to a double

(respectively, triple) root of the minimal polynomial of the Jacobi operators.

As a starting point in the search of Osserman spaces with nondiagonaliz-
able Jacobi operators we recall the known fact that in the case of two different
eigenvalues o and 3 (a of multiplicity two), the relation 8 = 4a holds and,
in such a case, the metric admits a local parallel field of null two-planes, i.e.,
it is a Walker metric (cf. [3]). Also recall that an important difference be-
tween complex and paracomplex space forms from the point of view of their
Jacobi operators is that the restriction of the metric to the subspace Eg(X) =
span{X} @ ker(exRx — B1d), ex = g(X, X), is definite in the complex case
and indefinite in the paracomplex setting [4]. Further, note that in the case of
two distinct eigenvalues the nondiagonalizability of the Jacobi operators implies
that the metric induces a Lorentzian inner product on Eg(X). This fact leads

our attention to para-Kéhler structures and, by extension, to Walker manifolds.

Walker metrics

Definition 2 A Walker manifold is a triple (M, g, D), where M denotes an n-
dimensional manifold, g an indefinite metric and D an r-dimensional parallel

null distribution.
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Of special interest are those manifolds admitting a field of null planes of
maximum dimensionality (r = %). Since the dimension of a null plane is r <
2, the lowest possible case of a Walker metric is that of (— — ++)-manifolds

admitting a field of parallel null two-planes.

For such metrics a canonical form has been obtained by Walker [18], showing

the existence of suitable coordinates (x1, ..., z4) where the metric expresses as
0010
0001

(@1,29,23,24) = 10 a ¢ (1)
01 ¢ b

for some functions a, b and ¢ depending on the coordinates (z1, ..., Z4).

Para-Kéahler manifolds, being symplectic manifolds locally diffeomorphic to
a product of Lagrangian submanifolds, admit a pair of parallel null distributions
of maximal dimensionality. Moreover, if a 4-dimensional manifold is assumed
to be Osserman para-Kéhler, then it is either Ricci flat or a paracomplex space
form [7], and hence this kind of manifolds does not provide the new desired
examples of Osserman spaces (i.e., Osserman manifolds whose Jacobi operators
are neither diagonalizable nor nilpotent).

The above remark motivates the study of a more general situation: Walker
4-manifolds equipped with a para-Hermitian structure, which we tackle in the

following section.

3 Einstein para-Hermitian Walker metrics

3.1 The para-Hermitian structure

An almost para-Hermitian manifold is an almost symplectic manifold (M, §2)
whose tangent bundle splits into a Whitney sum TM = L & L' of Lagrangian
subbundles. Such decomposition induces an almost paracomplex structure .J
(i.e., a (1,1)-tensor field satisfying J? = Id) on M such that g(JX,JY) =
—g(X,Y) for all vector fields X, Y on M. The pair (g,J) is said to be an

almost para-Hermitian structure. Further, it is called para-Hermitian if the
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almost paracomplex structure J is integrable and it is said to be almost para-
Kdhler if the fundamental form Q(X,Y) = ¢g(JX,Y) is closed. Finally, (g, J)
is said to be para-Kdhler if both conditions above are satisfied (equivalently,
VJ =0, where V is the Levi-Civita connection of g).

Now, associated to any Walker metric (1) we consider a natural almost

para-Hermitian structure J defined by
J81 = —81, Jag = 82, J@g = —a81 + 83, J(94 = b82 — 84, (2)

where here and henceforth {0;} denotes the coordinate basis. Also, from now on

we use subscripts for partial derivatives, i.e., h;, . , for any function

h depending on (z1,...,Z4).
The Levi-Civita connection of a Walker metric is given by (cf. [9])
Vo,05 = 30101 + 510, Vo, 0y = $¢101 + 30102,
V,05 = 30201 + 3205, Vo,0s = 56201 + 3b20s,
Va,05 = 3(aay + caz + a3)0y + 3(car + baz — ag + 2¢3)02 — %05 — 20y, (3)
Va,01 = 3(as + acy + cc2)01 + 3(bs + ccy + beg)dp — 405 — 204,
V,01 = L(aby + by — by + 2¢4)01 + (cby + bby + by)0 — 205 — 20,

Analyzing the almost para-Hermitian structure J we obtain the following:

Theorem 3 A Walker metric (1) equipped with the almost para-Hermitian

structure (2) is para-Hermitian if and only if
Ao = b1 =0. (4)
Moreover, the almost para-Kdhler condition holds if and only if ¢y = co = 0 and
hence the para-Kdhler condition is equivalent to as = by = ¢1 = Co.
Proof. For the Nijenhuis tensor N(X,Y) = [JX, JY] - J[JX,Y]| - J[X, JY]+
[X,Y] associated with J, put N;; = N(0;,0;). N is determined by
Ny = —lea% Noz = *2@2817 N3y = ba231 — CLblaQ.

Hence, the integrability of J is characterized by as = b; = 0. The second part

of the result is obtained after a direct calculation from (3). O
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3.2 The Einstein equation

In the rest of this section we center our study on the case of (g,.J) being a
para-Hermitian structure, obtaining a classification of Einstein para-Hermitian
Walker metrics (1)-(2) as a first step to analyze the Osserman condition for
these Walker metrics.

Let R denote the Riemann curvature tensor taken with the sign convention
R(X,Y) =V|xy]— [Vx, Vy]. From (3) we get the nonzero components of the

curvature tensor of any Walker metric (1), which are given as follows (cf. [9]):

Rizi3 = —%0117 Ryzy = —%0117 Ryzp3 = —%am Rz = —%0127
Rizzy = i (=21 + crca + 2a14 — 2¢13)
Rigq = *%5117 Riyyo3 = *50127 Rigoy = *%512,
Rz = % (—c2 +arby — bica + bacy — 2b13 + 2¢14)
Rasp3 = *%%27 Rosos = *%sz
Roszs = % (3 — agby — a3 + az¢y + 2094 — 2033)
Royoq = *%5227 Roy3q = % (a2b1 — 109 — 2by3 + 2C24) s
Raysq = i (—acf — b3 + aarby + carby — aybs + 2a;1¢4
+caz2by + bagbs + asby + azby — asbs — 2a4¢1
+2bycs — 2b3co — 2cC1Co — 2044 — 2b3z +4C34) .

As a matter of notation, let p and 7 denote the Ricci tensor and the scalar
curvature of a Walker metric (1), where p is the contraction of the curvature
tensor given by p(X,Y) = trace {U ~» R(X,U)Y} and 7 is obtained by con-
tracting the Ricci tensor, 7 = trace p. Further, we denote by F the Einstein

tensor, i.e., F =p— 1g.

Lemma 4 The scalar curvature of a Walker metric (1) is given by

T = a1 + bas + 2¢12.
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Proof. From (5) we get

P13 = %(an +c2), pua= % (b12 + c11),

P23 = %(au + ), pos= % (bag + C19)

P33 = 5 (—C3 + @103 + agbs — ascy + aayy + 2ca12 + bage + 2¢23 — 2a24),  (6)
P31 = 5 (—a2b1 4 €103 + a1 + bag + acyy + 2¢c1p — 13 + beas — C24)

Pas = % (—C% + a1by — bica + bacy + abiy + 2¢bia — 2b13 + bbag + 2¢14)

and hence the result follows after a straightforward calculation. ]

Next we prove the main result in this section.

Theorem 5 A Walker metric (1) equipped with the almost para-Hermitian
structure (2) is Einstein para-Hermitian if and only if the defining functions
a(z1, To, T3, 4), b(T1, o, T3,24) and c(x1, T2, x3,24) are as follows:

Type A: the scalar curvature T vanishes and a is a linear function with
respect to x1 and is independent of x2, b is a linear function with respect to xo

and is independent of x1, and c is a linear function with respect to x1 and xs,

i.€.,
a(wy, x3,4) = £1P (23, 4) + E(X3,24),

b(T2, T3, Ta) = T2Q(T3, Ta) + 1(T3, Ta), (7)
c(z1, T2, T3, Ta) = T15(23, Ta) + 22T (73, T4) + (3, T4),
where &, 1 and 7y are arbitrary smooth functions, while P, Q, S, T are smooth

functions satisfying
PT-T?+2T3 =0, QS—5*+25,=0, ST+Q3—S3+P,—T,=0, (8)

or

Type B: the scalar curvature T is nonzero and a is a quadratic function with
respect to x1 and is independent of x2, b is a quadratic function with respect to
o and is independent of x1, and ¢ only depends on x3 and x4 as follows:

al®1, T3, Ta) = T3 + 1P (23, Ta) + E(23, 2a),
b(za, T3, Ts) = 25 + T2Q(x3, Ta) + 1(23, Ta), 9)
c(xs, 24) = % (Py(x3, 24) + Qs(3,24))
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for any smooth functions P(z3,x4), Q(z3,24), £(x3,24), n(T3,T4), or otherwise

Type C: the scalar curvature T is nonzero and a s a quadratic function with
respect to x; and is independent of x4, b is a quadratic function with respect to
22 and s independent of x1, and c is a linear function with respect to x1 and

2o as follows:

a(z1, T3, 34) = 23 + 1 P+ & (PT — T? + 2T3),
5

b(x%xg, (E4) = .flf% + IL'QQ + ?— (QS —i 52 + 254) 5 (10)
c($17x2,x3,x4) = %xle + $1S + .TQT + g (ST + Q3 — S3 + P4 — T4) 5

for any smooth functions P(xs,z4), Q(xs,x4), S(xs,24) and T(xs3,24).

Proof. The Einstein equations for a Walker metric (1) are as follows:

Fis = —Fau = Fay = —Fpp = £ (@11 — baa) =0,
Fuu=Fn=Lbn+en)=0,
Fas = Fon = L (ara + ) = 0,
Fsz = 1 (20162 + 2a2bs — 2az¢1 — 2¢3 4 a(ar — ba)

+dcars + 2bage — 4ass — 2aci2 + 4egz) = 0, (11)
Fua = 1 (2a1by — 2b1¢2 + 2bacy — 263 — bary — bas)

+2aby; +4cbig — 4b1z — 2bcys + 4ciy) = 0,
Faq = Fuz = 5 (—2a2by + 2c160 — cany + 2a14 — chas

+2bos + 2ac11 + 2¢c19 — 2¢13 + 2bco9 — 2¢94) = 0.

First of all note that if (g, J) is assumed to be para-Hermitian then as =

b1 =0by (4), ie., a = a(x1,T3,24) and b = b(z2, x3,74). Hence (11) reduces to

aip — b =0, c1=0, c2=0,
a1Cy — 3 — acia + 2¢03 = 0,

(12)
bacy — 3 — bera +2¢14 = 0,

€162 — €A1y + Q14 + bog + cC1a — 13 — Cog = 0.

We separate the proof of this theorem in three steps.
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The first step. In this step we easily check that a and b are, in general, quadratic
functions while ¢ must be a linear function of the coordinates (z1, ;). Indeed,
on the one hand the first equation in (12) implies that a (resp. b) is a quadratic

function of x; (resp. x2), with x3 and x4 parameters, as follows:

a(x1, T3, 24) = T26(x3, 24) + 21 P23, 24) + E(23, 24), 19
b(2a, T3, 24) = 236(x3, T4) + 22Q (3, 24) + 13, T4),
for some functions k(zs,z4), P(zs,x4), Q(xs,24), £(x3,24) and n(zs, 4). On
the other hand, the second and third equations in (12) imply that ¢ is a linear

function with respect to x; and x5, taking the form
c(xy, To, 3, T4) = T1220(T3, T4) + 1S (23, T4) + T2 T (w3, T4) + y(T3,24) (14)
for some functions a(zs, x4), S(xs, z4), T(xs, z4) and y(zs, x4).

The second step. We show in this step that the coefficient a(xs, z4) in the defin-
ing function c is related with the distinguished function k(z3,x,) by means of
the scalar curvature of the Walker metric and that, moreover, this last function
must be constant. In this sense, observe that Lemma 4 combined with (13) and

(14) implies that 7 = 4k(z3, x4) + 2a(x3,¢4) (7 being constant), from where
T
a(zs, xy) = g 2k(x3,24).

Now, differentiating the fourth equation in (12) twice by x4, a direct calculation
leads to
7% — 107k(x3, T4) + 24K(23,74)* = 0. (15)

Thus, k(x3,z4) must be constant, and

a(x1, 3, T4) = K23 + 21 P23, 24) + £(23, 74),

b(x2, T3, Ts) = K23 + 12Q (23, 24) + 13, T4), (16)

(@1, T2, T3, T4) = (§ — 2K) 2102 + 215(x3, T4)

+ 29T (x5, 24) + Y(3,24),

where the following three possibilities can occur: k = 7 = 0 and, if 7 # 0, either

=z =
K=z 0 Kk=g5.
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The third step. We analyze each one of the three possible cases obtained in the

previous step by separate.

Type A: k = 7 =0. This is the simplest case, since (16) reduces to
a(zy,x3,x4) = ©1P(x3,24) + (T3, T4),
b(z2, T3, T4) = 2Q(x3, 4) + n(T3, T4), (17)
c(z1, e, 3, 24) = 215 (T3, T4) + 22T (w3, 24) + 7(T3,24),

which is nothing but (7). Further, one easily checks that for such functions the

last three equations in (12) transform into
PT —T?4+2T3;=0, QS—S52+25,=0, ST+Q3—S3+P,—Ty=0,
i.e., (8) is obtained.

Type B: k = 7§ # 0. In this case, (16) becomes

a(x1, &3, Ta) = a3 + £1.P(xs, T4) + £(T3, T4),

b(xa, T3, Ta) = 23 + T2Q(x3, T4) + 1(T3, T4), (18)

c(z1, e, 3, 24) = 215(T3, T4) + 22T (w3, T4) + ¥(T3, T4).
Next we show that only the form of the defining function c is affected by the last
three equations in (12), to obtain (9). Note that the fourth and fifth equations
n (12) reduce to

(TIl —+ 2P(I3, I4))T(I3, CE'4) — 2T(CL‘3, CE'4)2 + 4T3(.I3, I4) = 0,
(TIQ -+ 2@(333, I4))S(Z'3, .CI?4) — 25(1‘3, I4)2 + 454(1'3, 1'4) = O,
which hold if and only if
T(x3,14) = S(xs,24) = 0. (19)
Using this condition, the last equation in (12) leads to
TY(23, T4) — 2(Py(T3, 24) + Q3(x3,%4)) =0

and therefore 7 is given by

7(3:373&1) = %(P4(£C3, .’L'4) + Q3($37.T4)). (20)
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Hence, by (19) and (20) we conclude that

2 (Py(3, 74) + Q3(73,74))

C(.f[/';;, .CC4) = ;

which shows (9).

Type C: k = % # 0. For this last case, writing (16) we have

a(x1, 3, T4) = Z22 + 21 P(x3, 24) + £(23, T4),
b(wa, T3, 4) = 55 + 12Q (73, T4) + 1(23, 24), (21)
(@1, T2, 3, T4) = Tx120 + 215 (T3, T4) + 22T (T3, T4) + Y(T3, T4),

and a straightforward calculation shows that the last three equations in (12)

transform into

L&(ws, xa) — (P(xs,24)T (23, 24) — T3, T4)? 4 2T5(x3,24)) = 0,
%77(55'3,1’4) — (Q($3,$4)S(I3,I’4) — S(Ig,l’4)2 + 254(133,[134)) = 0,
(w3, 24) — (S(23, 14)T (73, 24) + Q3(T3,74)

— S5(x3, ) + Py(3, x4) — Ty(z3,24)) =0,

from where we can determine (3, x4), n(z3,z4) and y(x3,x4) as follows:

(w3, m4) = &(P(x3,24)T (23, T4) — T(23,74)* + 2T5(23, 24)),
7](.7)3, .1‘4) = g(Q(l’g, I4)S(I3, .1'4) = S(l’g, I4)2 -+ 254(I3, 1’4))7 (22)
V(3 24) = (S (w3, 24)T (23, T4) + Q3(3, 74)

= Sg(l’g,l’4) =+ P4(J}3, I’4) — T4(.1’3,.’I’4)).

Finally, placing these expressions in (21) we obtain (10), which finishes the
proof. O

4 Osserman para-Hermitian Walker metrics

In this section we analyze the Osserman condition for the three families of Ein-
stein para-Hermitian Walker structures determined in Theorem 5. First of all,
recall that a four-dimensional pseudo-Riemannian manifold is pointwise Osser-

man if and only if there is a choice of orientation such that the manifold is
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Einstein self-dual (or anti-self-dual) (see [1]). Moreover, there is a 1:1 corre-
spondence between the Jordan normal form of the Jacobi operators and the
Jordan normal form of the (anti-)self-dual Weyl curvature operators [5]. In our

particular case, note that

€1 = %(1 — a)@l + 33, €y = *0(91 + %(1 — b)az + 84,

23
€3 = 7%(1"‘@)01 +(93, €y = *Calfé(l‘i‘b)ag"‘a% ( )

define an orthonormal basis for a Walker metric (1), and local bases of the
spaces of self-dual and anti-self-dual two-forms can be constructed as A2 =
({Ef,EY,E5}), where

_etAF e Adt + B AL A + e AetFel Al

B = AL SR -
1 \/5 ) 2 \/i ’ 3 ﬂ

Also observe that (E5, EY) = 1, (Ef, Ef) = —1, (EF, Ef) = —1, and therefore
with respect to the above bases the operators W% : A2 — AZ have the

following matrix form:

Wi Wi Wi
wt=| -wZ —-wi -wi |, (24)
Wiz —Ws —Wis

with W; = W(EF, E;) and W(e' A el e Ae') = W(e;, e, ex,€;), where W
denotes the Weyl conformal curvature tensor.

Now, a long calculation shows that

Wi wWh o Wi+
wt = W z W , (25)
-Wi+35) Wi =W +%)

12

and, therefore, it follows that W+ has eigenvalues {F, —75, —75 } (see [9] for the
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precise expressions of Wit and Wjh). Moreover, W~ is determined by

Wi = —11—2((111 + 3ags 4 3011 + by — 4c1a),
Wi = —#(a11 + bo — 4c12),

Wiz = 15(a11 — 3age — 3by1 + bae — 4c1a), (26)
Wi = 3(a12 + bia — c11 — e),

Wiz = 1(ass —bn),

Wss = —i(alz —bis +c11 — C).

4.1 Type A para-Hermitian Walker structures

Type A Einstein para-Hermitian Walker metrics given by (7)-(8) are Osserman,
but they do not provide the new desired examples. Indeed, if X = Zle 0;0; is
an arbitrary vector, we get from (5) that the associated Jacobi operator, when

expressed in the coordinate basis, takes the form

A B v [ —asay —a?
Ty — . A== o T, 27)
0 A 4 ai o oy

where ¥ = Q3+ 53 — Py —T);. Hence the characteristic polynomial of the Jacobi
operators is py(Rx) = A* (independently of the 2 x 2-matrix B) and, therefore,

the Jacobi operators of any Type A metric are either vanishing or nilpotent.

4.2 Type B para-Hermitian Walker structures

First note that, for any Walker metric (1), W55 = —Z holds (see (25)). Now, for
any Type B metric given by (9), a direct calculation using (26) shows that also
Wy =

metrics cannot be Osserman.

—%- Therefore, since 7 # 0, Type B Einstein para-Hermitian Walker

4.3 Type C para-Hermitian Walker structures

This last type of Einstein para-Hermitian Walker metrics provides the desired

family of Osserman spaces. In particular, we have the following
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Theorem 6 A Walker metric (1) equipped with the para-Hermitian structure
(2) is Osserman with non-nilpotent Jacobi operators if and only if the defining

functions a(xy, xa, T3, 24), b(x1, T, T3, 24) and c(Ty1, T2, T3,24) Satisfy

a=Z%a2+ 2P+ S (PT - T%+2T3),
b=Za3 +1.Q+(QS - S*+28,), (28)
c=Lm1To+ 1S+ 2T+ (ST + Qs — Ss + Pu—Ty),

for any smooth functions P(x3,x4), Q(x3,x4), S(z3,24) and T(z3,x4).

Proof. Note from (26) that, in this case, W~ = 0 and hence a Type C Einstein
para-Hermitian Walker metric given by (10) is Osserman (Einstein self-dual).
Moreover, the eigenvalues of the self-dual operator W+ determine the eigenval-
ues of the Jacobi operators, which coincide with {O7 e Ty B } A straightforward

calculation leads to

2 10wy as(wip)? 1 0 L
(W+ - Zfd) : (W+ n lfd) _ e B WE) [ " g g ).
6 12 48 1 0 1
and therefore the Jacobi operators are diagonalizable if and only if
2+ 127Wi +48 (W) = 0. (29)

Otherwise, we get that 77 is a double root of the minimal polynomial of the

Jacobi operators. O

Remark 7 In [8] we constructed the first examples of Osserman manifolds
whose Jacobi operators are neither diagonalizable nor nilpotent. Let M = R*
with usual coordinates (z1, 2, z3,24) and the metric
g = dr'®dr®+dr® @ da' + d2® @ dat + dat ® da?
+(4kz? — & f(24)?)d2® @ do? + 4kzidr* ® do* (30)
+(4kx123 + T2 f (€4) — 2 f'(%4)) (d2® ® dz* + dz* ® da®),

where k is a nonzero constant and f(z4) an arbitrary real valued function. We

showed in [8] that metrics (30) are Osserman of signature (2, 2) with eigenvalues
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{0,4k, k, k}. Moreover, the Jacobi operators are diagonalizable if and only if
24k:f(x4)f'(x4)x2 == 12k:f”(1’4)x1 -+ 3f(I4)f”(I4) + 4‘]“(1’4)2 =0. (31)

Otherwise, k is a double root of the minimal polynomial of the Jacobi operators

and (M, g) is Type II Osserman on the open set where (31) does not hold.

Note that metrics (30) are a particular case of the general family of Type C

Einstein para-Hermitian Walker metrics discussed in Theorems 5 and 6.
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