

A NOTE ON THE FIRST EIGENVALUE OF SPHERICALLY SYMMETRIC MANIFOLDS

Cleon S. Barroso G. Pacelli Bessa*

Abstract

We give lower and upper bounds for the first eigenvalue of geodesic balls in spherically symmetric manifolds. These lower and upper bounds are C^0 -dependent on the metric coefficients. It gives better lower bounds for the first eigenvalue of spherical caps than those from Betz-Camera-Gzyl.

1 Introduction

Let $B_{\mathbb{N}^n(\kappa)}(r)$ be a geodesic ball of radius r>0 in the simply connected n-dimensional space form $\mathbb{N}^n(\kappa)$ of constant sectional curvature κ and let $\lambda_1(B_{\mathbb{N}^n(\kappa)}(r))$ be its first Laplacian eigenvalue, i.e. the smallest real number $\lambda=\lambda_1(B_{\mathbb{N}^n(\kappa)}(r))$ for which there exists a function, called a first eigenfunction, $u\in C^2(B_{\mathbb{N}^n(\kappa)}(r))\cap C^0(\overline{B_{\mathbb{N}^n(\kappa)}(r)})\setminus\{0\}$, satisfying $\Delta u+\lambda u=0$ in $B_{\mathbb{N}^n(\kappa)}(r)$ with $u|\partial B_{\mathbb{N}^n(\kappa)}(r)=0$. In the case $\kappa=0$, it is well known that $\lambda_1(B_{\mathbb{R}^n}(r))=(c(n)/r)^2$, where c(n) is the first zero of the Bessel function $J_{n/2-1}$. In the case $\kappa=-1$, there are fairly good lower and upper bounds for $\lambda_1(B_{\mathbb{H}^n}(r))$. For instance, one has that

$$\sqrt{\lambda_1(B_{\mathbb{H}^n}(r))} \le (n-1)(\coth(r/2)-1)/2 + [(n-1)^2/4 + 4\pi^2/r^2 + (n-1)^2(\coth(r/2)-1)^2/4]^{1/2},$$

Key words: spherically symmetric manifolds, first Laplacian eigenvalue.

^{*}Research partially supported by CNPq-Brasil Mathematics Subject Classification: (2000):35P15, 58C40.

see [6] page 49. For sharper upper bounds for $\lambda_1(B_{\mathbb{H}^n}(r))$, see [9]. On the other hand, one has the well known lower bound,

$$\sqrt{\lambda_1(B_{\mathbb{H}^n}(r))} \ge \frac{(n-1)\coth(r)}{2},$$

proved by McKean, [10], [13]. This lower bound was improved by Bessa and Montenegro in [4] to

$$\sqrt{\lambda_1(B_{\mathbb{H}^n}(r))} \ge \max\left\{\frac{n}{2r}, \frac{(n-1)\coth(r)}{2}\right\}. \tag{1}$$

The case c=1 is more delicate. Although the sphere is a very well studied manifold, the values of the first Laplacian eigenvalue $\lambda_1(B_{\mathbb{S}^n}(r))$, (Dirichlet boundary data if $r < \pi$) are pretty much unknown, with the exceptions $\lambda_1(B_{\mathbb{S}^n}(\pi/2)) = n$, $\lambda_1(B_{\mathbb{S}^n}(\pi)) = 0$. In dimension two and three there are good lower bounds due to Barbosa-DoCarmo [1], Pinsky [11], Sato [12] and Friedland-Hayman [8]. In higher dimension, the only lower bounds known (to the best of our knowledge) are the following lower bounds due to Betz, Camera and Gzyl obtained in [5] via probabilistic methods.

$$\left(\frac{c(n)}{r}\right)^2 > \lambda_1(B_{\mathbb{S}^n}(r)) \ge \frac{1}{\int_0^r \left[\frac{1}{\sin^{n-1}(\sigma)} \cdot \int_0^\sigma \sin^{n-1}(s)ds\right] d\sigma}$$
(2)

The upper bound is due to Cheng's eigenvalue comparison theorem [7] since the Ricci curvature of the sphere is positive (in fact, it needed only to be nonnegative).

In order to state our result, recall the definition of a spherically symmetric manifold. Let M be a Riemannian manifold and a point $p \in M$. For each vector $\xi \in T_p M$, let γ_{ξ} be the unique geodesic satisfying $\gamma_{\xi}(0) = p$, $\gamma'_{\xi}(0) = \xi$ and $d(\xi) = \sup\{t > 0 : \operatorname{dist}_M(p, \gamma_{\xi}(t)) = t\}$. Let $\mathcal{D}_p = \{t \xi \in T_p M : 0 \le t < d(\xi), |\xi| = 1\}$ be the largest open subset of $T_p M$ such that for any $\xi \in \mathcal{D}_p$ the geodesic $\gamma_{\xi}(t) = \exp_p(t \xi)$ minimizes the distance from p to $\gamma_{\xi}(t)$ for all $t \in [0, d(\xi)]$. The cut locus of p is the set $\operatorname{Cut}(p) = \{\exp_p(d(\xi) \xi), \xi \in T_p M, |\xi| = 1\}$ and $M = \exp_p(\mathcal{D}_p) \cup \operatorname{Cut}(p)$.

The exponential map $\exp_p : \mathcal{D}_p \to \exp_p(\mathcal{D}_p)$ is a diffeomorphism and is called the geodesic coordinates of $M \setminus \operatorname{Cut}(p)$. Fix a vector $\xi \in T_pM$, $|\xi| = 1$ and denote by ξ^{\perp} the orthogonal complement of $\{\mathbb{R}\xi\}$ in T_pM and let $\tau_t : T_pM \to T_{\exp_p(t\xi)}M$ be the parallel translation along γ_{ξ} . Define the path of linear transformations

$$\mathcal{A}(t,\xi):\xi^{\perp}\to\xi^{\perp}$$

by

$$\mathcal{A}(t,\xi)\eta = (\tau_t)^{-1}Y(t)$$

where Y(t) is the Jacobi field along γ_{ξ} determined by the initial data Y(0) = 0, $(\nabla_{\gamma'_{\xi}}Y)(0) = \eta$. Define the map

$$\mathcal{R}(t): \xi^{\perp} \to \xi^{\perp}$$

by

$$\mathcal{R}(t)\eta = (\tau_t)^{-1} R(\gamma'_{\xi}(t), \tau_t \eta) \gamma'_{\xi}(t),$$

where R is the Riemann curvature tensor of M. It turns out that the map $\mathcal{R}(t)$ is a self adjoint map and the path of linear transformations $\mathcal{A}(t,\xi)$ satisfies the Jacobi equation $\mathcal{A}'' + \mathcal{R}\mathcal{A} = 0$ with initial conditions $\mathcal{A}(0,\xi) = 0$, $\mathcal{A}'(0,\xi) = I$. On the set $\exp_p(\mathcal{D}_p)$ the Riemannian metric of M can be expressed by

$$ds^{2}(\exp_{p}(t\,\xi)) = dt^{2} + |\mathcal{A}(t,\xi)d\xi|^{2}.$$
(3)

Definition 1.1 A manifold M is said to be spherically symmetric if the matrix $\mathcal{A}(t,\xi) = f(t)I$, for a function $f \in C^2([0,R])$, $R \in (0,\infty]$ with f(0) = 0, f'(0) = 1, f|(0,R) > 0.

The class of spherically symmetric manifolds includes the canonical space forms \mathbb{R}^n , $\mathbb{S}^n(1)$ and $\mathbb{H}^n(-1)$. The *n*-volume V(r) of a geodesic ball $B_M(r)$ of radius r in a spherically symmetric manifold is given by $V(r) = w_n \int_0^r f^{n-1}(s) ds$, whereas the (n-1)-volume S(r) of the boundary $\partial B_M(r)$ is given by $S(r) = w_n f^{n-1}(r)$. Here w_n denotes the (n-1)-volume of the sphere $\mathbb{S}^{n-1}(1) \subset \mathbb{R}^n$. The authors [2] obtained using fixed point methods the following lower bound for the first

eigenvalue $\lambda_1(B_M(r))$ of geodesic balls $B_M(r)$ with radius r in a spherically symmetric manifold M,

$$\lambda_1(B_M(r)) \ge \frac{1}{\int_0^r \frac{V(\sigma)}{S(\sigma)} d\sigma}$$
 (4)

It is worth mentioning that this lower bound (4) is Betz-Camera-Gzyl's lower bound when $M = \mathbb{S}^n$. The purpose of this note is give upper and better lower bounds for $\lambda_1(B_M(r))$. We prove the following theorem.

Theorem 1.2 Let $B_M(r) \subset M$ be a ball in a spherically symmetric Riemannian manifold with metric $dt^2 + f^2(t)d\theta^2$, where $f \in C^2([0,R])$ with f(0) = 0, f'(0) = 1, f(t) > 0 for all $t \in (0,R]$. For every non-negative function $u \in C^0([0,r])$ set

$$h(t,u) = \left[u(t) / \int_t^r \int_0^\sigma \left(\frac{f(s)}{f(\sigma)} \right)^{n-1} u(s) ds d\sigma \right].$$

Then

$$\sup_{t} h(t, u) \ge \lambda_1(B_M(r)) \ge \inf_{t} h(t, u) \tag{5}$$

Equality holds in (5) if and only if u is a first positive eigenfunction of $B_M(r)$ and $\lambda_1(B_M(r)) = h(t, u)$.

We should remark that taking $u \equiv 1$ in (5) we obtain (4). In the following table we compare our estimates for $\lambda_1(r) = \lambda_1(B_{\mathbb{S}^n}(r))$ for $n = 2, 3, r = \pi/8, \pi/4, 3\pi/8, \pi/2, 5\pi/8$ taking $u(t) = \cos(t\pi/2r)$ with the estimates obtained by Betz-Camera-Gzyl.

n=2 r=	$\pi/8$	$\pi/4$	$\pi/8$	$\pi/2$	$5\pi/8$
BCG $ \lambda_1(r) $	≥ 25.77	≥ 6.31	≥ 2.70	≥ 1.44	≥ 0.85
BB $ \lambda_1(r) $	≥ 35.85	≥ 8.78	≥ 3.76	=2	≥ 1.01
n = 3 r =	$\pi/8$	$\pi/4$	$3\pi/8$	$\pi/2$	$5\pi/8$
BCG $ \lambda_1(r) $	≥ 38.50	≥ 9.31	≥ 3.90	≥ 2	≥ 1.10
BB $ \lambda_1(r) $	≥ 57.94	≥ 14.01	≥ 5.86	= 3	≥ 1.27

2 Proof of Theorem 1.2

We start recalling the following theorem due to J. Barta.

Theorem 2.1 (Barta, [3]) Let $\Omega \subset M$ be a bounded domain with piecewise smooth boundary $\partial \Omega$ in a Riemannian manifold. For any $f \in C^2(\Omega) \cap C^0(\overline{\Omega})$ with $f|\Omega > 0$ and $f|\partial \Omega = 0$ one has that

$$\sup_{M} (-\Delta f/f) \ge \lambda_1(\Omega) \ge \inf_{\Omega} (-\Delta f/f). \tag{6}$$

Equality in (6) holds if and only if f is a first eigenfunction of Ω . The lower bound inequality needs only that $f|\Omega>0$.

Let $u \in C^0([0,r])$, $u \geq 0$. Define a function $T(u) \in C^1([0,r])$ by $T(u)(t) = \int_t^r \int_0^\sigma (f(s)/f(\sigma))^{n-1} u(s) ds d\sigma$. Extend u and Tu radially to $B_M(r)$ by $\tilde{u}(\exp_p(t\,\eta)) = u(t)$ and $\tilde{T}(u)(\exp_p(t\,\eta)) = T(u)(t)$, for $\eta \in \mathbb{S}^{n-1}$. Observe that $\tilde{T}(u)(\exp_p(t\,\eta)) \geq 0$, with $\tilde{T}(u)(\exp_p(t\,\eta)) = 0$ if and only if t = r. We claim that

$$\Delta \tilde{T}u(\exp_p(t\,\eta)) = -\tilde{u}(\exp_p(t\,\eta)) \tag{7}$$

as the following straight forward computation shows.

Proof: The expression of a spherically symmetric metric in geodesic coordinates is given by $ds^2 = dt^2 + f^2(t)d\theta^2$. The Laplacian in these coordinates is given by

$$\triangle = \frac{\partial^2}{\partial t^2} + (n-1) \cdot \frac{f'(t)}{f(t)} \cdot \frac{\partial}{\partial t} + \frac{1}{f^2(t)} \triangle_{\mathbb{S}^{n-1}}$$

Observe that a geodesic ball $B_M(r)$ are covered by one geodesic chart. Since $\tilde{T}u(\exp_p(t\,\eta))=T(u)(t)$, we have that

$$\frac{\partial^2}{\partial t^2} T(u)(t) = -u(t) + (n-1) \frac{f'(t)}{f^n(t)} \int_0^t f^{(n-1)}(s) u(s) ds$$

and

$$\frac{\partial}{\partial t}T(u)(t) = -\frac{1}{f^{(n-1)}(t)} \int_0^t f^{(n-1)}(s)u(s)ds.$$

Therefore we have that

$$\Delta \tilde{T}u(\exp_p(t\,\eta)) = -u(t) = \tilde{u}(\exp_p(t\,\eta)).$$

Applying Barta's Theorem we obtain that

$$\sup_{t} \frac{u}{T(u)}(t) \ge \lambda_1(B(r)) \ge \inf_{t} \frac{u}{T(u)}(t).$$

Barta's Theorem says that equality in the above inequality holds if and only if $\tilde{T}(u)$ is a first eigenfunction. Thus we need only to show that $\tilde{T}(u)$ is a first eigenfunction if and only if u is a first eigenfunction. Suppose that we have equality in (7) then $\tilde{T}(u)$ is an eigenfunction, this is

$$0 = \Delta \tilde{T}u + \lambda_1(B_M(r))\tilde{T}u = -\tilde{u} + \lambda_1(B_M(r))\tilde{T}u$$
(8)

Applying the Laplacian in both side of the equation (8) we obtain by equation (7) that

$$0 = -\Delta \tilde{u} + \lambda_1(B_M(r))\Delta \tilde{T}u = -(\Delta \tilde{u} + \lambda_1(B_M(r))\tilde{u})$$
(9)

Therefore u is a first eigenfunction with $\lambda_1(B_M(r)) = \frac{u}{T(u)}$.

References

- Barbosa, J. L., Do Carmo, M., Stability of minimal surfaces and eigenvalues of the Laplacian, Math. Z. 173, (1980), 13-28.
- [2] Barroso, C. S., Bessa, G. P., Lower bounds for the first Laplacian eigenvalue of geodesic balls of spherically symmetric manifolds, Int. J. Appl. Math. Stat. 6, (2006), 82-86.
- [3] Barta, J., Sur la vibration fundamentale d'une membrane, C. R. Acad. Sci. 204, (1937), 472-473.
- [4] Bessa, G. P., Montenegro, J. F., Eigenvalue estimates for submanifolds with locally bounded mean curvature, Ann. Global Anal. and Geom. 24, (2003), 279–290.
- [5] Betz, C., Camera, G. A., Gzyl, H., Bounds for the first eigenvalue of a spherical cup, Appl. Math. Optm. 10, (1983), 193-202.

- [6] Chavel, I., Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, Academic Press, (1984).
- [7] Cheng, S. Y., Eigenvalue comparison theorems and its geometric applications, Math. Z. 143, (1975), 289–297.
- [8] Friedland, S., Hayman, W. K., Eigenvalue inequalities for the dirichlet problem on spheres and the growth of subharmonic functions, Comment. Math. Helvetici 51, (1976), 133-161.
- [9] Gage, M., Upper bounds for the first eigenvalue of the Laplace-Beltrami operator, Indiana Univ. Math. J. 29, (1980), 897-912.
- [10] McKean, H. P., An upper bound for the spectrum of Δ on a manifold of negative curvature, J. Differential Geom. 4, (1970), 359-366.
- [11] Pinsky, M. A., The first eigenvalue of a sphericall cap, Appl. Math. Opt. 7, (1981), 137-139.
- [12] Sato, S., Barta's inequalities and the first eigenvalue of a cap domain of a 2-sphere, Math. Z. 181, (1982), 313-318.
- [13] Yau, S. T., Isoperimetric constant and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. 4 série t.8, (1975), 487-507.

Universidade Federal do Ceará Departamento de Matemática Av. Humberto Monte, s/n Campus do PICI 60455-760, Fortaleza, CE E-mail: cleonbar@mat.ufc.br E-mail: gpbessa@yahoo.com.br