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LEGENDRIAN SUBMANIFODS FOLIATED BY
(n — 1)-SPHERES IN §***!

Henri Anciaux

Abstract

We give a characterization of those Legendrian submanifolds of §27+!

which are foliated by (n — 1)-dimensional spheres. We show that the
only minimal submanifolds in this class are the totally geodesic n-spheres
and a one-parameter family of SO(n)-equivariant submanifolds which are
described in terms of some spherical curves. We deduce the existence of
a countable family of closed Lagrangian minimal submanifolds in CP™.

Introduction

Lagrangian (resp. Legendrian) submanifolds constitute a particular class of
submanifolds that appears in symplectic (resp. contact) geometry. Among the
many inter-relations between these two classes one may mention two instances:
firstly, the image of a Legendrian submanifold of S**™* by the Hopf projection is
a Lagrangian submanifold of the complex projective space CP™ and conversely,
any Lagrangian submanifold of CP™ admits locally a Legendrian lift in S
(which is unique up to rotation); secondly, the cone over a submanifold £ of
S?**! is Lagrangian in C"™! if and only if £ is Legendrian. Moreover, in both
constructions the minimality of the Legendrian submanifold is equivalent to the
minimality of the corresponding Lagrangian.

On a Lagrangian submanifolds of C"*' (resp. a Legendrian submanifold

of S*"*1) is defined an angle function 3, called the Lagrangian angle function
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(resp. Legendrian angle function). It has the striking property of being related
to the mean curvature vector H of the submanifold by the following formula:
(n+1)H = JVp (resp. nH = JVf), where J denotes the complex struc-
ture of C*™' and V is the gradient associated to the induced metric. As a
corollary, minimal Lagrangian (resp. minimal Legendrian) submanifolds are
characterized as being those Lagrangian (resp. Legendrian) submanifolds with
constant Lagrangian (resp. Legendrian) angle. Since a convenient rotation adds
a fixed constant to the Lagrangian (resp. Legendrian) angle, there is no loss of
generality in restricting ourselves to the study of submanifolds with vanishing
angle, which are known in the literature, in the Lagrangian case, as Special La-
grangian submanifolds. By analogy, we shall refer to Legendrian submanifolds
with vanishing Legendrian angle as Special Legendrian submanifolds.

Some attention has been devoted recently to the study of Special Legendrian
submanifolds (cf [Jo2], [Hal,[BG],[McI],[CMcI]), motivated by the fact that the
cone over a Special Legendrian submanifold is Special Lagrangian. The lat-
ter are of great interest because some deep conjectures about mirror symmetry
involve fibrations of some 3-dimensional Calabi-Yau manifolds by Special La-
grangian submanifolds, possibly with singularities (cf [SYZ],[Jo1]).

In this paper we give a characterization of those Legendrian submanifolds of
the odd-dimensional unit sphere S*"** (with n > 2) which are foliated by (n—1)-
dimensional spheres and we refine our description in the Special Legendrian case.
Our main result states that the only Special Legendrian submanifolds which are
foliated by (n — 1)-dimensional spheres are the totally geodesic spheres and a
one-parameter family of SO(n)-equivariant examples. This SO(n)-equivariant
family appeared for the first time in [CMU]. Here we describe them in terms of
some spherical curves and in particular we show that there is a countable family
of Special Legendrian submanifolds whose Hopf projection are closed minimal
Lagrangian submanifolds in CP".

We would like to mention related work: in [CU], it was shown that the only
Special Lagrangian submanifolds of C"*' which are foliated by n-spheres are

the Special Lagrangian planes and the so-called Lagrangian catenoid; in [ACR]
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and in [AR], those Lagrangian submanifolds of C"™" which are foliated by n-
spheres have been characterized, recovering as a corollary the result of [CU]J.
Finally the method used in the present paper to study equivariant Legendrian
submanifolds is analogous to the one which is exploited in [An] and [ACR] for
the study of equivariant Lagrangian submanifolds.

The remainder of the article is organized as follows: in Section 1 we state
some notations and basic definitions about Legendrian submanifolds. In Section
2 we treat the particular case of Legendrian submanifolds which are foliated by
great spheres and prove that the only Special Legendrian submanifolds which
are foliated by great spheres are themselves great spheres. In Section 3 we treat
the general case and prove that the Special Legendrian submanifolds which are
foliated by spheres are great spheres or equivariant, which completes the proof
of the main theorem. In Section 4 we study in greater detail equivariant special

Legendrian submanifolds.

1 Notations and preliminaries

We shall denote by ((.,.)) the canonical Hermitian product of C**' and by
J its standard complex structure, i.e. scalar multiplication by i = v/—1. The
Hermitian structure yields both a Riemannian and a symplectic structure: in
fact, the canonical Euclidean inner product of R**™? ~ C™™! is nothing but
the real part of the Hermitian product: (.,.) = Re((,,.)), and the canonical
symplectic structure is given by w := (., J.).

Legendrian submanifolds of the sphere S*™ are defined as follows: at some

S we consider the hyperplane of T},SQ”Jr1 orthogonal to Jp. This

point p of
defines the contact distribution, and Legendrian submanifolds are just integral
submanifolds of maximal dimension, (namely n) with respect to this distribu-
tion. In other words, an n-dimensional submanifold £ of S***! is Legendrian if
(v, Jp) = 0 for any point p of £ and any tangent vector v € T,L.

On the other hand, an n-dimensional submanifold of a symplectic manifold

of dimension 2n is said to be Lagrangian if the symplectic form vanishes on it.
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It is elementary to check that the cone over a Legendrian submanifold of S

is a Lagrangian submanifold of C™*'. Another classical fact is that the image
by the Hopf projection II of a Legendrian submanifold of S*"** is a Lagrangian
submanifold of CP".

The Legendrian angle of an oriented Legendrian submanifold £ of S*"*! is
defined as follows: at some point p of £ take an (oriented) orthonormal basis
(V1 ..y Uy) Of THL. Then the Legendrian assumption implies that (p,v1, ..., v,)
is a Hermitian basis of C"**. Moreover its determinant does not depend on the
choice of the basis (vy, ..., v,). We then have detc(p, vy, ...,v,) = € for some
(8 which depends only on the point p and the tangent space. This defines the
Legendrian angle function 8 : £ — R/27Z. A Legendrian submanifold with
vanishing Legendrian angle is said to be Special Legendrian. The fundamental
relation nH = JV 3 between the Legendrian angle and the mean curvature H is
proved in [CLU]. A corollary of this formula is that a minimal, connected Legen-
drian submanifold £ has constant Legendrian angle [3y; moreover the submani-
fold e~#0/("+1) £ obtained from £ by performing the rotation p s e=%#0/(*+1p
has vanishing Legendrian angle, and thus is Special Legendrian. So Special
Legendrian subamnifolds and minimal Legendrian submanifolds have the same
geometry.

In the following, the prime * will denote derivative with respect to the vari-
able s and the subscript s will stand for the partial derivative with respect to

s. We shall denote by (e, ..., €,) the canonical basis of R™.

2 Legendrian submanifolds foliated by great
spheres

Proposition 1 Any Legendrian submanifold of S*™ ! which is foliated by great

spheres is locally the image of an immersion of the form

X IxsS=t = st o Crrd
(s,z) +— M(s)(z,0) = >0, zie5(s),
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where M(s) = (e1(s), ...,ent1(s)) € SU(n + 1) is a solution of following differ-

ential system:

0 0 —C (8)
MM = T 5 ,
0 ... 0 —=¢cu(s)
c(s) ... cn(s) 0
where ¢1(8), ..., cn(s) are n complez-valued functions.

Proof. Let £ be a submanifold of dimension n in S*"*! which is foliated
by great spheres of dimension n — 1. Locally, it may be parametrized by the
following immersion:
X: IxS! —s L o gl
(s,2=(21,.,2n)) = Dj175(s),
where (e1(s), ..., €n(8)) is an orthonormal moving frame in R*"*2.

Let v = (v1,...,v,) be a tangent vector to some point x = (z1,...,2,) of
S"~!. Then X.v = Y7 v;e;(s) and the Legendrian condition is equivalent to
the two following conditions: (X,v,JX) =0 and (X,, JX) = 0.

Applying the equation (X,v, JX) =0 to x = ¢; and v = ¢ yields

(e, Jex) =0, Vi k, 1<jk<n.

Thus the subspace spanned by ey, ..., €, is isotropic in C™*! (i.e. the symplectic
form w vanishes on it). In particular we may complete this frame by a unit vector
en+1 such that the span of (e, ..., e,41) is a special Lagrangian space, or in other
words the matrix M := (e, ..., e,41) belongs to SU(n + 1). We shall see that
the other condition for £ to be Legendrian (and later the minimality condition)
may be expressed in terms of the coefficients ¢;, of the matrix M—'M’. This
matrix belongs to su(n+1), so its real part is anti-symmetric and its imaginary
part is symmetric. The next lemma claims that the gauge invariance of the

problem allows us to assume that the coeflicients aj;, = Recj, vanish.

Lemma 1 We may assume, after a possible reparametrization of L, thatV j, k, 1
< j,k < n, aj, = Recj, vanishes, where c;is are the coefficients of the matriz

M=YM' given in Proposition 1.
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Proof. We reparametrize our submanifold by replacing (ey, ..., ;) by (€1, ...€,),
with éj = Z?:l
[dir]1<jk<n is a curve of matrices in SO(n).

djrer. In other words, (éi,...6,) = N(ey,...,e,), where N =

We derive this expression and we get

n n n+l
é; = Z d;kek + djkek Z d]kek + Z Z djrOrata
k=1 =1 a=1
Hence
aj = 6 Zd v + Z Zdjkaka o = dez <djk + Z d]mamk>
k=1 a=1

Soa; =0Vj, 1,1 <71 <nif and only if

gk - Z d]mamk

The existence of the required d;.s follows now from the existence theorem for
differential systems. As the matrix [a;x]i<jr<n belongs to so(n), by choosing

suitable initial condition we have that [d;x]i<; k<. belongs to SO(n).

To complete the proof of Proposition 1, it remains to examine the second
equation (X, JX)=0. As X, = Z;;l T;€, we have

Z z;T(e), Jex) = 0.

Gik=1

If we set £ = ¢; in the latter, we find that Im ¢;; = (€], Je;) = 0. Then, writing

T = %(ej + €,,) one has

1
S (), Jew) + (el Tes)) =0

On the other hand the matrix M~1M’ belongs to su(n + 1), so we also have
Imcj — Imey; = (€, Jer) — (e}, Je;) = 0, and we deduce that Tmcj =
(€, Jex) = 0Vj,k, 1 < j,k < n. Finally, as M~'M’ is traceless, it follows

that ¢,41,41 vanishes, which concludes the proof.
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Example 1 If all coefficients ¢;;, of the matrix M 1M’ are real, we claim that
L is a piece of the totally geodesic sphere S™.

To see this, we first observe that without loss of generality, we may assume
that (e1(S0), ., €nt1(S0)) = (€1, ..., €,). Thus, Vs € I, the coefficients of M are
real, so X (s,z) € R™". In the general case, X (s, z) will stay in the (real) span

of (e1(s0), ..-€ny1(50)).

Theorem 1 The only Legendrian minimal submanifolds of S**' which are

foliated by great (n — 1)-spheres are pieces of totally geodesic n-spheres.

Proof. As we have seen in the previous section, we may restrict our proof to the
case of Special Legendrian submanifolds. Let (vy,...,v,—1) be an orthonormal
basis of 7T,S™" at some point z. Thus (X, X, vy, ..., X,v,_;) is an orthonormal
frame and completing it with e,,1 gives a Hermitian basis in C"*!, which we
are going to use in order to give a quick computation of the Legendrian angle.

In fact, if § vanishes then
dgt(X7 X*Uh i 4 X*vn—b Xs) € R7

We recall that X, = Z;Zl z;€], so we have

n
((Xs, ent1)) E 5 e]a5n+1 :§ L5Cjn+1
j=1

Hence

dgt(X7X*’U1,.. XUTL 1, ijcj7n+1,

and @ vanishes if and only if the coefficients c; 4, are real. So we conclude as

in the Example 1 that £ is locally to a piece of the sphere S™ = R" 0§+

3 Legendrian submanifolds foliated by spheres

Proposition 2 Any Legendrian submanifold of S*"** which is foliated by (n —

1)-dimensional spheres which are not great spheres is locally the image of an
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immersion of the form
Y - I % Sn71 5 SZn+1 = (Cn+1
(8,2 = (X1, .0y Tp)) +— M(s)(cosb(s)z,sinb(s)),
where 0(s) is some function with values in (0,7/2) and M(s) € U(n+1) is a

solution of the following differential system:

iA(s)tan?6(s) ... 0 —ay(s)

B : - : -
0 o iA(s)tan?0(s) —an(s)
ai(s) an(8) —iA(s)

where a1(s), ..., an(s) and A(s) are real valued functions. If we denote by e;(s),
1 < jlegn+1, the columns of M(s), to any value s there corresponds a spherical
leaf whose radius is cos 0(s), whose center is sinf(s)e,+1(s) and which lies in

the n-space spanned by (e1(s), ..., e,(s)).

Proof. Let £ be a submanifold of S**** which is foliated by (n— 1)-dimensional
spheres. Locally, it may be parametrized by the following immersion:
Y: Ixs*t — BT ¢ AR
(s,2=(x1,....,2,)) — cost(s) (Z;;l Ije]-(s)) +sind(s)e,v1(8),

where (ey, ...,e,+1) is an orthonormal frame and 6(s) is some real function.
The vanishing of sin corresponds to a great circle, and if cosé vanishes, the
spherical leaf degenerates to a point, so the submanifold has a singularity.

We introduce X (s,z) = >77_, w;€;(s), so that Y(s,x) = cosf(s) X (s, ) +

sin 6(s)e,+1(s), and

Y.v = cos6X,v = cosd Z vje;(s)
=1
Y, = —6'sin0X + cos X, + 6 cosfe,11 + sin be;,
= —¢'sin H(Z xje;) + cos Q(Z z;€;) + 0’ cosfen 1 +sin e,

j=1 j=1
Thus if £ is Legendrian it follows that

(Y,0,JY) = cos? 0(X,v, JX) + cosOsin (X, v, Je,41)



LEGENDRIAN SUBMANIFODS FOLIATED BY (n — 1)-SPHERES IN 49

= cos’ 0 Z v;Tr(e;, Jey) 4+ cosfsin (Z v;{e;j, JenH)) =0 (1)

k=1 =1

Next, we have to consider two cases, according to the value of the dimension n:

Case 1: n > 2. Here, the argument is based on the following observation: given
any vector v € R", there exists a pair (z,y) of distinct elements of S*~! such
that v is tangent to both x and y. Thus, substracting Equation (1) applied to
(x,v) and to (y,v), we get

cos? 0 Z vj(z) — yr)(ej, Jer) = 0;
Jk=1

in the latter we set v = ¢; and choose x and y such that © —y = ¢;; this implies
that
(ej, Jex) =0 Vj,k, 1 <4,k <n.

Going back to Equation (1), we also get the vanishing of (e;, Je,41).

Case 2: n = 2. We write x = (cost, sint), so that v = (—sint, cost) is a tangent

vector to S! at z. Then we compute:
(Y,0,JY) = cos? 0({X,v, JX) + cos fsin 0(X,v, Jes)
= cos® B{ey, Je1) + cos sin O(—sin t(e1, Jes) + cost{eq, Jes)) = 0
It follows that (es, Je1), {e1, Jes) and (ea, Jes) all vanish.

In both cases, we deduce that the span of ey, ..., €,41 must be a Lagrangian
plane (but not necessarily special Lagrangian) in C"™; in other words (ey, ..., €41
belongs to U(n + 1) but not a priori to SU(n + 1).

Next we turn our attention to the second equation, that is (Y, JY) = 0. We

compute:
(Y, JY) = (cos0X, +sinbe, ; — 8 sin0X + ¢’ cosOe,41,c080JX +sinbJe, 1)

= cos” (( X, JX) + 0 {eny1, JX)) + cos Osin 0((X,, Jeni1) + (€)1, JX))
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+sin® 0({el, 1, Jeni1) — 0(X, Jeni1))
= cos” (X, JX) + 2 cosfsin 6(X,, Je, 1) +sin®0(el,, 1, Jentr)

We have used the fact that X is a linear combination of ey, ..., €,, so (X, Je, ;1)

vanishes. Finally, we get

Y,, JY) = cos?4 zalel, Je)+2cosfsin® >  x;{e, Je, 1 )+sin? 0Im c,yq it
J ) A ,

k=1 j=1
n n
% 2
= cos> 6 E zjrpIm e, + 2 cosfsind g zIme; 41 +sin” 0 Imcpqq .
k=1 j=1

This is a polynomial of degree 2 in the variables x1, ..., 2, which must vanish
on S, that is the zero set of the polynomial Sor x? — 1. It follows that the

former is a multiple of the latter, which implies the following
e Imc;, ;1 vanishes,
o Imcj, vanishes if j # F,
e cos?flmey; =sin®0Im e,y 011,V 1 < j < m.

So the proof is complete.

Example 2 Let v = (7;,72) be a unit speed Legendrian curve in S* such that

~1 never vanishes, then the following immersion is Legendrian

X: I xSt - S§*ccttt
(va = ("Elv 7'rn)) = (71(5)567’72(8))'

Moreover, following the notation of Proposition 2, we have
M = ding (1, Lo ﬁ)
Ml Il el
and
M™'M' = diag(i arg(71)', ..., 7 arg(1)’, i arg(y2)’)

1 sos
m2 777 ml2 T el
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The image of this immersion if invariant by the action of SO(n) on S*"** defined
as follows: consider the embedding of SO(n) into U(n + 1) given by A +— A =
A4 0) . Then the SO(n)-action is defined by p +— Ap, Vp € S*™*'. This

0 1

family of Legendrians will be studied in greater detail in the next Section.

SQn+l

Theorem 2 The Legendrian minimal submanifolds of which are foliated

by spheres are either locally congruent to a totally geodesic sphere or to a SO(n)-

equivariant minimal submanifold.

Proof. Let Y be an immersion as in Proposition 2 and let (vy,...,v,-1) be
an orthonormal basis of T,S" ! at some point z. Then (X, X,v1, oy XoUn 1)
is an orthonormal basis which spans the same subspace as (e, ...,e,). We are
going to work with several Hermitian frames of C"*!: let B, be the canonical
basis (€1, ..., €ny1), B = (€1(8), ..., ens1(s)) and B' = (X, X, vy, ..., XuUn_1, €ni1)-
Moreover, we call 3, the Lagrangian angle of the Lagrangian subspace spanned

by (€1, ..., €nt1), SO we have
d(gt(l’j’);gO = ¢,

Observe also that the following holds: dete(B)s = 1.

Now, Y is special Legendrian if and only if the following determinant is real:
dgt(Y, Yivr, .o, YaUn-1,Y:)5,
So we compute:
d(gt(Y7 Yov1, o, YaUn1, Ya)go = dgt(K Yivy, .o, ViU 1, Yo)s dgt(B)BO
= cos” Hdgt(X, X1y eony KU1, Yo )a€® = cog™ Odgt(X, X1, e, XaUpq, Ys)gleiﬁ

= cos™ 0(cos 8{(Ys, ent1)) — sin O{(Y,, X)))eo

We now compute Y, = —6'sinX + cos X, + 0 cosfe,1 + sinfe . It
follows that

{{Ys; en41}) = cos O{(X,, €11)) + & cos O + sinO{{e;, .1, €ns1))
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n
=cosf E T;Cjpt1 + 0 cosO+ SN OC, 11 ny1
=1

= COS@ijaj + 6 cosf —ixsing

j=1

and that

(Y, X)) = —0'sinf + cos (X, X)) + 0 cos 0(( X, ent1)) + sinb{{e},, 1, X))

n n
/o : 2.
= —0'sinf —sind E TjCjng1 + O8O E atey

Jj=1 J=1

= —0'sinf —sinf > x;a; + i cos fA tan” §
=1

it implies that

dgt(K Y, v1, ..., YiUn_1,Y:)5, = € cos™ 0 <(9’ - Z zja;) — iAsin 0 cos 0(tan’ 0 + 1)>
j=1

_ eiﬂo cos™ @ ((6/ + Z xja/j) — i\ tan 9)

=1

Therefore if the latter is real, we have two cases:

a) either \ vanishes and [ is constant, so the coefficients of M 1M’ are real
and hence £ is a (piece of a) totally geodesic sphere (cf Example 1),

b) or all the coefficients a; vanish (and some condition on £y and 6 holds).
Then in particular the matrix M 1M’ is diagonal, so M is as well: thus we are

in the equivariant case.

4 Equivariant special Legendrian submanifolds

Let X be a Legendrian immersion as in Example 2:

X - % Sn—l s SZn—H & (Cn—H
(8,2 = (21,0, 20)) = (n(8)T,72(5))-
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It is not difficult to see that X is special Legendrian if and only if (n—1) argy; +
B, = 0, where (3, is the Legendrian angle of the Legendrian curve . Deriving
this equation, we get .

(n—l)%JrkW:O, (2)
where we have used the fact that the derivative of 3, is the curvature of . Now,
let & = (£1,&,&) € S* ~ CP! be the image of y under the Hopf projection, i.e.
& + 1€y = 2717 and & = | 71| — |12/ According to [CC], the curvature of £ is
half the curvature of v and we have the following relation (v{,i7) = (£ X &')s.

This implies that Equation (2) is equivalent to

/
(n— 1)%+2k5 =0. (3)
In order to solve Equation (3), we shall use spherical coordinates on S?: we
write £(s) = (cos ¢(s)e?® sin ¢(s)), where e € S' and ¢ € (—n/2,7/2). This
implies that £ = ((—¢'sin ¢ + 6 cos ¢)e?, ¢’ cos ¢). As £(s) is parametrized by
arclength, there exists some function « such that cosa = ¢’ and sin a = 6’ cos ¢.
Now, the curvature of ¢ in S* is given by ke = det(£,&,¢") = o/ — ¢'sin¢ (cf
[Ku)).

So finally we are reduced to studying of the system

(n—1)3aee? 4 2(a’ — §'sing) = 0
/ _ sino

cos ¢

¢ = cosa,

which reduces to

(4)

{ o =sina(tan ¢ — "3 522)
¢’ = cosa.

This system has an equilibrium point (o, ¢o) = (7/2,arcsin 277). The corre-
sponding curve ¢ is the horizontal circle of height sin ¢y = Z—H Its Legendrian
lift is the curve y(s) = 1/v/n + 1(y/ne®/v™ e~V"*) and the corresponding Spe-

cial Legendrian immersion is

X - Sl X Sn—l s SZrH—l C Cn—i—l
(eiS,ZE': (I17~~~>3«"n)) — \/nlﬁ(\/ﬁeisx’e—ins)‘
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According to [CMU], the corresponding minimal Lagrangian immersion I o X
has been first described by Naitoh in [Nal.

Next we observe that System (4) admits a first integral:
E(a, ¢) = sin accos ¢(1 + sin ¢) "~ D/2,

The extremal values of the energy F are 0 and Ej := cos ¢o(1 + sin ¢)"~1/2.

We discuss now the closedness properties of the spherical curves £. Let
c(E) = (a(s), #(s)) be the integral curve of the system (4) with energy level
E. The corresponding spherical curve £ turns around the vertical axis by an
amount equal to the value of the integral ©(E) := [ 0'ds; if this number
equals a rational number p/q times 27, by making ¢ loops on the integral curve
¢(E), we get a closed curve &.

If ©(F) is not rationally related to 27, the full curve £ makes infinitely many

winds and is dense in some subset of the sphere.

In order to get the existence of values of ©(E) which are rationally related to
27, we use the fact that the function £ — ©(E) is continuous and we compute

its limits:

Lemma 2 The following limits hold:

() Jim O(F) = —2—ar,

(ii) lim ©(E) = ntly,
Proof. We shall denote by ¢_(FE) and ¢, (E) the minimal and maximal values
taken by ¢ on the curve ¢(E); this corresponds to the intersections of ¢(E) with
the straight line {a = 7/2} (cf the phase portrait, Figure 1). We also introduce
the function e(¢) = cos ¢(1 4 sin ¢)*~V/2 so that E = e(¢_) = e(¢,). Using
the invariance of ¢(E) by the symmetry o +— 7/2 — «, we get the following

expressions for O(E):

; P+
opy = 2f e, v 5
C(B)n{a<n/2} COSO ¢ e(¢)cospy /1 — %

2/¢+ Ed¢
s cosg/e2(9) — B2
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1,5
17
17 /
11 A
i /
0,5 i
phi ] \
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0Ly
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i S Y- U o) o - B
_O,-E
-F

Figure 1: Phase portrait, n =3

In the following we shall split this integral in two parts
O(F) =0:(E) + 02(E _2/ +2/
$o

Proof of (i). A straightforward computation shows that e’(¢o) vanishes and
that
sin n+1
1 4 sin ¢p 2

e’ (¢o) = e(¢po)(—1 — 2tan? ¢o —
so that, writing € = ¢ — ¢ and ¢ = ¢ + €x, we get

n+1

e(¢) = Eo <1 ST e)? 0(61’)2) .
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We make the change of variable ¢ = ¢o + ez, x € [—1,0]:
O0(E) =2 /0 (Eo + €2/2¢"(¢o) + 0(€?))edx
1 (00560 + 0(1)y/(Bo + (€0 (00)/2 + o(@))” — (Bo + @' (30)]2 + o{))?

0 Egdx
=3 +o(1).
/*1 (cos ¢o + 0(1))\/E§”—;1(1 —22) + o(e?)

Therefore
lim ©,(F) = lim / - Qw.
E—Eo BP0 (o5 g /2L V1— x2 Vn(n+1) 2

The computation of ©,(E) is analogous and we conclude that limg_ g, O(E) =

n+1
—mﬁ”'

Proof of (ii). We first make the change of variable ¢ = —7w/2+€_x, © €
[1,€0/€e-], where e = ¢_ + /2 and ¢y = ¢o + 7/2. Therefore

€ofe- e_dx cos?(—m/2+ e_x)(1 +sin(—7/2 4+ e_z))" ! i
01(F) =2 : -1

1 cos(—m/2 —e_x) \ cos?(—m/2+e_)(1 +sin(—n/2+¢e_))!
As F tends to 0, e_ tends to 0 and the integrand of the latter converges uniformly
on any compact interval [1, M] to —==—. It follows that

o d
lim 61(E):2/ -
E—0 1 x x2n —1 n

In order to compute the limit of ®, when F tends to 0, the method is
analogous: we make the change of variable ¢ = /2 —¢,z, & € [1,€/€,], where
€. = ¢y —7/2 and €y = ¢o — 7/2. Therefore

_ €ofet erdx cos?(m/2 — e x)(1 + sin(m/2 — e42))" " - o
6u(B) = 2/1 cos(m/2 — e4.x) ( cos?(m/2 — €4 )(1 + sin(m/2 — ;. ))" ! 1) .

As F tends to 0, e, tends to 0 and the integrand of the latter converges uniformly

on any compact interval [1, M] to \/T It follows that

. o0 dx
lim ©,(E) _2/1 -

2 —1
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Hence we conclude that limp_o O(F) = Ztir.

n

This lemma shows that for any number p/q in the interval (%L, \/_:(%_1)@)
there exists a closed solution & to Equation (3). The integers p and ¢ have a geo-
metric meaning: p is the winding number of £ around the north pole and ¢ is the
number of maxima (and minima) of its height &; (cf Figures 2 and 3). It may be
interesting to note that when £ — 0 the curve tends to n vertical circles making

between them an angle of w/n (cf Figure 4). The Legendrian lift v of £ is not

=

Figure 2: A curve with n = 5,p = 3, q¢ = 4, lateral view and view from the top

closed a priori, nor the corresponding Special Legendrian submanifold, however
the closedness of & implies the closedness of the Hopf projection of X: let s,s" €
R such that £(s) = £(s'); Thus we have II(y(s)) = II(y(s')), i.e. there exists
some o € R such that (71(s), v2(8)) = (71(s")e™, v1(s')e). Since that X (s, x) =
(1(8)z,72(s)), we deduce that X(s,x)
=7 X(¢,2), ie. TH(X(s,2)) =T(X(,2)).

Summing up these observations we get the following
Theorem 3 The equation

(n—l)%wk5 -
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o &3

Figure 3: A curve with n = 8,p =5,¢ = 7, lateral view and view from the top

Figure 4: A curve tending to the union of 3 circles, n = 3
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where & = (&1,&9,&3) € S” is some spherical curve and ke is its curvature, admits

a countable family of closed solutions which is parametrized by relatively prime

F S n_+1 n+1 ﬁ
numbers p and q subject to the condition p/q € (%5, oD 2 ). Let vy be the
Legendrian lift of such a solution; then the image of the immersion

IToX: R x S§*! — cpPm
(8, = (T1, .., %n)) — II(71(s)z,72(5))

is a closed minimal Lagrangian submanifold of CP™.

It is easy to show that the closedness of the Legendrian lift of £ amounts to
the fact that fc( B) 6’ sin ¢ is rationally related to 27. Thus in order to get closed
solutions to Equation (2) we must be able to determine if there exist integral
curves ¢(E) such that both integrals [, , 6" and [, , 0'sin ¢ are rationally re-

lated to 2w, which seems to be a very hard problem.

We end this section by stating briefly the alternative description of the same
problem given in [CMU]J: writing |y1(s)| = sinr(s), any Legendrian curve takes
locally the following form:

—if? dt e tan? r(t)dt
v(s) = (sinr(s)e ° =™Tr@ cosr(s)e 7O nFI@)
and Equation (2) is then equivalent to

r"sinrcosr = (1 — (r')?)(ncos’r —sinr), r(0) = p,7'(0) = 0.

The latter admits a first integral: E(r,r’) = (sin® r cos?r)((r')? — 1); thus the
orbits (r(s),'(s)) are closed, but it does not imply a priori that the correspond-

ing Legendrian curves or their projections in S? are closed.
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