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ON THE CLASSIFICATION AND REGULARITY OF
UMBILIC SURFACES IN HOMOGENEOUS
3-MANIFOLDS

Rabah Souam® Eric Toubiana ®

Abstract

We survey existence and classification of totally umbilic surfaces in the
model geometries of Thurston and the Berger spheres. We also discuss
the regularity of totally umbilic surfaces.

1 Introduction

The study of the geometry of surfaces in homogeneous 3-manifolds is a very
active field nowadays, see for example [17], [5], [6], [20], [18], [14], [15], [13], [9],
], [1], [12), [19], [4] and [8).

In the space forms the classification of totally umbilic surfaces is well known
and very useful, see [23]. In R? they are planes and round spheres and in S® they
are round spheres. In H? they are totally geodesic planes and their equidistants,
horospheres and round spheres.

In this paper we will survey the classification of totally umbilic surfaces in
simply connected and homogeneous 3-manifolds obtained in [22].

Previously, the only known result in this direction is the non-existence of
totally umbilic surfaces in the Heisenberg space due to A. Sanini, see [20].

We will first consider the Sol group, which has a 3-dimensional isometry
group. Afterwards we will consider the manifolds having a 4-dimensional isom-

etry group, denoted by M?(k,7) (see section 2). Namely these manifolds are
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S?(k) x R (k > 0, 7 = 0), H}(k) X R (k < 0, 7 = 0), the Berger spheres
(k > 0, 7 # 0) and the manifolds having the isometry group of either the
Heisenberg space (k = 0, 7 # 0) or Pm) (k <0, 7 #£0), see [2], [21] or
[24]. Except for the Berger spheres, these manifolds are five of the eight model
geometries of Thurston [24]. The remaining model geometries are the three
space forms.

Throughout this paper all the surfaces are assumed connected and of class
C3. In this regard we observe that the standard proof of the classification of
umbilic hypersurfaces in the space forms assumes they are of class C*. We will
end this paper showing that in fact it is enough to assume the hypersurfaces are
twice differentiable. Consequently this is also the case in H? x R and S? x R,
see remark 11.

We are grateful to the referee for valuable observations.

2 Classification of totally umbilic surfaces in
homogeneous 3-manifolds

It is known that the isometry group of any simply connected and homogeneous
Riemannian 3-manifold is a Lie group of dimension 3, 4 or 6, see [2], [21] and
[24].

If the dimension is 6 then the manifold is a space form.

Let us consider the case where the dimension is 4. Such a manifold is
a fibration over some simply connected and complete surface, M?(k), of con-
stant curvature x € R, with geodesic fibers. Actually, for each s, there is a
one-parameter family M?3(k, 7) of such fibrations, parametrized by the bundle
curvature 7 € R, see [24]. When 7 = 0 then M?3(k,0) is just a Riemannian
product M2?(k) x R.

The unit vector field ¢ tangent to the fibers is a Killing field. The field &
defines the vertical direction of the Riemannian submersion M3 (s, 7) — M2 (k).

Moreover we assume k — 472 # 0, otherwise the manifold is a space form

and its isometry group has dimension 6.
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The manifolds M?(x, 7) with 7 # 0 are of three types : when s > 0 they are
the Berger spheres, for k = 0 they have the isometry group of the Heisenberg
space, Nil;, and for k < 0 they have the isometry group of Pm).

Let us assume now that the isometry group has dimension 3. If we suppose
moreover that the manifold has a compact Riemannian quotient then, up to
isometry, the manifold is unique and is a Lie group called the Sol group (or Sol

geometry). A model of Sol is R* equipped with the metric:
ds? = e da? + e ¥ dy® +d 22
The group structure of Sol is given by
@y, 2) % (z,4,2) = (e z+2' &y +y, 2+ 2).
The isometries are:
(x,y,2) — (e ‘z+a, £e‘y+b, z+c) and (z,y, 2) — (e “y+a, e+, —z+c),

where a, b and ¢ are any real numbers.

For more details we refer to [2], [21] and [24].

Let X : Q — M be an immersion where Q C R? is a connected open set
and M stands for either M?(k, 7) or Sol. We denote by N a unit normal field
along X. We assume the immersion X is umbilic, this means there exists a real

function A on Q satisfying:

Vx,N =X,
Vx,N =X,

where V is the connection on M and « and v are the coordinates on €.

We set v = (N,&) and T := £ — vN (respectively v = (N, %) and T :=
2 _ YN) in case where M = M?(k, 7) (respectively M = Sol).

The starting idea in analyzing the totally umbilic surfaces is the following

formula.
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Proposition 1 With the previous notations we have
(k — 47T, if M = M?(k, T)
VA=
2vT, it M = Sol
where VA stands for the gradient of A on the surface.
Proof. From relations (1) we derive the following
vXU (vXuN) — )\'uXu + )\VXUXu
vxu (VXUN) = )\uXv + )\vXuXv
Substracting the second equation from the first one we get
Vx,(Vx.N) = Vx,(Vx,N) = M X0 — M X
That is
R(Xu, Xo)N = XXy — M X, (2)

where R denotes the curvature tensor of M.
In case where Ml = M (k, 7) we have the following formula derived by Daniel,
see [6]:
R(X., X,)N = (k — 470 ({X,, T) X — (X, T)X,) .

Taking into account the relation (2) we get
VA = (k — 470,

as desired.

Now if M = Sol we can prove as in [6] (see [22] for details):

R(X., X, )N = 2v({X,, T) X, — (X., T)X,)
From what we deduce using (2):
VA=2uT,
which concludes the proof. ([

The classification of totally umbilic surfaces in M is summarized in what

follows.
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Theorem 2 Up to ambient isometries, there exist only two complete totally
umbilic surfaces in Sol, one of them being totally geodesic and the other not.
Both surfaces are invariant under the horizontal translations (x,y,z) — (r +
t,y,z), t € R. The totally geodesic surface corresponds to the plane {y = 0}.
The non geodesic one is a vertical graph contained in a slab delimited by two
totally geodesic planes {y = £y}, yo > 0, and is asymptotic to them.
Moreover, up to ambient isometries, any totally umbilic surfaces in Sol is

contained in one of these two surfaces.

Theorem 3 There exist no totally umbilic surfaces (even non complete) in the
three manifolds M3(k, 7), with T # 0 and k — 472 # 0. In particular, there are

no totally geodesic surfaces.

Now we consider the case where M = M?3(k,0) that is M = M?(x) X R,
k € R. When s = 0 we recover the Euclidean space R? so we will assume & = 0.
Without loss of generality we can further consider only the cases k = 1.

It is easily seen that the isometries of M?(x) x R are of the form
(p,2) € MP(k) x R (p(p), £z +a)
where ¢ is an isometry of M?(x) and a € R.
Let us consider the one-parameter groups of isometries {;, t € R} in M>(k):

1. if k = 1, that is M?(1) = S?, it is just the group of rotations around a
fixed point of S?,

2. If K = —1, that is M?(—1) = H?, there are three cases:

(a) {p:, t € R} is the group of rotations around a fixed point of H?,

(b) {¢:, t € R} is the group of hyperbolic translations along a geodesic
of H2,

(c) {p:, t € R} is the group of parabolic isometries of H? with respect
to a fixed point of the asymptotic boundary of H?2.
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Definition 4 We say that a surface S in M?(k) xR is symmetric if it is invari-
ant under a one-parameter group of isometries of the form: (p,z) — (¢«(p), 2)

where {p,, t € R} is as above.
We first state:

Theorem 5 Any umbilic surface of M?(k) X R is part of a symmetric umbilic

surface.

We just sketch the proof. From proposition 1 we have VA = xvT, which
shows the level curves of A are horizontal. Since the horizontal slices M?(k) x
{20} are totally geodesic, we deduce that the angle between the surface and
each slice is locally constant. A simple computation then shows that each level
curve has constant geodesic curvature in M?(k). Using these two properties it
can be shown that the surface is part of a symmetric surface (see [22] for more
details).

O

As a consequence of Theorem 5, classifying umbilic surfaces of M?(k) x R

reduces to classifying the symmetric ones. This is summarized in what follows.

Theorem 6 Any totally geodesic surface in M?(k) X R is part of a complete
one.
The only complete totally geodesic surfaces in M?(k) x R are the slices

M2 (k) X {20} and the products T x R where T is a complete geodesic in M?(k).

Theorem 7 Any totally umbilic surface in S* x R is part of a complete one.
Up to ambient isometries, there are three types of complete and totally um-

bilic surfaces in S? x R, besides the totally geodesic ones:

1. a one-parameter family of embedded topological spheres homologous to zero
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2. a one-parameter family of embedded topological spheres nonhomologous to

zero
3. a unique properly embedded surface homeomorphic to R2.

Moreover all these surfaces are symmetric.

Theorem 8 Any totally umbilic surface in H? x R is part of a complete one.
Up to ambient isometries, there are three types of complete and totally um-

bilic surfaces in H? x R, besides the totally geodesic ones:

1. a one-parameter family of embedded topological spheres invariant under
a one-parameter group of isometries of the form (¢4, Id), t € R, where

{¢s, t € R} is the group of rotations around a fized point of H>

2. a one-parameter family of properly embedded surfaces homeomorphic to R?
invariant under a one-parameter group of isometries of the form (pq, Id),
t € R, where {¢, t € R} is the group of hyperbolic translations along a
geodesic of H?

3. a unique properly embedded surface homeomorphic to R? invariant under
a one-parameter group of isometries of the form (¢, Id), t € R, where
{¢s, t € R} is the group of parabolic isometries of H? with respect to a
fized point of the asymptotic boundary of H2.

3 Regularity of totally umbilic surfaces

The standard proof of the classification of totally umbilic surfaces in R® assumes
that the surfaces have at least C?® regularity, see for instance [7], [11], [16] or
[23], Vol.3. However to define umbilic surfaces it is enough to assume twice
differentiability, that is locally the surface is given by an immersion such that

each coordinate function is differentiable as well as its first partial derivatives.
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We will show that in fact any totally umbilic surface in R® which is twice
differentiable is actually of class C® and so the classification is also valid with
this weaker regularity. The fact that a totally umbilic C? surface in R? is
a piece of a round sphere or of a plane is probably known but we are not
aware of any reference. For instance this problem was mentioned in the recent
book of Kithnel ([16], p. 77). We note that the total umbilicity condition
is a Weingarten relation but not of special type in the sense of Hartman and
Wintner [10]. Therefore the techniques used in [10] for C? surfaces do not apply
to totally umbilic surfaces.

Since changing (locally) conformally the metric of the ambient space pre-
serves umbilicity (see [23], Vol.4), it follows that twice differentiability implies
C3 regularity in any locally conformally flat (smooth ) 3-manifold. In particular
the classification of totally umbilic surfaces in H?, S3, S? x R and H? x R is valid
assuming only twice differentiability, as these spaces are locally conformally flat,

see Remark 11. We think this regularity result is true in any manifold.

Theorem 9 Let S C R? be a twice differentiable totally umbilic surface. Then

S is in fact of class C3. Consequently S is part of a round sphere or a plane.

Proof. By assumption S is locally the graph of a twice differentiable function

h defined on a open set U C R2. Therefore, S is locally parametrized by:

X(z,y) = (z,y,h(z,y)), (z,y)€U.
A unit normal field is
(—hey —hy, 1)
V1+hi+he
As S is totally umbilic there exists a real function A on U such that N, = A X,
and N, = AX,. Since
e ((
(L+h2+ hz)i*/2
1
N = — - (_
Y u+@+@wﬁ(

N, = 14 12 + holiyhye, Bl e — (14 h2)hyay —hohen — hyhy,)

1+ hZ)hzy + haliyhyy, holiyhey — (1 + hi)hyyv —ha Py — hyhyy)
(3)
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we have

—(1+ B2) oo + hohyhys = A(1+ h2 + h2)%?
N, =X, & (51) Bohyhes — (1 + B2 )hye = 0
—haohos — Byhys = Mha(1+ B2 + h2)%/?
and
-1+ h;)hw + holiyhy, =0
N, =X, & (S,) hohyhoy — (14 h2)hyy = A1+ h2 + h2)*?
—hohay — hyhyy = My (1+ b2 + h2)*?

Up to a rotation and restricting the open set U if necessary, we can assume
that the first derivatives h, and h, never vanish on U.

From the last two equations of (S7) we obtain

how = — A1+ h2)4/1+ B2 + h2
hya = — Ahohyy /1 + A2 + A2

In the same way, from (Ss) we get
hay = — Ahghyy/1+ hZ 4+ h2
by = = AU+ 2) 1+ 02 + 12

Thus
how = — AL+ h2)4/1+ B2 + h2
hay = Bys = — Mhahy( 1+ R2 + h2 (4)

hyy = — M1+ h2)4 /14 h2 + h2

Observe that the second equation in (S;) is equivalent to

2, b, 20

yx

1+ h2 hy
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This means that

0
oy (log(1 4 h2) —logh2) = 0.

Therefore
log(1 + hg) =log hy + f(y) (5)
where f is a real function depending only on y. So
14+ h2 =e/Wh.
In the same way, considering the first equation of (S;) we get
2 s - x) 1,2
1+ h, = e9@h2,

where g is a real function depending only on x. We infer that
h2
(1+ef(y))h—g =1+e%@). (6)

Equation (5) shows that f is differentiable. Taking the derivatives in (6) with
respect to y and using the relations in (4) we obtain after some simplifications

7
21+ efw) Tt RE T2 ")

Analogously we get

RN ®)
2(1+e9@) T+ 2+ h2

From the equations (7) and (8) we derive

(1 + ef(y)) g/(‘r)eg(w)hm
el W) hy 1+ e9@)

f'ly) = )

From (9) we see that f’ is differentiable. Using (7) this shows the continuity
of A\. The relations in (4) then imply the C? regularity of h. Coming back to
(9) we find that f is of class C*. Consequently (7) gives that X is of class C*.
Finally we conclude using again the relations in (4) that h has C? regularity.
Consequently S is of class C® and then the usual argument shows that S is part
of a round sphere or a plane.

O
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Remark 10 In fact the same proof works assuming only that h is C' and has
second partial derivatives. Moreover the relations involved in the proof of the

theorem can be used to show that h is in fact C*°.

Remark 11 [t is clear that S* and H? are locally conformally flat since they ad-
mit local coordinates where their metric is proportional to the Euclidean metric.
The spaces H? x R and S* x R are also locally conformally flat. More precisely
we will show that H2 x 0,7 is conformally equivalent to H® and S? x R is

conformally equivalent to R®* — {(0,0,0)}.

Proof of Remark 11. First consider the space H? x R. Choose a geodesic
plane H? in H? and choose a unit normal field N along it. For each point
p € H?2 ¢ H? and for each t € R consider the point at the signed distance ¢
from p on the normal geodesic of H? issued from p and directed by N(p). This
defines a diffeomorphism F' from H? x R onto H?. Then the pullback metric on
H2 x R is ds? = cosh®(t) ds2, +dt2. To see this we choose the halfspace models
for H® and H?2, that is

du? + dv? 4+ dw?

H? = {(u,v,w) € R*, w > 0}, equipped with the metricdsfs = 7

and

dz? +dy?
H? = {(z,y) € R?, y > 0}, equipped with the metric ds?, = %

Then the diffeomorphism F' is given by F(z,y,t) = (ytanht,z, —%-). A

7 cosht
straightforward computation gives

du? + dv? + dw?

dz? + dy?
w2 2

F¥( ) = cosh? ( ) +dt>.

With the new coordinate z = 2 arctan(e’) the metric reads as

ds? =

=37 Z(dsfmz +dz?)

on H? x |0, 7[.
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In the case of S? x R we consider the map
(S* xR, e*(dsg +dt?)) — (R*—{(0,0,0)},ds2,.)

(p,t) — €'p

where S? is the unit sphere of R? centered at the origin. A straightforward

computation shows that this map is a global isometry.

For the sake of completeness we state the following.

Corollary 12 Any twice differentiable totally umbilic hypersurface ¥™ of R™!,
n > 2, is part of a hyperplane or a round sphere of R"*1,

Proof. Observe that it suffices to show that the function A defined as in (1) is
constant. We will prove it by induction on n > 2.

For n = 2 this is Theorem 9.

Assume the claim is true for some integer n > 2. Let ¥"*1 C R"*2 be a
twice differentiable totally umbilic hypersurface of R"*2. Let p € ¥"*! be any
point and let II € R"*2 be any hyperplane containing p and transversal to X!
at p. There exists ¥ C X! N 1I a connected subset containing p which is a
twice differentiable hypersurface of II.

Let us denote by N a unit normal field to "' and by v a unit normal field
along ¥" in II. Let vy € R™2 be a unit vector orthogonal to II. It is easy to

see that up to sign we have

V= m (N = (N, v0)vo)) -

Note that (IV,vy) is constant along . Indeed for any v € 7™ we have

U(N, UQ> = <qu7 ’Uo> + <N, vu’l}())

= (Au, vo)
=0,

Therefore
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we

_ 1 _
VS T

1

S

This shows that 3™ is a totally umbilic hypersurface in I1. By our assumption

know that =5~z A Is constant and so A is constant along %"

1
(N,vo
Now varying the hyperplane IT > p in R"*? it follows that A is constant in a

neighborhood of p and so X is constant on the whole of X7+,

O
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