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DIFFERENTIAL EQUATIONS AND MOVING
FRAMES

Odinette Renée Abib

Abstract

We shall study the foundations of the differential geometric consider-
ation for differential equations. We show a local structure theorem. The
main idea lies in the structure equations. The Lie algebra aspects of local
differential equations is studied too.

1 Introduction

The purpose of the present paper is to study the relationship between differential
equations, Pfaffian systems and geometric structures, via the method of moving
frames of E. Cartan [4, 9]

Following Cartan, we deal with every differential equation as a Pfaffian sys-
tem on a suitable manifold (Section 3). This is the fundamental idea of Cartan.
Further, we shall consider the structure equations which are satisfied by Pfaffian
systems determined by differential equations. The integration of a given differ-
ential equation is deeply related to the structure equation associated with the
differential equation. We shall show it by means of some examples.

In Section 4, we shall establish a local structure theorem (Theorem 4.1). By
virtue of this theorem, differential equations can be regarded as a differential ge-
ometric structure on a manifold. In Section 6, we shall consider the Lie algebraic
aspect of local differential equations; each differential Lie algebra (definition 6.1)
determines locally a local differential equation (Theorem 6.1); if ¢ is a semi-

simple graded Lie algebra, then g has a structure of fundamental Lie algebra
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(Theorem 6.2). Moreover sl(2, R) has a structure of differential Lie algebra which
is not fundamental.

In Section 7 we study one system, which is one of the typical examples in
Cartan’s paper [5], related with G-structures and the local automorphism group
of the given system. The Section 2 conscerns remarks on Pfaffian systems, Cauchy
characteristics and solvable systems.

In this paper, by the language differentiable we mean differentiable of class
(B
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2 Cauchy characteristic system

We begin with the preliminary remarks on Pfaffian systems. Let M be a differ-
entiable manifold. F(M) denotes the ring of real-valued differentiable functions
on M and A'(M) the F(M)-module of all 1-forms (Pfaffian forms) on M. A
F(M)-submodule X of A'(M) is said a Pfaffian system of rank n on M if ¥ is
generated by n linearly independent Pfaffian forms 6*,...,6". A submanifold N
of M is said an integral manifold of X if *0 = 0 for all § € X, where 7 denotes
the inclusion N < M. A differentiable function f on M is said a first integral of
¥ if the exterior derivative df belongs to ¥. By the symbol ¥ = (6, ... 0") we
mean that the Pfaffian system ¥ is generated by the linearly independent Pfaffian
forms 6%, ...,0" defined on M.

For each Pfaffian system ¥ on M, we can construct the dual system, that is,
the differentiable subbundle D(X) of the tangent bundle T'(M) on M such that
the fiber dimension of D(X) is equal to dim M — n. Let D(X) be the sheaf of

germs of local vector fields which belong to D(X) and D(X) (z € M) the stalk
of D(X) at z. We set

o), = {A<p@), |[4.00) ] D)}

where [, | denotes the natural bracket operation. Further, for each x € M, we
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define the subspaces Ch(D(X)), of T,.(M) by

x

Ch(D(T)), = {X. € D). | X, e Ch(DE)) },

where X denotes a vector field and X , the germ at x determined by X. We
suppose that dim Ch(D(X)), is constant on M. Thus, we obtain the subbundle
Ch(D(X)) of T(M). Ch(D(X)) is called the Cauchy charateristic of D(X). The
dual system of Ch(D(X)) is called the Cauchy characteristic system of . The

following theorem is due to Cartan [3, 6].

Theorem 2.1 Let ¥ = {(6*,....0") be a Pfaffian system.

1. If ¥ is completely integrable, i.e. d0° =0 (mod. 6*,...,0") i =1,2,...,n,
then Ch(X) = X.

2. If X is not completely integrable, then there exist linearly independent Pfaf-
fian forms w',...,w™ satisfying the following conditions:
(i) 04, ..., 0" W, ... ,w™ are also linearly independent;
(ii) (0%,...,6™ w',...,w™) forms a (local) generator of Ch(%);
(i) 6" = 377, Coyw? AWk (mod. 0',...,0"), where C3y, denotes a differ-
entiable function (i =1,2,...,n; j,k=1,2,...,m).

3. Ch(X) is completely integrable.

4. Let z*,...,2™™™ be independent first integrals of Ch(X). Then there exist
linearly independent Pfaffian forms 0 = Z;”le A" 5 v g BT Wl § =

1,2,...,n, such that (@1, ...,8") forms a (local) generator of ¥.

By making use of property 2.(ii), we can construct the Cauchy characteristic
system Ch(X).

Example 2.1 Consider the Pfaffian system ¥ = (), = dz + pdz + p*dy, on
R* = {(z,y, z,p)}. We have df = dp A (dz + 2pdy) and

wi=dp , Wi=dr+2pdy , WP=p |,
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determine the Cauchy characteristic system of . We can find by quadrature

three independent first integrals as follows:
w=z+rp+yp’ , Up=T+2Yp , Us=D ;
and @ itself is expressed as 6 = duy — us dus.

Definition 2.1 A system (w?,...,w™) of linearly independent Pfaffian forms on
M will be said a solvable system of ¥ = (0%,...,0") if it satisfies the following

conditions:
(i) (W', ..., w™) forms a generator of Ch(X);

(ii) dw' =0 and dw? =0 (mod. w',...,wP™t) for allp=2,3,...,m.

If we can find a solvable system of ¥, then m independent first integrals of
Ch(X) are given by quadrature. In the above example, the system (w?!,w?, w?) is

a solvable system of 3 = (0).

3 Differential equations and structure equations

In this section we shall consider, by means of simple examples, the relation be-

tween the differential equations and Pfaffian systems.

a) Take the first order equation on R? = {(z,9)}

0z 1(62)2 _ 0 (31)

oz 2\
Setting on R* = {(z,y,2,¢)}, w' = dz, w? = dy — qdz, w* = dz + 1¢* dy — qdy,
w* = dq, we have
dw! =0,
dw? = wr Awt |
dw?® = w* Awt,
dw*=0.

(3.2)

Each integral of (3.1) defines a 2-dimensional integral manifold of (w*) on which

w' and w? are linearly independent. The equation (3.1) is left invariant by the
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automorphism group of the absolute parallelism w!, ..., w* on R% The structure
of this group is determined by the equation (3.2). The integration of the equation
(3.1) depends deeply on the structure equation (3.2) of this group. In this case
(wh, w?, w?) forms a solvable system of (w?). Therefore three independent first

integrals of Ch({w?)) are given by quadrature as
1 2
upr=q U2:Z+§xq -Yyq , Uz=Y—2xq ;

and we have w® = dus + u3 duy. The formula

@,
0

{ z+32¢> —ygq
y—xzq+ f'(q)
gives an integral surface of the equation (3.1), where f is a differentiable function
and f’ denotes its derivative.

Conversely, we consider an absolute parallelism w!, w?, w?, w* on R?* satisfying
the equations

1 — 20— 1 2
{du) =0, dw?’=0 (mod. w',w?), (3.3)

dw®* =W Awt  (mod. w?) .
Let x and y be two independent first integals of the completely integrable Pfaffian
system w! = w? = 0. If we reduce w? to the submanifold defined by the equations
T =const., y =const., then from the equation dw?® = w? A w* (mod. w?) we have

dw?® = 0 (mod. w?) on this submanifold. Therefore w® must be of the form
w? = a(dz —pdr —qdy),

where a is a non-zero function. Since w!, w?, w?® are linearly independent, the
functions x, y and z are also independent.
By this procedure we can determine the functions p and g of the variables x,

Y, 2 and another t:

=025 » 0=d@aat); (3.4)

and the same equation dw® = w? A w* (mod. w?) implies
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On a 2-dimensional integral manifold of w?® = 0 on which z and y are still inde-
pendent, p and ¢ can be considered as the first partial derivatives of z = z(z,y).
Therefore the equation (3.4) can be regarded as a first-order differential equation.
For example, the differential equation
% £ %(g—; = f(azy))2 = g(z,y)

belongs to the family determined by the structure equation (3.2), where f(z,y)
and g(z,y) are differentiable functions satisfying the equation

9f _ 9

ox oy
b) Next, we consider an absolute parallelism w!, w? w* w!, W’ w® on R®

satisfying
dw'=0, dv®*=0 (mod. w' w?),
dw®* =W Awt + WP AW® (mod. w?),
dw'=0 (mod. w? w W%,
dw® = w? AwS  (mod. w? wt W) .

(3.5)

Let z and y be two independent first integrals of the completely Pfaffian integrable

system w! = w? = 0; w? is expressed as
w?® = a(dz—pdr —qdy)  (a#0).

The functions z, y, z, p and ¢ are independent first integrals of the completely
integrable Pfaffian system w! = w? = w? = w! = w® = 0. Therefore w! and w®
can be written by means of the exterior derivatives dx, dy, dz, dp, dq and the

formulas

dp—rdr—sdy = aw*+ aw® + asw?

dg—s'dr —tdy = auw+ asw® + aew?®

determine the functions r, s, &', t and a;’s of the variables z, y, z, p, ¢ and another
u. From the equation dw® = w! Aw* +w? Aw’ (mod. w?), one can verify that the
function s coincides with s’. Moreover, the equations dw? =0 , dw® = w? A W°
(mod. w? w*,w®) imply

k(g e ) -
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Therefore the functions

T= T U Zi Dy 0y) 5 B= 8T L2801 0) » =02, 7,2,p Q)

determine a system of second-order partial differential equations. This family of
systems of differential equations determined by an absolute parallelism satisfying
(3.5) is the main subject of Cartan’s researches in his paper [5].

For example, take the system of differential equations (c.f. [5, §§ 13, 14])
8?2 9%z 0z

a2 =" ' Bmoy L Tgp

(3.6)

Putting on R® = {(z,v,2,p,¢,t)} w! = dz, w* = dy, w* = dz — pdx — qdy,
w* =dp—(z—xp)dy, w® = dqg— (2 —xp) dr—tdy and w°® = dt — (¢—x(2 —zp)) dz
we have the structure equations

dw'=0, d?=0,

dw? = w Awt + w2 AW,

dwt*=w? Awd —zw? Awt,

dw’ =W NS+ AW —zw AWt

dwt =w' AW’ —zw Aw® — 22w Awt + Kwl Aw?,
where K =t — zq + 2*(2 — xp). The absolute parallelism satisfies the equations
(3.5). It is easy to see that the system (w?, w? w*,w?®, w") forms a solvable system
of ¥ = (w? w* ,w®). Five independent first integrals of the solvable system are

given by quadrature as follows:
u =y , Uy =2 —Tp , us =p , U4:q—l'(2—l’p) B U5:K 5

and we have (c.f. [5, §10, IV])

Wi —zwt = duy —usduyy
wr = dus —usduy ,
W —zw® = duy—usdug .

By this expression, the general integral surface of (3.6) is given by the formulas:

=1, z=ap= 1), 4= o(z =) = f(y) , t= (g — 2z~ 2p) = £"(9)

where f is a differentiable function and f’, f” and f” denote its derivatives.
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4 Differential geometric structures

In the previous section we have seen that the integration of differential equation is
deeply related to the structure equations of differential equations. In this section
we shall consider the differential geometric structures for differential equations.

Let V_; and V4 be finite dimensional real vector spaces. We define by induction
the real vector spaces Vi, k = 1,2,... as follows. Let V; = Hom(V_y,V5); Vis
(k > 2) being determined, we set

W = {X € Hom(V_y, Vio1) | X(u)(w) = X(v)(w), u,v € v_l} :

We have Vj, = V, ® S*(V*,) as a vector space (k = 0,1,2,...), where S*(V*))
denotes the symmetric tensor space of the dual space V*,. For an integer k > 1

we set
Wi, (Vo,Vo) = Voo oVod -V (direct sum),

and we define the bracket operation [, | on W (V_y, Vo) as follows:
(i) Forall X_; e V.4, X, €V, (p>1),

[Xp, X1] = —[X1, X,] = Xp(X-1) 5

(i) [X,Y] =0 for any other combination

By this bracket operation, W;(V_y,V;) becomes a nilpotent Lie algebra. It is

easy to prove the following.
Proposition 4.1
(1) For a non-zero element X_y € V_y, [X_1,V,] =V,1 (p > 1).
(i) If [X_1,Vp] = (0) for X, €V, (p>1), then X, =0.
(iii) For an arbitrary subspace Vi of Vi,
We(Vo,Vo) = Vo @ Vo @@ V) (direct sum)

is a Lie subalgebra of Wi,(V_1, V).
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Example 4.1

(1) dimV_; = 1, dim V5 = 1. We have dim V}, = 1 for any k > 1. There exists a
basis X_1, Xo, X1,. .., Xi of Wi(V_1,V5) such that X, € V,, (-1 < p < k)
and [X_1, X, =—X,_1 1<p<k).

(2) dimV_; =2, dimV, = 1. We have dimV,, =k + 1 for any k > 1.

(i) k£ = 1. There exists a basis X1, Xo, X3, X4, X5 of Wy (V_1,Vp) such
that Xl,XQ (S Vfl; X3 S VD7 X4,X5 S 1/1 and

(X, Xd) = =X5 , [Xo, Xs]=—X5

and otherwise [X,Y] = 0.

(ii) k& = 2. There exists a basis X1, Xs, X3, X4, X5, X6, X7, Xg of Wo(V_1, V%)
such that X17X2 = Vfl; X3 € %; X4,X5 eWv 5 X67X77Xg e Vs and

[XhXﬂ =-X3 , [X2>X5] =—-X; , [leXG] =—Xy
X, Xr=—-Xs , [Xo0,Xo|=-Xy , [X0,Xs]=—-X5

and otherwise [X,Y] = 0.

Let 7 : M — N be a fibered manifold on a differentiable manifold N
and J*(M,r) the space of k-jets of local sections of 7. If dim N = dimV_,
and dim M = dim(V_; @ Vo), Wi(V_1, Vo) is regarded as the local structure of
JE(M,7r), i.e. J¥(M,m) = Wy (V_1,Vs) (locally diffeomorphic).

Let w? : Wi(V_1, Vo) — V, (=1 < p < k) be the natural projection. We
regard u? as a vector-space valued function on Wy (V_1,V;), so that the system
(u=t,u®, ..., u*) can be considered as a linear coordinate system on W, (V_1, ;).
We set 07! = du™, 07 = du? — [P, du™'] (0 < p < k—1), 6 = du* and
0=0"14+0"+ - +0F 0is a Wi(V_1,Vy)-valued 1-form on Wy(V_1, V). We

have

dg—t=0

P + [0 APH =0 (0<p<k-—1).
For example, making use of the notations in Example 4.1, 2.(ii), we set u™! =
2 X1 +yXo, v = 2X5, ut = pXy+qXs, u? = rXs+sX;+tXgand 0 = Zle w'X;.
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Then we have w! = dz, w? = dy, w* = dz — pdx — qdy, w' = dp — rdx — sdy,
W =dq—sdr —tdy w° =dr, w" = ds, w® = dt and

dw' =0, dw?=0,

dw® = w Aw* +w? AW,

dw* =W AWt + W AW,

d® =w' AWT+H W AWE.

Let pf : W,(V_1, Vo) — Wi 1(V_1, Vo) (k > 1) be the natural projection,

where we put Wo(V_1, Vo) = Vo1 ® Vo; Wi(V_1, Vo) can be considered as a fibered
manifold on W,,_1(V_,V;) with the fibering p*.

Definition 4.1 We shall say that a submanifold Ry of Wi(V_1,Vs) is a local
differential equation of order k if R; admits an absolute parallelism and if there
exist an open submanifold U of Wi_1(V_1, Vo) such that p*(Ry) = U and p*|p -
Ry, — U is a fibered submanifold of p* : (p*)~(U) — U.

Let i : Ry, — Wi(V_1, V5) be the inclusion and w = i*6 the induced Wy(V_y, V)-
valued 1-form on Ry. According to the direct sum decomposition of Wy (V_1, Vo),
we decompose w as w = w ' +w’ + -+ - + &, where wP (resp. &¥) is a V,-valued
1-form (resp. Vj-valued 1-form) on R, (-1 < p < k —1). Let n be the fiber

dimension of p : R — U. Then there exist n linearly independent Pfaffian forms

wh ..., wk which are also linearly independent of the Pfaffian forms obtained from
wh Wb L WPl We fix a n-dimensional vector subspace V0 of V4, and its basis
Xy,..., X, and we set w* = 3" wh X;. W is a V-valued 1-form on R,. We

define the differentiable mappings

Ff : Ry — Hom(V, Vi)

by the formula
d(u* o) = FE (W) 4+ + FEWF);

and we define the differentiable mapping

T : Ry — Hom(V_; x V2, Vi_1)
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by the formula
To(X_1,Xp) = [Xo1, FF(x)(Xh)]  (@€Ry, X1 €V, X €VY).

Since the rank of the inclusion i is maximal on Ry, the linear mapping F}(x) :

VY =V, (x € Ry,) is injective. Therefore T has the following property:
(Cy) For each z € Ry, T,,(V_1, Xy) = 0 (X, € V}?) implies X, = 0.
It is also easy to prove the following properties:

(Co) (1) dw™' =0 (mod. w1);

(i) (k>2)Forp=0,1,....k—2,
dof +[wAwP] =0 (mod. W2 ...,wP);

(iii) dw* '+ T(Ww AwF) =0 (mod. w P Aw™,u0, ... Wk ).

We have thus proved that for each local differential equation of order k there
exist a differentiable mapping T : R, — Hom(V_; x V : V}) and an absolute

parallelism w = w™ + w° + - - - + w* satisfying the above conditions (C;), (Cs).

Theorem 4.1 Let V)2 be a subspace of Vi, and put W2 =V i@ Vo@® - & VP
(direct sum). Let Ry, be a differentiable manifold with dim Ry, = dim W2. If there
exists a W0-valued absolute parallelism w = w1 4+w’+- - -+w* and a differentiable
mapping T : R, — Hom(V_; x V0 : V) satisfying the conditions (Cy) and (Cs),
then Ry can be locally embedded into Wi, (V_1, Vo) as a local differential equation
of order k.

Proof. Since w gives rise to an isomorphism w, : T,,(Ry) = W2 (z € R},) one can
consider the inverse mapping of w,, say 7, : W = T,(Ry). T has the property:
wP((1(Xy)) = 08Xy, Xy € Vg (=1 < p,q < k). By the condition (i) of (Cy), we can
find differentiable mappings v=': R, — V_; and A_; : By — GL(V_;) such that

1

wl=A_(dv!). Since the system w™! = w° = 0 is completely integrable, there
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exists a differentiable mapping v° : R;, — V{ such that the system dv=" = dv® = 0

1

is equivalent to the system w™' = w°® = 0. Therefore, w° can be written as

W = Ag(d® —vldvt),

where Ay denotes a differentiable mapping Ao : Ry — GL(V5) and v! denotes
a differentiable mapping v! : R, — Hom(V_;,V;) = V. If k = 1 the argument
comes to an end. Let k£ > 2. Consider the following proposition (P;) for 1 < j <
k:

(P;) There exist differentiable mappings v™? : R, — V, and A, : R, — GL(V,),
p=—1,0,1,...7, such that
(1) dvt,dv°, ... dv"~! are linearly independent;
(2) wl=A_(dv™!), W’ = Ag(d® —vtdvt) and forp=1,2,...,5—1,

wP = Ap(dvP —vPtdv™) (mod. w?,...,wP™?).

We have proved (P;). For an integer 1 < j < k — 1, assume that (P;) is es-
tablished. From the inequality 0 < j —1 < k — 2 and condition (ii) of (Cs) we
have

do™t = —wtAW]  (mod. W°,...,w" ).
From (2) of (P;) we have
d’™t = —A;_1(d AdvTt)  (mod. WP, ..., W) .
These two equations yield
A (diAdv™h) = wiAw]  (mod. ... w7 . (4.1)

Substituting 7(X,) A T7(X_1), X_q € V4, X, € V, (j +1 < p < k) to this
equation, we obtain

(@ (r(X,)) (AZ1(X ) = 0

and hence
W(r(X) =0 (X, €V p=j+1....k). (4.2)
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Substituting 7(X;) A 7(X_1), X_1 € V_1, X; € V} to equation (4.1), we have

A (9 ((5,)) (ATH(X D) = —[X_1,X)]

and hence
v (1(X;)) = Aj_fl oX;0A 1. (4.3)

The equation (4.2) implies that dv? is expressed as
d’ = Bj(w) (mod.w™u0... 0" (4.4)

and the equation (4.3) implies that the differentiable mapping B; : Ry —
Hom(V},V;) is given by the formula

Bi(X;) = Ao X;0A  (X;€V)),

so that Bj;(z) is non-singular for any z € Rj. Therefore one can see that

dv=t,dv°, ..., dv’ are linearly independent. By equation (4.4), w’ can be written
as

W = Aj(dv? — v dv™!)  mod. W% ..., 0.
where A; = B;' and v/*' denotes a differentiable mapping v/*! : R, —

Hom(V_4,V;). Substituting 7(X_), X_; € V_1, to this equation, we have
dv? (T(X_1)) = PP ({ATF (X)) .
Substituting 7(X_1) AT(Y_1), X_1,Y_; € V_4, to equation (4.1), we obtain
v (7(X_1)) (AL (V1)) = o (r(Y-))(AH (X)) -
These two equations imply
VHH(X)(Yo) = o (YL)(X)

for any X_1,Y_; € V_4, so that v/*!(z) lies in Vj;, for any z € R;. Thus we
can establish by induction the proposition (P;41) and hence (Py). Define the
differentiable mapping F : R, — Wy(V_1,V;) by the formula

uwoF = vf (—1<p<k)
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and put
do* = of(e®) (medsw . ™)

If vf(z) € Hom(V?,V4) is injective for any € R, F is an immersion and
determines locally an embedding. From the proposition (Pj) we have

do*! = A (d*AAT (W) (mod. W°... W)

= A (WFWHAATH W) (mod w AwTLWP ... WP .
By the condition (iii) of (Cy) we obtain
A (R W AATT (W) = T AWY)  (mod. w™ Aw™,W0, ..., ).
Substituting 7(X_1) AT(X},), X 1 € V1, X; € V to this equation, we have
A1 (Ve (X)) (AZH(X 1) = T(X_1, Xa) -

If v¥(Xy) = 0, then T(X_y,X};) = 0 for any X_; € V_;. From condition (C;)
we obtain X, = 0. Hence vF(z) € Hom(V?,V,) is injective for any x € R,. Set

p = p* o F. By the definition of F we have
wWop = uPoptoF = wPoF = oP (-1<p<k-1).

This relation and (1) of the proposition (P;,) imply that 7 is a submersion. There-
fore F' determines locally a local differential equation of order k.
O

Remark 4.1 By virtue of this theorem, a system (Ry, WP, T,w) satisfying the
conditions stated in the theorem may be also called a local differential equation

of order k.

5 Equivalence

Let V be a subspace of V, (k > 1). Weset W) =V 18V, & - &V and
DP =V, 0V, ®--- @V, p=0,1,..., k. We define the Lie subgroup G(W})
of GL(W(V_1,V})) as follows:

0 CLI(I,16) | a0V 010) = Vs 072 (0%)

GWP) =
W) {:DP(0<p<k)
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Definition 5.1 We shall say that two local differential equations (R, WP, T, w)
and (R, W2, T',w') are structurally equivalent if there emists a differentiable
mapping A : Ry — G(WP) such that ' = A(w).

Definition 5.2 A local differential equations (Ry., W2, T,w) will be said of type
WR if T(X_ 1, Xp) = [X 1, Xp)o for allz € Ry, X 1 € V1, X € V2 and if w

satisfies the condition:

(Cy) (i) dw™t =0 (mod. w™);

(i) Forp=0,1,... k—1,

do? + W AW o = 0 (mod. W°,...,wP),
where [-,+]o denotes the natural bracket operation W2 (cf. Proposition 4.1).

Remark 5.1 Almost all local differential equations which admit a lot of solutions
turn out to be structurally equivalent to a local differential equation of type W}

for some V2.

Example 5.1 Take the system of second order differential equations

0%z 0%z

o e — 7 = )
Or2 0 5 Oz Oy : L)

Putting on R® = {(z,y,2,p,¢,t)} w' = dz, Ww? = dy, w® = dz — pdr — qdy,
w'=dp— zdy, w’ =dq— zdx — tdy and w® = dt, we have

dw' =0, dv*=0,

dw? = w! Awt +w? AW,

dw? = W Awd +pwt Aw?

dwd = W Awb —w Awd —qut AW?

dwb =0
Since one can not remove the terms pw! A w? and qw! A w?, w is not of type W
for any Vi C V,. On the other hand, the given system (5.1) has no solutions

except z = 0.
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Proposition 5.1 Let P be a differentiable manifold with dim P > dim W}.
Suppose there exists a WQ-valued 1-form w = w™' + &° + -+ + w* such that
wp : T,(P) — W} is surjective for any p € P and dw =0 (mod. w). If w satisfies
the condition (Cj) in Definition 5.2, then (P,W2,w) determines locally a local
differential equation of type WJ.

Proof. Since w = 0 is completely integrable, there exists, for each p € P, an
open neighborhood U of p, a differentiable manifold R, with dim R, = dim W}
and a fibering 7 : U — R,, such that each fiber is a maximal integral manifold of
wlgr = 0. Let 0 : R, — U be a differentiable cross section of 7 and put @ = o*w.
Then it is clear that (Ry, W?,w) is a local differential equation of type WJ. In

general, the obtained system depends on the choice of cross sections.

For a subspace V2 of V. we set

(VOO = {X € Hom(V_,, V)

X(u)w) = X(0)(u) , u,v € v_l} .
For a subspace U of V_1, we set
V2(U) = {Xk eV ’ Xi(u) =0, ue U} _

Definition 5.3 A subspace V)2 of V}, is said involutive if there exists a series of

subspaces (0) CUp C Uy C -+ C Up—y C U, = V1 with dimU; = i such that

dim( V,c Z dim V2(U,

A local differential equation (Ry, W2, w) of type W is said involutive if V0 is

mvolutive.

Example 5.2 We use the notation of Example 4.1. By the symbol
U = (X1,Xs,...,X,) we mean that the vector space U is spanned by the basis
X17X27- 7Xn

(1) dimV_, =1, dim Vj = 1.
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(1) k = 1. Then W{) = V,l @ % = (X17X2) with [X17X2] =0. A
Wo-valued 1-form w = w!X; + w?X, is of type WP if it satisfies

dwt'=0 (mod. w),
dw?=0 (mod. w?).

(i) k=2. Then W3 =V_1 @ Vo @V} = (X1, X5, X3) with [X, X5] = — X,
and otherwise [X;, X;] = 0. w = w'X; + w? X5 + w?Xj is of type W7

if it satisfies
dw'=0 (mod. w'),
dw? = w' Aw?  (mod. w?)
dw? =0 (mod. w? w?)

The Pfaffian system X = (w? w?®) determines a family of second-ordeer

ordinary differential equations.
(2) dmV_; =2,dimV, =1.

(i) k= 1. Let V? be a 1-dimensional subspace of V;.
The we can choose a basis X, Xy, X3, X, of WP such that X;, X, €
V_i, X5 € Vo, Xy € VP and [X,, X4] = —X; and otherwise [X;, X;] =
0. w= Y"1, WX, is of type W if it satisfies

dw'=0, dv* =0  (mod. w! w?),
dw®* =w? Awt  (mod. w?) .

We have already seen this structure equation in Section 3.

(ii) k= 2. Let V be a 2-dimensional subspace of V,. Then the Lie algebra

W2 is isomorphic to the following three Lie algebras.

(a) WQO = (Xh X27 X37X47 X57X67 X7) with
[X17X4] =-X3 , [X2,X5] =-X3 , [X1>X6] =—2X
[X17X7] =-X5 , [X2,X7] =-Xy , [XZ»Xﬁ] =X

and otherwise [X;, X;] = 0; w = Y1, w'X; is of type Wy if it

satisfies
dw'=0, dw?=0 (mod. w!,w?),
do* =W Awt + WP AW (mod. w?)
do* =W AwWS + WP AW (mod. w3 wh WP)
do® =W Aw” —w? AW (mod. w3, wh Wwd) .
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(b)
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WQO = (X17X27X37X47X5yX67X7) Wlth

[X17X4] = _X3 ) [X27X5] = _XS
[X17X6] = _X4 ) [X27X7] = _X5

and otherwise [X;, X;] = 0; w = Y., w'X; is of type WY if it
satisfies

dw'=0, dw?*=0 (mod. w',w?),

dw?=w Aw +w? Aw® (mod. W?)

dw*=w' AW®  (mod. w? wh W),

dw® = w? Aw”  (mod. w? w* w?) .
Let V3 be a 1-dimensional involutive subspace of V,. Then there

is only one case up to isomorphic algebra.

WQO . (X17X27X37X47X5,X6) Wlth
[Xl’X4] =—2a ’ [X27X5] =—-X; ) [X%XG] =—-X5

and otherwise [X;, X;] = 0; w = Y0, wiX; is of type WY if it
satisfies

dw'=0, dw?*=0 (mod. w',w?),

dw*=w At + W AWS (mod. W?)

dw*=0 (mod. w? w W),

dw® =W AW (mod. w? w* w?) .

We have already discussed this case in Section 3.

6 Lie algebraic aspects of differential equations

In this section we shall consider the Lie-algebraic aspect of local differential equa-

Te(Wy (V)

tions. Let Vk0 be a subspace of V. We set
W) =Vaewe---eV) , DP=V,eV,.&---aV) (0<p<k).

We define the Lie algebra J (W (V{)) as follows:

_ { X egW(Vy) | X(Vae W) cVae W, X(Dr) }

CDrP(0<p<k)
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Every element of J,(W2(V{)) is of the form:

VoV o Vi V2

* 00 --- 00 V.
0«0 --- 00 Vo
0« x --- 00 Wi
0 = 0 ‘/;C,l
* * V;f

where * denotes a certain matrix. We define a mapping 8 : Hom(W?, J,.(W?)) —
Hom (W2, AW : W) by the formula

OS)(X AY) = S(X)(¥) - ST)X),
for all S € Hom(WY, Ji(WP)) and all X,Y € WP, where we put W2 = W7 (V).

Definition 6.1 Let J be a Lie algebra. A system (T, M, To) will be called a

differential Lie algebra if it satisfies the following conditions:

(1) Jo is a Lie subalgebra of J and M is a vector subspace of J such that
T =M Ty (direct sum);

(2) For some subspaces V_y, Vo and V)2 of M, we have M = W2(V}2);

(3) The linear isotropy representation p : Jo — gl(M) (p(Xo)(X) = the m-
component of [Xo, X], Xo € Jo, X € M) has its values in Tp(W2(V));

(4) Let a: M A M — M be the linear mapping defined by the formula
a(X ANY) = the m-component of [X,Y] , X,YeM.
There exists an element S € Hom(M, J.(W?)) such that
a(XAY) = [X,Y]o+ (S (X AY),

where [, Jo denotes the natural bracket operation on W2(V2). If Jy = (0),
J (= M) will be called fundamental.
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Theorem 6.1 Let (J, M, Ty) be a differential Lie algebra. Let G be a Lie group
corresponding to the Lie algebra J and let 0 be the Maurer-Cartan form of G.
Then the M-component w of 0 with respect to the decomposition J = M & Jo

determines locally a local differential equation.

Proof. Let M = WP(V}?) for the subspaces V_1, Vo and V;? of M. We set
0 = w + wy, Wy being the Jyp-component of . Then from the structure equation

of Maurer-Cartan we obtain
1
dw+§o¢(wAw) —plwo) Aw = 0

and hence

s 4 %[w/\w]o—l- %(aswm) — o) e = 0.

Since S(X) and p(Xp) (X € M, X € Jo) lie in Jp(WY), we have
dv™ =0  (mod. w™)
and for p=0,1,...,k—1
dw? + [w P AWl =0 (mod. W% W', . .. wP) .

Therefore the theorem follows from Proposition 5.1.

O

Example 6.1 We define the 6-dimensional Lie algebra
J = (X1, Xs, X3, X4, X5, X6) by the following bracket operations:

(X1, X4) = —Xo, [X1,X5] = —X1, [Xo, Xu] = X5, [Xo, X5] = —X>
[X2>X6] — _X2 ’ [X3~X5] = _X3 ) [X3:X6] = _2X3 ) [X4>X6] = _X4

and otherwise [X;, X;] = 0. Set M = (X, Xy, X3, Xy) and Jy = (X5, Xs). Then
(T, M, Jo) is a differential Lie algebra of order 1. Let G be a connected Lie

group corresponding to the Lie algebra J and let w be the Maurer-Cartan form
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of G. Setting w = Y0, w'X, we have

dw' = W AW,

dw? = W Aw* + w? A (W® 4+ w?) ,
dw? = W? Awt + WP A (WP + 205) |
dw* = Wt AW |

dw® =0,

dw®=0.

The differential equation (3.1) considered in Section 3 belongs to this homoge-
neous case. The differential equation is left invariant by the Lie group, which can

be considered as a subgroup of the contact transformation group.

Theorem 6.2 If 7 = J_1+ Jo + 1 (direct sum) is a semi-simple graded Lie
algebra, i.e. [T;, T;] C Tiwy (1,7 = 0,%£1,%2,...), where we put J, = (0) for
p < —=2andp > 2, then J has a structure of fundamental differential Lie algebra.

Proof. Let B be the Killing-Cartan form of J. The linear endomorphism s of
J defined by

S(Xa+Xo+X1) = X 0+X0— X, (XaeTa, Xo€ T, X1 €0)

is an involutive automorphism of . Hence

B(Xl,Xo) = B(S(Xl),S(Xo)) = B(—Xl,Xo) = —B(Xl,Xo)
(Ko € Joy L1 €A)

Therefore we have

B(J,J) = 0. (6.1)

Let X; € J; be an element satisfying [X;, J_;] = (0). For Y_; € J_; and Z; € J;
(i=-1,0,1), we have ad(X;) o ad(Y_1)(Z_1) = 0,

ad(Xl)Oad(Y,ﬂ(Zo) = [le[YLhZOH = 0
and

ad(Xl) [e] ad(Y_l)(Zl) = —[Y_l, [ZthH = [Zl, [Xl,y—ln = 0 -
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Hence
B(XI,J_I) = O (62)

For Yi € Ji and Z € J; (i = —1,0,1), we have
ad(Xy) cad(V1)(Z-1) = —[1,[Zo0, Xa]] - [Z, [X, 1)) = 0,
ad(X1) o ad(Y;)(Zo) = 0 and ad(X1) o ad(¥;)(Z1) = 0. Hence
B(X1,J) = 0. (6.3)

These three relations (6.1), (6.2) and (6.3) yield B(X,,J) = 0. Since J is
semi-simple, this implies X; = 0. Therefore 7; can be considered a subspace of
Hom(J_1, Jo) by the mapping h : J; — Hom(J_1, Jo) defined by h(X;)(X_1) =
(X1, X4], X1 € F, X4 € J.. Next, we define the element
S € Hom(J, J1(W?(J1))) by the formulas:

S(X_)=0 , S(X1)=0 , S(Xo)(Yo1)=[Xo,Ya] ,
SX)(¥) = 5[X0 Yol SEK)(¥:) = [Xo, Y1)

X_1,Y_ 1 €T, Xo. Yo € Jo, X1, Y1 € J1. Then we have
[X,Y] = [X,Y]o+ (0S)(X AY)

forall X,Y € J.
O
The simple real Lie algebras having the structure stated in Theorem 6.2 are

classified in S. Kobayashi and T. Nagano [11]. Among these simple Lie algebras

sl(2 : R) is the simplest example. Moreover sl(2 : R) has the structure of a
differential Lie algebra which is not fundamental. Set

(3 )|eren) - {5 ) e

(sl(2 : R), M, J) is a differential Lie algebra of order 1. Let w be the Maurer-
Cartan form of SL(2 : R) and set

1 ( 01 20()_3()1
w—w<00>+w(10 w 0 —1 .
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We have the structure equation
dw' = 2wt Aw?
dw? = 2w AW |
dw® = wr Aw? .
For example, we can choose w!, w?,w? as follows:

wt =e*dr,
w? = e *(dy — (y* + a(zx)y + b(z))dz) ,
w® =dz — (y+ 3a(z))dz ,

where a(x) and b(z) denote two arbitrary differentiable functions of the variable
x. Therefore we can see that SL(2 : R) corresponds to the family of ordinary

differential equations of Riccati type.

7 Cartan’s example

Now we can consider the involutive system of second-order differential equations

which is one of the typical examples in Cartn’s paper [5]:

&z 1(8%)3 02z 1 (8%)2 (7.1)

0r2  3\9y? dzdy  2\92
Setting on R® = {(z,y, z,p, ¢, 1)} w' = dz, w? = dy+t dx, w* = dz—pdr—qdy,
wt=dp—tdg+ ;t*dz+ 31> dy, w® = dg — 3t* dz — t dy and w® = dt, we have the
structure equations of the system:
dw! =0,
dw? = —wt AwS |
dw? = wl Awt +w? AW,
dw* = W® AW,
dw® = w? Awb
dwb =0

(7.2)

which is of type W9 inn Example 5.2 (2)(ii)(c). Th integration of the sys-
tem is deeply related to the structure equation (7.2). It is easy to see that
(w8 w? w?, w, w3) forms a solvable system of the Pfaffian system ¥ = (w?, w* w°).
Therefore we can obtain by quadrature five independent first integrals of the

Cauchy characteristic system of 3:

L 123 I 1 3 1 2
U =2 a:p+xqt+6xt , U =D qt+6xt+2yt

1
U3:Q*§yt27yt , w=y+at , us=t ,
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so that the system X is expressed as

W —azwt = duy — (uz + ugus) duy
wr = duy + usdus
wd = dusg+ us dus .

By this expression, we can construct the general integral surfaces of the given
system (see [5, §38]).

Let G be the Lie subgroup of GL(6 : R) consisting of matrices of the form
0

* O O O ¥* *
* O OO ¥ *
EE S O S S
* ¥ ¥ O ¥* *
* ¥ ¥ O ¥* *
*¥ O O O O

where * is an element of R. Let Bg be the G-structure defined by the dual frame
of (wh,w?,...,w®). Then a contact transformation leaving the equations (7.1) in-
variant induces an automorphism of this G-structure and vice versa. The struc-
ture group G can be reduced to the Lie subgroup G, whose Lie algebra [J; is

given as follows:

ap— ay —as a4 0 0 0
0 a as 0 3as 0
T = 0 0 2a1+as 0 0 0 a; €R,
( 0 0 as a1 + 2as 0 0|’ i=12...7
0 0 ar as a1+ ao 0
0 —Ug 0 —as %0/7 Ao

The usual prolongations of J; satisfy dim 7" = 1 and J\*) = {0} (p > 2).
Therefore the local automorphism group of the given system with respect to the
group G is of finite type.

The structure equation (7.1) determines the Lie algebra M =
(X1, X2, X3, X4, X5, Xs) with the bracket operation

[X1,X4} =—-X3, [X1,X6] =X, [X2>X5] =—X;
[Xa, Xo] = = X5, [X5, Xe] = — X4

and otherwise [X;, X;] = 0. This Lie algebra has a structure of fundamental

graded Lie algebra in the sense of N. Tanaka [16]. We set J_1 = (X1, X),
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T2 = (X3), T3 = (X5), To1 = (X4), J5 = (X3). Then M = J_5+ T4+
J-3 + J-2 + J-1 (direct sum) is a fundamental graded algebra of the 5th kind.
The structure of the automorphism group with respect to the group G is given
by Tanaka’s prolongation method [16]. We can verify that the graded Lie algebra
J prolonged from M with respect to the Lie algebra of G has the following

structure:
(1) J= 22:,5\7,, (direct sum);
(2) Jo is a Cartan subalgebra of J;
(3) dim Jy = 2, dim J4; = 2 and dim Jx, = p for p = 2,3,4, 5;
(4) J is isomorphic to the exceptional simple real Lie algebra of dimension 14.

In order to transform the involutive systems which admit this 14-dimensional
simple Lie group of contact transformations to the standard form (7.1), we need

the integration of a system of differential equations associated with the simple

group.

References

[1] Bryant, R. and Chern, S.S. and Gardner, R. and Goldshmidt, H. and Grif-
fiths, P., Exterior differential systems, Springer-Verlag, N.Y., (1991).

[2] Cartan, E., Sur la réduction & sa forme canonique de la structure d’un groupe
de transformations fini et continu, Amer. J. Math., 18, (1896), 1-61.

[3] Cartan, E., Sur l'intégration des systémes d’équations auz différentielles to-
tales, Ann. Ec. Norm., 18, (1901), 241-311.

[4] Cartan, E., Les sous-groupes des groupes continus de transformations , Ann.
Ec. Norm., 25, (1908), 57-194.



26

[5]

[6]

[7]

[13]

[14]

[15]

[16]

O. R. ABIB

Cartan, E., Les systémes de Pfaff & cing variables et les équations aux
dérivées partielles du second ordre, Ann. Ec. Norm., 27, (1910), 109-192.

Cartan, E., Sur [lintégration des systémes différentiels complétement
intégrables, C. R. Acad. Sc., 134, (1902), 1415-1418,

Cartan, E., Les systémes différentiels extérieurs et leurs applications

géométriques, Hermann, Paris, (1945).

Estrabrook, F. and Wahlquist H., Prolongation structures of nonlinear evo-
lution equations, J. Math. Phys., 16, (1975), 1-7.

Griffiths, P., On Cartan method of Lie group and moving frame as applied
to uniquenes and existence questions in differential geometry, Duke Math.
J., 41, (1974), 775-814.

Ivey, Th. and Landesberg, J.M., Cartan for beginners: differential geome-
try via moving frames and exterior differential systems, A.M.S., Graduate
Studies, 61, (2004).

Kobayashi, S. and Nagano, S., On filtred Lie algebras and geometric struc-
tures I, J. Math. Mech., 13, (1964), 875-907.

Montgomery, R., A tour of subriemannian geometries, their geodesics and
applications, A.M.S., Math. Survey and Monographs, 91, (2002).

Olver, P., Symmetry, invariants and equivalence, Springer-Verlag, N.Y.,
(1995).

Sternberg, S., Lectures on differential geometry, Prentice-Hall, (1964).

Stomark, O., Lie’s structural approach to PDE systems, Cambridge Univer-
sity Press, (2000).

Tanaka, N., On differential systems, graded Lie algebra and pseudogroups, J.
Math. Kyoto Univ., 10, (1970), 1-82.



DIFFERENTIAL EQUATIONS AND MOVING FRAMES 27

[17] Zelenko, 1., Fundamental form and Cartan’s tensor of (2,5)-distributions, J.
Dynamical and Control Systems, 12 (2) (2006), 247-276.

Laboratoire de Mathématiques Raphaél Salem
UMR 6085 CNRS

Université de Rouen

Avenue de I'Université, BP.12

76801 Saint Etienne du Rouvray, FRANCE

Email: renee.abib@univ-rouen.fr



