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ON THE WELL-POSEDNESS AND SCATTERING
FOR THE TRANSITIONAL BENJAMIN-ONO
EQUATION

Wagner V. L. Nunes *'®

1 Introduction

In this work we consider the Cauchy problem for the transitional Benjamin-Ono

equation (t-BO)

O+ o82u + f(t)ubu =0 (1.1)
ulto,) = 4(z) (1.2

where to,t,z € R, §; = a%! 0. = % and o is the Hilbert transform, i.e.,

(op)(z) = Lp.v. [y Heddy (1.3)

where ¢ € S(R).

Our purpose is to investigate the local and the global well-posedness of the
problem (1.1)-(1.2) in the Sobolev spaces H*(R), when s > 2. The notion of
the well-posedness contains: existence, uniqueness, persistence property (i.e.,
the solution u(t) at any time ¢ € [~T,T] belongs to the same space X as does
the initial data ¢) and continuity of the solution on the initial data and f (ie.,
the continuity of the map (f,¢) € C([-T,T}; R) x X — u(t) € C([-T1,7); X)).
When T =T(s, f,||¢|l,) < oo it is said that the problem (1.1)-(1.2) is locally
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well-posed in X. If T can be taken arbitranly large , the problem (1.1)-(1.2) is
said globally well-posed in X. We also proof results related on the asymptotic
behavior and scattering for {1.1]-(1.2)..

The name “transitional Benjamin-Ono” for the equation (1.1) is due to the
similarity with the transitional Korteweg-de Vries equation. The term “tran-
sitional” is related to the fact that when f(¢) goes to +1 when t goes to +oo
the equation “behaves” like BO, with nonlinearity —u8,u, for ¢ “near” —oc and
like BO, with nonlinearity +ud.u, for ¢ “near” oo,

Our proves combines several techniques and ideas including those previously
used by J.L.Bona and R.Smith [2], J.C.Saut and R.Teman [11], R.J.Iério Jr.
(5], [6], G.Ponce (8], [9] and G.Ponce and L.Vega [10]. The crucial problem is
to obtain a priori estimate which allow us to reapply the local theory and to
extend the solution to a global one. Usually one considers the problem as a
pertubation of a Hamiltonian system. This is not suitable in our case. To solve
this problem we construct some functionals, which we call "almost conserved
quantities”, that play essentially the same role as the conserved quantities of
the BO equation (see [4]).

This paper is organized as follows. In section 2 we give a result about the
linear equation associated with (1.1). In section 3 we define and obtain some
results related on the "almost conserved gquantities”. The global results are
proved in section 4. In the last section we show some results about asymptotic

behavior and scattering for the solution to (1.-1]-(1.2).

Notation

H*(R) : the real Sobolev space of order s of “L? type”.
[| ||ls : the H* norm.

(-]} = the H* inner product.

H*(R) = N2, H*(R).

o : the Hilbert transform.

A : the Fourier transform.

V : the inverse Fourier transform.
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C(.,...,.) = constants which are continunous and nondecreasing on theirs argu-

ments.
1 d

at
S(R) : the Schwartz space.

2. The Linear Equation

The purpose of this section is to state some properties of the group associated to

Ou+ o8u =10 (2.1)
u(0) = ¢ (2.2)

proved by G.Ponce and L.Vega in [10].

Consider
U(t)g = exp™% ¢ (2.3)

where ¢ € S(R) and t € R. We have,

Theorem 2.1 : Let 0 < 8§ < 1. Then

1Tl 12, < CIIFIII, 3, (24)
Proof: see [10].

3 The “Almost Conserved Quantities”

To obtain a priori estimate for the t-BO we need the following functionals

Definition 3.1 : For v € S(R)} and A € R* we consider
Ti(A,v) = 3 %:i(Av) (3.1)

where ®; is the ™ conservation law of the BO (see f4]).
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I F: R x 8(R) — R we consider
DaF(Mv)w = LF(A\v + ew) [zo (3.2)

where A € R,v,w € S(R), when the derivative exists. It is easy to see that for
A # 0, we have

DsTi(A,v) = 1&i(w) (33)

We observe that
0= (@;(M)[B,@;-(z\v))o = z\zP,-‘;()\) (3.4)

where A € R and P%(}) is a polynomial of degree k > 0. By(3.3) and (3.4) we

obtain
(D2 T2, )18 D3 T5(A,¥))o = 35(B}(M)|8:25(Av))o = Pi5(A) (3.5)

for A € R*, v € S(R)} and so we have,

Proposition 3.2 : For any (A, v) € B x §(R) end i,j € N it follows that
(D2Ti(A, v)|8. Dy T(A,v))o = 0 (3.6)

In particular, for A = f(t).

Definition 3.3 : Forr € R,i € N and v € S(R) we consider

Ui(r,v) = Ti(f(r),v) (3.7)
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Remarks 3.4

1. If f(r) = 1 the ¥;,i € N are the conservation laws of the BO (see [{]).

2. We are going {o give some of those functionals which we will need in this

paper:

o(r,v) = 3 f[rvidx (3.8)
Wy(r,v) = Lol F( ) — Juou.]dx (3.9)
Va(r,v) = [pl3 200 + 3 f(r)vPove + Joi] dx (3.10)
Ua(r,v) = Jp {;—o,p":"('r)l.r5 + f3(r) [%vacrv,, + vzcr(vv,)] +

+£(r) [%u(m:, + %vu:] - v,,cm,} dx (8.11)
Ty(r,0) = [p {3 fA(r®+

+£3(r) [f—ev"(a'v,_.) + -l%vaa(vv,)] +

+f(r) [%vzui + 2v¥(ov.)? + %v(o'v,]o(vv,)] =

—f(r) [gu:crv, + 51;11,,,611,] - 201.!::} dx (8.12)

It is easy to see that

Da¥o(r,v) = v (3.13)
D:‘IH(‘I‘, 1.?) = %f(‘l‘)'b'z + v, (SLU
Da¥a(r,v) = 372(r)0® + 3vov, + $f(r)o(vee) — vas (5.15)

Dy¥s(r,v) = 13(rv* + f3(r) [VPov, = vo(v.) + o(vio. )] +
+f(r) [%(o’v,)z + o(vove)e — %v: - 31)1:,_,] — 20Ve (3.16)
Dy¥y(r,v) = %f(r)v5+
+1£2(r) [- 25002 — 250 vge + 5v(0v. ) + So(viova)s) +
+1£(r) [-400(vaves — 20(veov,)e — 200000 — 200(vv..2)] +
+160zz0s (5.17)

where v = v(z).
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4 The Global Nonlinear Problem

In this section we are going to establish'the global well-posedness for the Cauchy
problem (1.1)-(1.2). We observe that we may suppose that to = 0, without loss
of generality.

First we will study the regularized equation, i.e.,

Oy, + 002w, + f(t)uuBen, — pdiu, =0 (4.1)
u,(0)=¢ (4.2)

where i # 0 and later we will treat the case p = 0.
In (7] we have shown that (4.1)-(4.2) is locally well-posed in H*(R) for s > 3,
p € R and f € C(R). Now, we have,

Theorem 4.1 : Let ¢ € H*(R),s > S f € C(R) such that f' € Li(R),p>0

and u, € C([0,T]; H*) the local solution of (4.1)-(4.2). Then there ezist a con-

tinuous non-decreasing function
C: Ry x(200)x[0,00)*— R, (4.3)
such that
law(®lls < Clay 8,8, [1F Loy, I s o0y, i-|q5i|.} 0<t<T (4.4)

A similar result holds for p < 0

Proof: We are going to give the proof for the case u > 0. The case g < 0 is
similar.

By theorem (4.6) of [7] we have u, € C((0,T); H®) for p > 0 where
T(n, 8,14, f) > 0. By (3.14) the equation (4.1) can be written as

atﬂ + 6,D3‘I'1(t, U-) — ﬂa:ﬂ. =0 (45)



ON THE WELL-POSEDNESS AND SCATTERING 133

We claim that (4.4} is true for s = 0. In fact, as the solution is real by (3.6),
(3.7) (i =0,7 = 1), (4.5) and integration by parts we obtain

Oellun(tG = 26:%o(t, u,)0eu,
= —2(Da¥o(t, u)|0=Da¥1(t, u,))o + 2p(ua) B2 ,)o
< =2/ 0euu()ll3 < 0 (4.6)

and so
l[#u(EMle < [|#llo 0<t<T (4.7)

Now we claim that (4.4) is true for s = 2. In fact, by (3.11) we have

IS +2s(8, wa(8)) = (L + €2)3edull} + alt, u,)
< Nuulls + 5£°(wdluddo + 5 £ (ulloBewado + {12 (w2l (wBou,))o+

+ L F(ul(08a,))o + £ () (Bs8))o (4.8)

Using
I¥l]z= < 2]l 10.213 (4.9)
z°y? < 2?4 ey (4.10)

where ¥ € H'(R), 2,y > 0,0 < a < 2,8 >0, c = c(p) = 52(2)r=

n

and (4.7), Holder's inequality, Sobolev embeddings and interpolation we have

(see [5), [1])

P il < clm)l S 818° + luall} (4.11)
|F(ulodaua)o] < e(n) 7216118 + allual3 (4.12)
P (ko (wuBamol < ) PUSI + allual} (4.13)
| F(ul(eBon, ol < )l F P18l + (4.14)
|F (el < mIFIF NGl + il (4.15)
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So, by (4.11) — (4.15) it follows that

0l < =9t 2,)) + Clela) I Flsmiony o) + 500} (4.16)
for 0 < ¢ < T.Now, we are going to estimate —Ws(t, uu(t)). We observe that
(3.6), (3.7) and (4.11) — (4.15) imply

—0i¥a(t,uu(t)) = Dy Ws(t, u,) — Dy Ws(t, u,)eu, — Dy Wy(t, u,.)
+(Dle'3(t,u,,)|3,D;'I'3(£, ty))o + -“(DZ‘I':!(‘:”#”BE“M)G
= =3P (lul)o — 3P (uhloBu)o — L f £/ (02 (o (u,Brm,))0
=3 (wal(08e,) )0 ~ $ /(a8 Yo — (D2 ¥a(t, ) 80, )o
< CONF 1+ 0C fllpwgon) ] lually = (D2 Ta(t, u,)|82uu)o  (4.17)

Using, Holder, interpolation, (4.9), (4.10) and (4.7) we can show that (see [5),
[1])

17 b0l < CO)AP IS + o'l (4.18)
| (whorBeval6Zuel < CONFNSE + 7'l (4.19)
|2 (s (w62, Jal < COVFPIBIE + 7'l (4.20)
| (u 01620001 < COP)F B + o'l (4.21)
(B Bewa)ol < Clo') FIFGIG + o[l (4.22)
(o 0u(uno e, )1B2uu)o] < C(n)FONGIE + 7'l (4.23)
F(Bea 82,00l < C()IYBE + o[, (4:29)
| FuB2al0Z)ol < COVFOIBG + (4.25)
(002uul62u,)o < ~eollu,l} + 2 (4.26)

So, by (4.18) — (4.26) it follows that
—#(Da¥5(¢, uu(2))|82uu(t))o < Cl, C(w), || 8o, ||f||r.w(n.f))+u(9??'-'—"o)\fup||§(4-27)
By choosing 1’ = < it follows from (4.17), (4.27) that

— 0:¥a(t, uu(8)) < Gl (2))(1 + Iz (3013 (4.28)
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for 0 < ¢t < T where C, = C(t, , || fllze=(0,e), |ld>||%) By integration over [0,t] we

obtain

~¥a(t, uu(t)) < ¥a(0,8) + Jo C(E)F (L)L + [[ua(t')]13)at
<190, @) + O+ Lo 1£ (¢ luu() 3 dt)  (4.29)

where C(t} = C(“‘rﬁ“: "f”L“’(D.f): ”f'”L‘(OJ}I "‘ﬁ'”g‘ )
It is easy to show that

[23(0, $)| < C(I flle=o.y, [14ll3) (4.30)
So, (4.16), (4.29) and (4.30) imply
lua()l3 < Cole)1+ S5 1£(E) luu()3 d2') + Sullua(8) 13 (4.31)
for0<¢<T,ie,
(1 =5)lluu®)l} < Co(e)(1 + 5 () llun(¢)13 at") (4.32)
By choosing 7 = & it follows from (4.32) that
lun()l} < CEA+ L 1) lluult)I13 dt") (4.33)

Applying Gronwall’s inequality we obtain (4.4) with s = 2.
Now we are going to consider the case s > 3. The main idea is due to
G.Ponce in [8] and so what we are going to give is a sketch of the proof. First

we observe that

Bulleully < cal F 11 Bztu(t) m Nesu ()17 (4.34)

and so using the estimate, due to Brezis-Gallouet (see [3)), it follows
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[vllze < {1+ Ilvlly /log(L + []l)}

where 7 > 1 and v € H"(R), we can show that
Belleu(®lF < coll Fll ooy {1 + C(t)log(9 + J|uu(t)2IHO + [luu(e)]?)
Consider

9(&) = 9 + [[ua(t)|2
So, by (4.36) and (4.37) we have

9'(t) < cllflle=(oa{l + C(t) log g(t)}9(t)
or

log g(t) < log g(0) + c.||f|| (ot + C(t) Ji log g(t") dt!
Applying Gronwall’s inequality it follows that

log g(t) < exp®t) 0<t<T

which implies (4.4) and we complete the proof.

For the case y # 0 we have

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

Theorem 4.2 : Let ¢ € H'(R), s > 21 [ € C(R) such that f' € LL_(R)
and p > 0. Then there ezists a unigue u, € C([0, oo); H*)NCY([0,00); H*-?),
solution of (4.1)-(4.2) which depends continuously on ¢ and f in the follow-
ing way: let ¢" € H'(R), f* ¢ C(R), f™ € L'(R) such that “fn’”LI(olf) <
SC(T, 1 F Neroxy)s for T > 0 and u; € C([0,00); H*)NC'([0, 00); H*~?) the
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solution of (4.1) such that ul(0) = ¢". Then

sPogcr [|uf(t) — wultlls < C{IIS™ = @lls + [ £ = fllzwiory} (4.41)

for n > No(T) where C = C(s, ’17, N le=o.ry, 1l 2o,z 1 ]l.) > 0. Moreover,
u, € C((0,00); H)N C*((0,00); H?) where v > s and q>s5-2. A similar
result holds for p < 0.

Proof: The global existence follows from the last theorem and the usual exten-
sion argument. The local theory established in [7] implies the uniquiness and

continuous dependence. L

Now we are going to treat the case x = 0, i.e., the “transitional” BO equa-
tion.
Theorem 4.3 : Let ¢ € H*(R), s > 2, f € C(R) such that f' € L. (R).
Then there ezists a unique solution u € C(R; H* YNCYR; H*™2) of (1.1)-(1.2)
which depends continuously on ¢ and f in the following way: let ¢" € H*(R),
f* € C(R) such that f', f™ € L}, (R) and | f||zs¢-igy < CUt £l epsen)
fort € R and u™ € C(R; H*)NCY(R; H*?) the solution of (1.1) such that
u™(0) =¢". ForT >0 if ¢" — ¢ in H* and = fin L®°(-T,T) then

SUP_reeer [[2™(t) — u{t)], — 0 when n — oo (4.42)

Proof: The global existence for the case s > 2 it follows from the global

existence of the solution of the case g # 0 and the fact that u, () — u(t)
weakly in H* uniformly in [~7,T] for all T > 0. The local theorem for the case
# = 0 implies the uniqueness and the continuous dependence. The case s = :

can be treat by using the ideas of [8]. [
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Remarks 4.4 :
o We can show that there exists a smoothing effect in H*(R) and global weak
solution in H'(R) using the ideas of [9].
5 Asymptotic Behavior and Scattering

In this section we are going to study the asymptotic behavior of the solution of
(1.1)-(1.2).
Let u = u(t) the solution of (1.1)-(1.2) in R. It is easy to see that

u(t) = U(t)é — 3 o S(¢)U(t — ¢)0,u?(t')dt’ (5.1)
for t > 0. So if we define

b = 6= 3 I5° F(EW(~t)0:u?(t)dt! (5-2)
then

U(=t)u(t) - by = § L7 F(EY(-t)002(¢')dt' - 0 (5.3)

when ¢ — oo. A similar argument holds for ¢_. So, we have to find a space
in which the solution is global and the inteéral (5.2) converges. This space is
Hg(R) where k = 2,3, .... We need some restrictions on f. These restrictions do
not allow us to take f = constant, i.e., the case of the Benjamin-Ono equation
remaing unsolved,

To treat the asymptotic behavior and scattering for the solutions we will

need the following result:

Theorem 5.1 : Let ¢ € H'(R), s > 3 f € C(R) such that f' € LY(R) and
u € C(R; H') the solution of (1.1)-(1.2) given by theorem (4.8). Then
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(@l < CQ Fllze, 170122, 6l ) (54)

fort e R, r < Fwherem € N2 < s and C = C(,.,.) is continuous

not decreasing function in theirs arguments.

Proof: We will consider the case t > 0 and k = 3. The remainder cases will be
omitted.

Consider ¢, € H™(R) such that ¢, — ¢ in H3 when n — oo and ll#ally =
||¢J|% Let un € C(R; H*) the solution of (1.1) such that u,(0) = ..
(i} case m = 0:

As equation (1.1) can be written as

Oeu + 820,91 (¢, u) = 0 (5.5)
from (3.7) and proposition (3.2) it follows that

Oellun(t)l[2 = 28:%o(t, up).00u, = 0 (5.6)
and so we have

lun()llo = [ #nllo (5.7)

fort > 0and n e N.

The continuous dependence implies that
un(t) — u(t) inHT (5.8)
when 7 — oo, in particular in L?(R). So we have

Fe(€)llo = limn o lun(t)llo = lIdnllo < C|i¢lle (5.9)
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(ii) case m = 1.
From (3.9) we have

a8} = 2€3(8,un(®)) = (2 + 2) i3 — £ fuldz — |||l
< lanll3 + Blunllzs < flually + CLA [ual}
< Cle(m)s 1 llz, | #llo) + nllua(e)I3 (5.10)

where we use the immersion H#¢ < L3, interpolation and (4.10). So we need to

estimate ¥q(¢, u,(¢)). Observe that

W1t un(t)) = Dy ¥ (¢, un) = Da¥s(t, un)dyun + Dy¥i(t, ) = L f [ udds
< élf’lll%lf@ < CIglIsIf (&) + alf(e)l llun(®)I1% (5.11)

where we use the immersion above, interpolation and (5.9). By integration over

[0,¢] we obtain

Yi(t,un(t)) < W1(0,0) + COMIBISN 200y + 1 f5 118 lun()de"  (5.12)

It is easy to see that

1%:(0,8)| < C(lfllcs, ll¢ll:) (5.13)

It follows from (5.10), (5.12) and (5.13) that-

a3 <CCC) N fllw | £ 112, 18115)
Fllea(@I + 7 5 1F(E)] un(@)I v (5.14)

and so

SUPp<e<T ““n(t)”; <C+ 7 8uPg<e<T ”“n(t)”z% + 7 8upgcpcr "“n(t,)llg th: HGIE
<C+ 7 SUPp<e<T ”un(t’)“i_‘ + 7l Il SUPgcecT ”“n(t)ué (5.15)
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where C = G(c(n), || flz=, | llz+, I¢ll3) > 0, which implies

(1 =7 = 9llf'lles) supogecr llea(E)II3 < C(3)? (5.16)

" Choosing 5 = i(T+'||1u_\,,‘J > 0, by (5.16) we obtain
len(®II} < supoceer [lun(t)ll} < C3Y? (5.17)
where C(3) = C(IIflle=, [ flles, 61l ). Therefore
lua(t)lly < C(3) (5.18)

and the continuous dependence upon initial data implies the statement.
(iil) case m = 2:

As

[[en{®)l; = 29(t, un(t)) = llwallf + [|Bctall3 = 5 llun2,
UL I R
< Cle(m) £z, 18ll:) + 7llual? (5.19)
where we used (3.10), Hélder, the imersion HY — L, (5.7) and (4.10). We
need estimate ¥3(¢,ua(t)). By using (3.6) and (3.7} (¢ = 1,7 = 2) we obtain
6l'p2(t:un[t)) = D‘.l"I'l’(t)u‘n) + DZ‘PZ(t: un)atun
sF L e + 37 (w2 oBeun)o
LG (e(@)s [ £llem, lillo) + 7llunl?] (5.20)

I

1A

By integration over [0,#] we obtain

¥a(t, un(t)) < ¥a(0,8) + C(c(n), | fllze, 11 7lls, 1611 )
+7 03 1F ()] llun(2') |22 (5.21)
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It is easy to see that

19200, )| < C(l| o, |6]1) (5.22)

and so, (5.19), (5.20) and (5.21) imply

l[ea(E)IIT < C*(1) + Allun()lIF + 9 5 LF@E)! llun(e)])3 dt’
< CH1) + allwa@)l1F + 2l £ s supogeg, [fual(t)|? (5.23)

So, taking the supremum over [0,¢] in (5.23) we obtain

(1 =7 =l ) supocpe, [lun()]} < C*(1) (5.24)
where C(1) = C(c(n), [ fll=, I¢ll1) > 0. Choosing 7 = srppimy > 0 it
follows from (5.24) that

llea(t)I} < supgerge llua(t)l < C2(1) (5.25)
that is

lea(t)llx < C(1) (5.26)

The continuous dependence on initial data ¢ implies the result for m = 2.
(iii) case m = 3:
Asin (4.8) — (4.15) we have
PunE)1 — Pt ua(8)) < C1) (5.27

So we have to estimate Wy(t, u.(t)). However

OcWa(t, un(t)) = D1¥s(t, un)+Da¥a(t, un)Betn = Dy ¥a(t, un) < C(1)|F(¢)I(5.28)
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where we used the same estimates as in (4.18) — (4.26), (5.5), (3.6) and (3.7)
(¢ =3, j = 1). By integration over [0,#] we have

Wa(t, un(t)) < ¥a(0,4) + C(1) f3 | £(¢')]dt"
< ¥5(0,9) + C(1) < C*(3) (5.29)

where C(2) = C(]| ||, ||f'HLa,I|¢[|%) > 0. Using (5.27) and (5.29) we obtain

llen(e)I3 < CF (5.30)
that is,

llza(t)ll> < C(3) (5.31)
and the continuous dependence implies the case m = 3. "
Remarks 5.2

¢ Theorem (5.1) includes the case f(t) = constante, that is, the Benjamin-

Ono equation.

To obtain our seattering result we will need the following theorem about

asymptotic behavior of the solution of (1.1)-(1.2).

Theorem 5.3 : Let ¢ € H*(R)NLS(R) for s > %, f € C(R) with f' € L}(R)
satisfying

(&) =0O((1 + ) =) when ¢ — +oo (5.32)

where a > § and uw € C(R; H') the solution of (1.1)-(1.2) which is given by

theorem (4.3). Then

(L+ e ul@)llze < Clay | fllsms 1 e, gl 4] ,) (5.33)
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Proof: We are going to treat the case t > 0. The case t < 0 is similar. From

(5.1) we obtain

l[w(@lze < NUESllze + § Jo LFE U (E)012(E) e dt
S C(L+E) 41l 4 + C S5 1FE It - ¢1-H)Bcw? (¢4 e

(5.34)

where we use (2.4) with 8 = }. By Holder, H' — L4, (5.4) (with m = 2} and

0 < § < 1it follows

1822 ()] g < 2wdaull, g < 2lullzs[18eullo = 2lfullEaflullbe ey
< Cllellzallwlli=* < C(1)]ulifs

which implies
lu()llze < C(+6) %16l + C 1)1 - &) % u() 15 de

and so

(1 + ) flut)o+ <
Clléllu + C(L+ )} F1FENE = £17H(L+ )41 + )} ) s)f e

For ¢ > 0 consider
X(t) = SuPugvgt[(l + t']%”“(f'!)"[.']

By (5.37) and (5.38) we obtain

(L4 4 u(@)le < Clléllg + CXEF(+ 1)t 3 — g

(t=t')T{14¢")

We can show that
141¢ 1t Fils f e
(L+8)7 fy (—L!(—M—{t"!,) 1) dt’ <

<S4l

1 dr< M < oo
QHrey)e(1-r} (1 4r)]

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)
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where we choose § € (0,1) such that a« > 2 — £. So (5.39), (5.40) and (4.10)
imply

X(t) < Cligll,4 + CX(t) < Cln) +nX(t) (5.41)

~and C(n) = Clc(n), a, | fllew, | £'llzs, 1¢ll1, 1¢ll .4 =) By choosing 7 = § we

obtain
(1 + ) llu(e)]les < X(t) < C (5.42)

and so we complete the proof. [ ]
Now we have the main result of this section,

Theorem 5.4 : Let € H*(R) for s > 2, f € C(R) such that f' ¢ L'(R) and
satisfying (5.32) for a > 0 and v € C(R; H*) the solution os (1.1)-(1.2) given
by theorem (4.3). If

(i) a>! (5.43)
(i) @ > 2 and ¢ € L3(R) (5.44)

then there ezist uniques ¢y € H§(R) where k € N and & < s such that

ll=(t) = U(£)¢s

o =0 when t — too (5.45)

where 0 < 3’ < g

Proof: We will consider the case t — oo, that is, the existence of ¢;. The case
t — —oo is similar.

Suppose that (i) holds. We know that U(t), t € R is a isometry in H*(R), so
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I Jo F&)U(E = £)8e(¥)dt'llo < J5 1F(E)] [[(e)12de' < CO)Nfller < 0 (5.46)

where C(1) = C(||fllz=, | f'lle:, |4ll1) is given by theorem (5.1). The inte-

gral converges in L?(R) and we can define
b+ = ¢~ 1 I FEW()0u2(2')dt’ € L¥(R) (5.47)

By (5.3) we have

IV (E)u(t)=¢+llo = 3l [ FEW (-0t (¢)dtlo = 0 when ¢t — oo(5.48)

It follows from (5.4) (with r,m = k) and the fact that U() is a isometry
that

1 (~n)u(m)ls < llumlls < C(K) < Os) (5.49)
then there exist ¢ € HY and a subsequence {U(—n;)u(n;)}jen such that
U(=rj)u(n;) =¥  when j— oo (5.50)

in Hi. Then (5.48) and (5.50) imply ¢, = ¥ and so ¢ € HS. By interpo-

lation we obtain

la(e) = U{E)es < CUD(-Jule)ly + ) ¥ NU(—t1ute) — 6 - 1357¥
< CHENU(=t)u(t) - dulle * — 0 (5.51)

when t — co. The uniqueness is trivial.
Now, suppose that (ii) holds. Then

[l 2 (VU (~t)Bew(¢)dt| -y < f3 | (€ et ct?

i 1 i
S Cfo W&t S c < 00 (5.52)
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for ¢t > 0 where we use the fact that & > 1. Then the integral in (5.2) converges
in H='(R) and so we can define ¢, € H~* as in (5.2). As before we can show

(5.45) and the uniqueness. . ]
Remarks 5.5 :

1. If we have uniqueness of the solution in H' we can obtain the same
result in H!.

2. The case a < % TEMAIng open.
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