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NONLOCAL UNILATERAL PROBLEM FOR A
NONLINEAR HYPERBOLIC EQUATION OF THE
THEORY OF ELASTICITY

L.A. Medeiros N.A. L:a.r]-cin‘v‘tﬁi\;Z

Abstract

Assume that u, € HX{Q) N H3(N), uy € HYM), f € L¥(0,T; HL(N)),
4 ¢ L3(0,T; 2%(R)), | grad wy|* < 1, ae. in 2; M(A),0< A< oo isa
real function, continuously differentiable and M(X) > m, > 0. We prove,
in the present work, that if £ is an square of R?, then there exists only
one function u = u(z,t), z € 2, 0 < t < T, satisfying the inequality

u-M (f |Vu|’d=) Au2 fin @, u(z,0)= u(z),u'(2,0) = uy(z)in 0.
n

Introduction

The Carrier-Kirchoff model for the veriical vibrations of an elastic streched
string, fixed at the ends, when the tension in each point has only vertical com-

ponents, is given by:

2 2 2

%E‘,_‘—(Po-rpfof'(%) d:)%:ﬁ. (+)
In (*), P, = 72, 7, the initial tension, m the mass of the string of length
L, P= %, k = Ea, E the Young’s modulus of the material, a the area of

the vertical section of the string at ¢ = 0, supposed constant, cf. Carrier [4].
The model (*) is the motivation for a large field of research on a nonlinear
mixed problem, formulated as follows. Let Af(A) be a real function on [0, oo[, 2
a bounded aubset of R, T > 0, @ = 0x]0,T[ and T is the lateral boundary

Key words: Unilateral problem; variational inequality; string equation; global solutions;
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http://doi.org/10.21711/231766361992/rmc38
https://orcid.org/0000-0002-3993-1190

110 L.A. MEDEIROS N.A. LARKIN

of Q. The question is find a function w:Q — R, v = u(z,t),z € , ¢ €]0, T,

satisfying the conditions:

&u 2 .
EF—M(antd da:)Au_f n @
©u=0 on I (1

Bu

u(z,0) = u(z), 7

(z,0) = uy(z) on {1

The functions f, 4,, u; are known.

The mixed problem (1) was studied by the first time by Bernstein [3] and
Dickey [7] for the case n = 1. Pohozhaev [24] studied preblem (1) for a bounded
open set 2 of R™ and obtained a regular solutions for a particular class of initial
data. In Lions [16] we find a formulation of the problem under a transparent
abstract framework, which permits to propose several mathematical questions
about it. For the solutions of those questions look the works listed in the
references. We only observe that to obtain global solution on t, when u, €
HYS) N H(), v € HA(R), @ bounded, the results was obtained with strong
boundedness on the data u,, u;. The same type of results are obtained when
} is not bounded. If the data u,, u; are sufficiently regular, then it was proved

global existence.

In the present work, we look the probl.em under another point of view.
We let u, free on H!(Q) N H¥(f1), bul we consider u, € H)(Q) such that
| grad u,|*> < 1 on §). We prove that if  is an square of R?, M(X) > m, > 0,
continuously differentiable on 0 < X < +oo, then the variational inequality
g%‘ — M (f; |Vu]*dz) Au > f has a global solution in t. In Medeiros-Milla
Miranda (21} it was proved only local solutions for a general bounded open set

2 of R™.

The results contained in the present work was summarized in Larkin-Medeiros
[15]. It is opportune to call the atention, of the reader, that the present results

was extended by Cicero Frota [12] to the case where {1 is a cube of R".
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1. Notations

First of all let us formulate the problem we want to solve. In fact, taking

u; € H2(S1), such that | grad u,|* < 1 a.e. in {2, we want to solve the problem:

g%_M(fnjvu(m,t)izdm)Auzf on @
u=0 on X (2)

u(z,0) = u(z), %?{:c,{)) =uz) on

The following conmsiderations are true for a bounded open set of R™, in

general, cf. Lions [17] for proofs. Let us define:

n 2
K={uveH Q)Y —gzi <1 ae in §}. (3)

i=1 i

Whence K is a convex, closet subset of W!14({1).

By v~ we represent the function v=(z) = max {—v(=),0} and then for
2\ -
w,v € WI(Q) we have [( gu ) ;’;g‘;] € L'Q), i = 1,2,...,n It
follows that for each u € W}*(£1) is well defined the mappings

o= [, (1-[52f) 2w

Ou
82.‘

61‘" 62.‘
from W!4(Q) into R, for i = 1,2,...,n, linear and continuous. Then F;(u)
is an object of Wo_l'g(ﬂ), the dual of W2#(f2). Then if we consider A{u) =
i‘: Bi(u), B is a mapping from W2*() into W=5(Q). We have:
i=1

fu

2 -
Ou Ov
= ——dz. 4
u), ;/ ( 5:!:.‘ ) 61!" 6:!5,' ° ( )
The operator 8 is monotonous, hemicontinuous and takes bounded sets of
1.4
WL4(0) in bounded sets of W, "3(Q) and u € K is equivalent to 8(u) = 0.

The operator d is a penalty operator, cf. Lions op.cit. We have

Ny Buly bu
ﬁ(ﬂ)_—gam’[(l“a—m ) B2 (5)
in the sense of D'(1).
By (. ), | + | we represent the inner product and norm in L*() and

((, ), | - ||, inner product and norm for H}(f).
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2. The main result

Let us consider { a aquare of R?, i.e:, @ =]0,1(x]0,1[, then we have the main

result:

Theorem 1. Given:

U, € HA(Q) N H}Q);u1 € HN); | grad wy| <1 ae. in O (8)
fe 2,1 BY@), X e 10,1 (@),

M(2) = m, >0, is continuously differentiable on [0, 00|, (N

then there erists a function u: @ = 0x]0,T[— R,

satisfying:
v € L0, T; H}(R) n HX(R)) (8)
v e 20, T; H} (), vt} e K ae. (9)
w" € L*(0,T; L¥(f1)) (10)

T T
ey - vende+ [ Meaque)agu(e),v - w(e))de (11)
> [ ()0 - w(e))at
for all v e LY0,T; W), v e K.
u(z, 0) = u,(z); %E(:u,ﬂ) =y (x). (12)

We represent by a(u) the quadratic form associated to the bilinear form
a(n,v) = Jy Vu. Vude, defined for u,v ¢ HY(Q).

The proof of the Theorem 1 will be given in Section 3 by the penalty method.
In fact, we consider a penalized mixed problem obtained from (2), which solu-

tions u, depends of a parameter € > 0. We solve this mixed problem, and take
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the limit of u, when & — 0, in the weak topology, obtaining a function u which
is the solution of the unilateral problem (2).

The penalized problem asociated to (2) consists in find u,:Q — R, ¢ > 0,
solution of the mixed problem:

30::. — M(a(u.(t)}Au, + = ﬁ(u‘) =f on Q
v, =0 on X (13)

(2,0) = u(e), — 2 (2,0) = w(e)

We need to prove the following:

Theorem 2. [f the functions u,, u,, f satisfies the condition (6), then, for every
0 < e <1, exists a function u, such that

v, € L=(0, T; H}(Q) N H* () (14)
u, € L™(0,T; H,()) (15)
u! € L*(0,T; L'(n)) (16)

(we(t), v} + M(a(we))alu.(t),v) + = (B(U (&))v) = (flt)v) (17
in LY3(0, T), for all v € W24(Q).

u(z,0) = u,(z), Bu.

5t ——(=,0) = uy(z). (18)

3. Proofs of the theorems

Suppose we have the proof of Theorem 2, and let us prove Theorem 1. Then

u, i8 solution of;

T T
[ twde+ [ Ma(uotnwiat+ L [T (i, wrde > [ (50, w)ae
0
(19)
for all w € LY(0, T; W}4(Q)). Im particular let us consider w = v — u/ where
v € LY(0,T; W;(Q)) with v(t) € K, a.e. in (0,T]. Then, from (19) we get:

[ e v0e) = )t + [ M(afuatuae), o) - e+ (20)
1 ¢T T
+7 [ tBtue), oe) - e ée = [ (A(e)006) — i
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Since v(2) € K, A(v(t)) = 0, then it follows that

[ -wdi= 1 [F i) - B - a0 (2
By (21), we transform (20) in the following inequality:

[t + [ Ma(u))alu,v — )i > | T(fv = )t

Whence,
[t e+ [ Mateotw ot~ [[(10),v -t (22)
ff( wtoul)it+ [ M(a(w))alu,, )it

f., aa' (t)l’d + f mmatu,

—I (T = She(0) + 5 M(a(ﬂc{T )- -Ma(us(ﬂ))

Il v

Taking the limit when £ — 0, in (22), we get:
[ wre), 0@+ [ M(atu(ta(ae) e)ds— [ (7(2), (8) ~ w(e))de (29)
> S - SO 5 M(a((T))) - 5 M(a(u(0))).

Note that [¢(T)|* < liminf, g |u!(T)|* and the same argument for the others
terms.
From (23} we obtain:

+

/OTM(a(u(t)))a(u - f(ﬁt), (8) - ()it >

L i S perae+ [ 22 Ri(atule)
/; (u"(t), w'(t))dt + fu (a(u(®))alu(t), w'(£))dt

[, e

|

and it follows that:

T T
[ aoee-vend + [ Matu@)aque, o - vt >
> /ﬂ T U8, w(e) — w(e))dt
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for all v € LA(0, T; W4(Q)) with v(t) € K, a.e. in [0,T].
Let us prove that u'(t) € K a.e. in [0,T]. In fact we have
%I (BuL), v) | < [{£(8), 2} | + (e (t), )| + M(a(u())I(Auelt), v)l-
Then:
|{B(x,),v) | < e([ul(t)] + M{a(uc(t)))|Aue(t)] + |F(E)] [[v]lp2ea)
whence:
B o s oy < €
what implies that
limB(u}) =0 in  Lo(0,T3W4)2)).
We already proved that:
lim B(u,) = Bu) in L=(0,T; W (@),
Then B(u'(t)) = 0, or w'(t) € K, a.e. in [0,T].

The uniqueness and the initial data follows as usual.

Corollary 1. The solution u = u(z,t) obtained in Theorem 1, salisfies:
(u(t) — M(a(u(e))Au(t),v — u(t)) 2 (f(t),v — u(t)),
a.e. tn [0,T].

Proof: In fact, let u the solution obtained in Theorem 1. Let s be a Lebesgue’s

point of the function:

G(t) = (u"(t) — M(a(u(t))Au(t) - f(t),v = w'()])-
Consider s — L, s+ [, k>0, a neighborhood of the Lebesgue’s point of G(t).

The function

v on ]s—}, a+§l—[
w(t) =

w"(t) on the complement on |0, T,
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belongs to L%(0, T; W14(Q)). Then

7 f:(u"tt) — M(a(u(t)Au(t) - £(8),0 - w'(£))dt > 0.
Taking the limit when k — 0, since 2 is Lebesgue's point, we obtain:
(u"(a) = M(a{u(s))Au(s) = £(t),v - w'(s)) 2 0.
Since G(t) is L'(0,T), it follows that almost all points of 0, T'[ are Lebesgue's

points of G(¢), which proves Corollary 1.

Proof of the Theorem 2

In this step we will prove that the mixed problem (13) has a global solution
u,on [0,7),0 < T < 00,0 < £ < 1. We consider the spectral problem for
-4 in Hy(Q), {1 =)0,1[x]0, 1[. We obtain the functions w,,(z1,z2) = sin rrz,-
gin amas, 7,8 € N. We construct then a sequence (w,).v € N of eigenfunctions
of =A. By Vi, we represent the subspace [wy,ws, ..., wy] generated by the m

first eigenfunctions.

Approximated penalized problem

tm(t) € Vi,
(uem(t), v) + Ma(wa(t)))a(uc(t), v) + 2 (Buem), v) = (£(2),0)
foreach v eV, (24)

Uem(0) = Yoo, = 4, in HIYQ)NHYN), a8 m — o0

!
om

v (0)=wujem —u; in HIN) as m — o0

There exists local solution of the sysiem (24) of ordinary differential equa-
tions. The estimates obtained in the following steps, permits to extend the
solution globally to [0,T]. The weak limit u, of the solution u,,, satisfies the

same estimates independent of ¢ and ie solution of (13). Then we can pass the
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limit when £ — 0 or for a subnet, which limit u is the solution of the Theorem

1, as we have seen in its prove.

Step 1 - In this step we obtain an estimate for ], in L*(0, T; W}4(f2)) which

is n consequence of the choice of the penalty term B(u). This estimate is crucial

to obtain global solutions. When we used different penalty term, cf. Medeiros-

Milla Miranda [21], it was not possible to obtain global solutions.

Another

remark useful, is that in this step the method works for a bounded open set of

R?, not necessarily a square, even R™.
Take v = 2u () in (24); We obtain:

|14bm(t)1z +M (a(ﬂm)) 7 Otem) +

423 [ (= U200 Ui, 42 = 2, )

I"".l
If we define \
M) = j; M(s)ds,
then, from (25):

& (O + B (a(uem(£)) +

25 [ (1 ) (Ve 5 = 30, )

€5=1

Note that integral in (26) is non negative. Integrating (28) we obtain:

e (807 + Fe(a{uem(®)) + 5 E ;00 ) (e b =
= 0 (O + FH(a(wm(O)) + 2 [ (F(6), wen(s))ds
By (24), (24)s we modify (27) and obtain:
() + BE(a(ten(t)) + 3 3 [ [ (5, = e e <

¢
<0+ [ lubm(o)* da,

with 42 > 1. Note that when 42, <1, the integral in (27) is zero.

mo -

(25)

(26)

(27)

(28)
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By Gronwall’s inequality and (28), we get:

22
r 2 [
e+ o leem(@ + 23 [ [ 8, — i do < €, (29)

for wl,._, > 1, independently of ¢, m.

By (29) we can extend tem to [0,T). Then (29) is true for 0 < t < T,
0 < T < oo, independent of €, m, for %,,.. > 1. Note that (29) implies also
that w,me, i8 bounded in L3 (%)

From (29) we obtain:

n o (z,t)dedt — [ w2 dt < =5 1,
Lu‘mg‘(:c, )dzdt /‘;um:‘(z,t)dw <Z, O<ex

or
jQ ut (2,8)dzdt < C + L w2 (x,t)dzdt. (30)
Applying Schwarz inequality in the second integral of (30), we obtain:
fq wd (z,t)dzdt < C, i=12. (31)
From (31} we have:
fo IV, (z,8)[* dzdt < C, (32)

independent of 0 < £ < 1 and m.
By (29), (32) we obtain a unique inequality:

e () + "'“em(t)"z + ”“:m(t)||1¢(u,r~,wj-'{n)) < Co, (33)

independent of 0 < ¢ < 1 and m.
By Schwarz inequality applied to second integral in (30) and by (31), we
obtain u},, is bounded in L?(0, T; H1(12)).

Step 2 - In this step we obtain the estimate of the Au,m(t) in L3(Q). In all the
results obtained, this estimate is local, that is, exist 0 < T, < T and the estimate
is obtained for 0 < ¢ < T,. To avoid this difficulty some extra conditions are

added to the problem, for instance, a damping or certains growth conditions for
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the initial data. This estimate depends on the global solution of an inequality
of the type:
Pt <C+ [ " 8(s)p(s)ds

and we don't know if # € L'(0,T). In our case, the penalty term, gives by
(31), an estimate that implies 8 € L'(0,T). Therefore, we need that a certain
integral that contains the penalty term is non negative. This is obtained, at the
present, if we do an strong restriction on the geometry of §), that is, if ¢ is an
square of R3,

Take v = —2Au:m(f) in (24),. Note that —2Au] _(t) € V., because we use
eigenfunctions of —A in H}(), Q the square. We obtain:

2( Yermn A1""¢m) + 2M(ﬂ.('ﬂ.,m )a(u‘ml _Au’:m} - (34)
_ngna—:, 1* u,m,‘)- um,.]( —Au,, )z =
=2(f, - Au,y,).

The two first term of (34) are controlable.
Let us prove that

): f 3::.[ W) Y| (Bl )z 2 0. (35)

Let us write in the calculus, u instead of w,m. Then, (34) is decomposed in the

following four integrals:

i=1,2, and

for the terms Iy, Iy;.

Calculus of I; - Note that if 2 > 1, (1 ~ u??)~ =0, then I; = 0. Suppose

u2 > 1 and taking derivatives, we obtain:

= 7 _ 1y, - _
I jﬂ(su,'. Du?, de >0, i=1,2
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Calculus of Ij; - It is sufficient to consider the case 1 > 1. Then

IU:fn@_azI[(uf"_ .] Uy, 42,

By Gauss’ Lemma, we obtain:

Iy = —f [ ﬂf‘ -1 u.',l]%u',j,, +
+ f [ ] ;ﬂ,’ cos(v, z;)dT.
Note that I' is the boundary of the square ]0, 1[x]0, 1[. The integral on T is zero

because u, , =0onT.
Therefore,

T== [ [ (62 - 1) ut) 5 vy d (38)
We first modify (36) changing the order of denvntlon, obtaining:

I,-j = —j:? [(u: - 1) u:‘]%u:‘,} dz.

Applying Gaues’ Lemma, we obtain:
8 '
L= fn 8_zj[ (u:‘: - 1) u:,‘]u:,'.j dz — - /r(u':‘ — L)ug, ty o, cos(v,z;)dT. (37)

Let us prove that the integral on I' is zero. In fact, decompose T in Ty =]0, 1
on ¢ coordinate, the following side is I's, then I'y and I'y =|0,1[ on y coordi-
nates. We have two types of terms: uf, cos(v,2;) or ul, cos(v,z;) where v is
the normals to I';, T3, T3, T'y. To fix idens, let us consider the first of the two
terms. Then, it is sum of terms of type A(£)(cos rxzysin swaa)cos(v, z3). In
I and T, sin s7wzs is zero, because z3 = 0 or z; = 1 respectively. On I,
Ty, cos{v,z3) = 0 because the normal is perpendicular to the faces. Conse-

quently the integral on the boundary T is zero and from (37) we have:

o= J, g (= 1) e

which is non negative because 4 > 1. It follows that in fact (35) is non

negative. Then from (34) we obtain:
[Vuim(@®)]? + M(a(vem(t))) Vuum(t)] < (38)
5 M(ton(t))|Aen () + [V FE + V(8]

A Bin
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Integrating (38) on ]0,#[, we obtain:

Vien(8)F + M(alum(E)Avn) S (39)
< (Ve (O)F + M(a{uen(O)) Atam(O)f* + [ |V f(a)*ds +

4 [ V()P ds 4 [ 2 M(auem(O) (o) do.

Let us estimate the last integral on the right hand side of (39). We have:

S 15 MCaam 1At da| < [*11Ca{term)) 2 ) | At o

Since 0 < a(uem(t)) < C,, for 0 <t < T, by (33), we obtain

max | M (a(uem(t))| < C.

0<a(uim(t))<Ca
Algo from (33) we find:
la(tem; tem)| < Col Vg -
Whence,
t.d 2 ' U H
[ G Ma(m N Atm(8)? ds < C, [ [Val(o)|Avim(e)Pds. (40)
By (39) and (40), follows:

IVl (&) + mo| Augm(t)|? (41)
< C+ _/; |Vl (a)[?ds + C. jo | Pul ()| Attem()|? ds.

The main contribution given by the penalty term S(u) s "":rnni.l(o.'r;wj “ay <

C,, which implies that |Vu,_(¢)| € L'(0,T). Also, as observed in Step 1, it im-
plies, u;,, bounded in L*(0, T'; H}(R)). From this remark and (40), we have:

|Atem () < @48 [ V8 (o)l| Aten(s)lds. (42)

Note that (42) is an inequality of the type (t) = a +b J; 8(2)p(s)ds, ¢ > 0,
6 20,0 ¢ LY0,T). Then by Gronwall's Lemma we obtain [} 8(s)p(s)ds < C
on [0,T].
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From the above remark, (41) and (42), obtain the estimate of Step 2:
(Vi) + [Auem(t)? < C (43)

on (0,7, independent of m and 0 < ¢ < 1.

Step 3 - In this step we obtain estimates for u”_(¢). The method to obtain is
standard and we do only a summary, ¢f. Lions [17].
First of all we bound u_(0). In fact, take ¢ = 0 in the equation (24). We

obtain:
(2n(0),) = (£(0),9) + M{aom(O))(~Aten(0),0) +  (B(asem),v) . (48

Note that | grad u;]* < 1 by hypothesis. Since #im — uy in H!(Q) and
| grad u,| < 1, we can obtain a sub of uy.,, still represented by t1em, such
that | grad 4] < 1 and wiem — u;. Then this subsequence tiyem € K and
B(t1em) = 0. Here we have a key point of the proof. From here on we work with
this sequence. The penalty term in (44) is zero and if v = u”_(0), we obtain
1, (0) bounded in L?(1).

The correct method is to consider the difference equation in ¢ + & and ¢,
divided by A and take the limits when & — 0. This justify the formal procedure
of take the derivative with respect to ¢, of the both sides of (14) and take

v = 2u (t). As u” (0) is bounded we obtain the estimate:
luen(E)F + lluem(®)* < G on [0, T]. (45)
From the estimates (33), (43) and (45), we obtain subsequence, still repre-
sented by u,,, such that
Bem — u, weak starin  L%(0,T; H}(2))
Uem — u, weak starin L™(0,T; H() N H*(Q))
weak star in  L*(0, T; L}(2))
— u, weak starin L0, T; H,(2)) (46)
Uem — 4, weak starin L*(0,T; L*(Q))
U, — u, weak starin L0, T; W24(R2))
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To obtain the limit in the nonlinear term, we need strong convergence. We
have u., bounded in L*{0, T; H}(R)NH?(R)) and u!,, bounded in L*(0, T'; L*(1)).
The imbeding of H1(Q) N H}(§) in H}(2) is compact. Then there exists sub-

sequence, still represented by u.m such that:
Uem — U, strongly in  L*(0, T; H1(D)). (47)

With the convergences (46), (47) we can take the limit in the equation (24)
when m — oo, and we obtain u, of the Theorem 2. Note that we have the
estimates (33), (43) and (45) for u,. It follows that we obtain subnet still
represented by u., 0 < € < 1, with the convergences (46), (47). The function
u, satisfies the condition of Theorem 2. The proof is like in Lions [17]. With
u, and convergences (46), (47) we prove that the limit u of u,, is the solution
of Theorem 1, as have been done.

We have uniqueness in the Theorem 1 and the solution u satisfies the initial
data. The proofs are like in Medeiros-Milla Miranda [21].
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the present work.
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