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ON THE PROBLEM OF SOLVING F(z) =y IN THE
PLANE
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Abstract

The knowledge of a critical set together with its image provides a
wealth of information about the global geometry of mappings from the
plane to the plane. In this note, we describe some properties satisfied
by the critical sets and indicate how they can be useful in the explicit
construction of the critical sets and in the solution of F(zx) = y.

In this note!, we describe a theoretical setup to study the problem of solving
F(z) = y for a large class of mappings F from the plane to the plane. The
motivation to consider this problem came from the one dimensional Riemann

problem, that is, a conservation law
Ui+ f(U)=0, f:R*—>R?

with initial condition
_JUy forz <0,
U{0,2) = {U1 forz > 0.

An elementary shock-wave solution of the Riemann problem is given by

_ Uy forz—ast<,
U(t’z)_{U-l forx —at > 0.

whenever the Rankine-Hugoniot condition
F(Uh) = f(Uo) = s(Ur — Uh)

holds. The search for elementary shock-wave solutions then leads us to the

following question: for given s € R and U, € R?, how many values of U, € R?

1Work aupported by SCT and CNPq, Brazil
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are there so that (s, Up, Uy ) gives rise to an elementary shock-wave solution, and
how does this number vary as (s, Up) vary?

Rewriting the Rankine-Hugoniot equation as
f(Ur) — sUy = f(Uo) — sl

and setting F, = f — sl, one sees that (s, Us,U;) gives rise to an elementary
shock-wave solution of the Riemann problem if and only if {7; is a solution of
the non-linear equation

F (U} = F,(h).

Thus the above question naturally induces the following problem.

Problem 1: Given F: R? - R? and y € R?, how many solutions does the

equation F(z) =y have, and how does the number of solutions vary with y?

The theoretical considerations in this note are also being used in the con-
struction of a program to solve the equation F(z) = y numerically, for a rather
general class of mappings F described below. The key point is that the topo-
logical arguments not only provide a satisfactory counting of the solutions of
the equation, but also show us how to implement routines which obtain initial
conditions for local iterations (like Newton’s method) which indeed converge to
the desired solutions. Details of the program will be described elsewhere [MST].

In [MT] it is proved that, for Fin a suitable class of C* “nice” mappings
of the plane into itself, all the information needed to answer Problem 1 is given
by the action of F' on the set of critical points. Nice mappings will be defined
later; over compact domains, nice mappings are generic. Rather surprisingly,
not any set of curves in the plane, together with a putative set of image curves,
can be the critical set of a nice mapping in the plane. Some obvious restrictions
arise from considerations of differential topology. In the seventies, Blank and
Troyer ([B],(T]) obtained necessary and sufficient conditions for a set of curves
to be the image of the boundary under an immersion of an n-holed disk in

the plane. From their work, we derive a satisfactory answer to the following
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problem, which appears naturally in the computation of the critical set of a

given nice mapping F.

Problem 2: Given a set ' of critical points of F, is there a nice mapping G
such that G agrees with F in a neighborhood of €' and €' is the whole critical
set of G7?

At the end of this note, we make some comments about a delicate issue
in the project: given a nice mapping F and some curves which are shown, by
making use of the appropriate tests, to be all the critical curves of some nice

mapping G, how can we be sure that there are no other critical curves?

In this text, we provide no proofs (to be found in the references) and fre-
quently avoid a complicated (and precise) description of the results by making
use of examples, which are supposed to convey the spirit of the techniques em-
ployed. We would like to thank the referee for his comments, indicative of a

careful reading,

We begin by recalling some standard definitions. A mapping F {rom the
plane to itself is said to be proper if the inverse image of any compact set in the
plane is compact. Clearly, ' : R* — R? is proper if and only if the mapping
goes to infinity at infinity, and so F' can be extended continuously from the
Riemann sphere to itself by defining the value of the extension F at infinity
to be infinity. Continuous proper mappings F from the plane to itself have
a topological degree, which coincides with the degree of the extension F [M].
A point in the domain of F is regular if the differential DF at this point is
invertible. Points which are not regular are called critical, and their images are
the critical values of F. The set of critical points, denoted by C(F) or simply
C, and its image under F' are called the critical sets of F'. Points which are not

critical values are called regular values.

To explain how all the information we need to solve the equation F(z) = v,

for F'in a suitable class of C° mappings, is given by the critical sets of F, we
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consider the mapping F : R? — R? given by
F(u,v) = (—6u* — 6u?v® + uv® + 6v* — u, ;Eu“ + ulv 4+ ue? + Euva — vt —v).

This mapping is proper and its critical sets C and F(C) are given in Figure 1,
while the pre-image F~1(F(C))is given in Figure 2. We use the same letter to

denote a set and its image under F.

Figure 1.

Now, if we denote by Ty the unbounded component of R? — F(C') and by
T, and T; the bounded ones, we will have, {rom the properness of F', that F
restricted to any connected component of F~}(7,),a = 0,1, o0, is a covering
mapping and the action of F is described in Figure 2. So, in particular, F
restricted to any connected component of F~(T),i = 0,1, is a diffeomorphism
onto T; and F(T.) covers Ty, twice. Hence the equation F(z) = y has 2,
4 or 6 solutions depending on whether y belongs to T, Tp or T respectively.
Indeed, as proved in [MT), for a nice F, the number of solutions of F'(z) = y, for
y varying in the plane, can be obtained simply from knowledge of C and F(C).
The additional knowledge of F~!(F(C)) gives us information about where to
look for initial conditions for a possible iterative method to solve the equation

numerically.
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Figure 2.

In order to state the hypothesis on F, we recall the concept of Whitney
singularities [W]. A fold point of F (resp., cusp point) is a critical point =
for which there are local orientation preserving diffeomorphisms around z and
F(z) onto neighborhoods of the origin of the plane in which F' takes the form
(1) (resp., (2)) below.

F(u,v) = (u,9%) (1)

Flu,v) = (v,00° —wv), a==1 (2)

By a celebrated theorem of Whitney [W], generically in an appropriate topol-
ogy in the space of smooth mappings from the plane to itself, critical points are
either folde or cusps. Mappings satisfying the three conditions below will be
called nice.

(a) F is a smooth proper mapping from the plane to itself.



94 ILPMALTA N.CSALDANHA C.TOMEI

(b) C = C(F) is bounded and each critical point is a fold or a cusp point.

(c) Images of critical curves may only intersect at a finite number of points,

and the pre-image of such a point. meets C(F) at exactly two fold points,

With the techniques employed in [W], one shows that nice mappings are
generic in the class of smooth proper mappings with bounded critical set (in a
suitable C~ topology). The requirement that each critical point is a Whitney
singularity implies that zero is a regular value of det DF. Thus, from condition
(b), the set of critical points C is a finite disjoint union of simple closed curves
and there is only a finite number of cusp points. Condition (a) implies that
F has a topological degree d = degF. This degree is given by the number of
solutions @; of the equation F(z) = y for any regular value y, counted with
the sign of det DF(z;) [M]. Since by (b) the set of critical points € is compact,
we have that R? — F(C) has exactly one unbounded connected component T,
Clearly, F~!(T.,) is the unbounded connected component of R? — F-!(F(C)),
so the local orientation of F at any solution of F(z) = y for y in T, has to be
the same. Thus, the number of solutions of this equation for ¥ in T\, which 1s
positive, equals the absolute value of the topological degree of F. In particular,
d#0.

From (b), the restriction of F to any critical curve I'; , F(I} , is a continuous
locally injective curve and we can define the turning number, 7(F|r,) of F(T\)

as the Brouwer degree of the mapping )
9 L9+ 8)) - F(5(9))
[F(+(9 + 8)) = F(r (9’

where 7 : 51 — R? is a regular orientation preserving parametrization of T'; and

6 is any small positive angle for which F|,(4)a+5) is injective for all ¢ € S*.
Condition (c) implies that we can compute the turning number 7(F|r,) from
the Seifert circles of F(I';) as follows. Consider the orientation induced in the
curve F(T;) by the positive (counterclockwise) orientation of T; . Now change
slightly the curve F(I';) near self-intersection points as in Figure 3. Then F(T;)
splits into a disjoint union of oriented simple curves - the turning number is the

number of such simple curves counted with a sign defined by their orientation.
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—

Figure 3.

Since critical points are fold or cusp points, we can orient the image F(I';)
of each critical curve I'; so that a small disk around any fold point in T; is sent
by F to the left side of the oriented curve F(I;) . In particular, each image
F(z) of a cusp point z € T; points to the right side of the oriented curve F(T)
(see Figure 4). This orientation will be said to be given by the sense of folding.
The turning w(T;} of the curve F(T;) oriented by the sense of folding is defined
by w(I;)} = £7(F|r;). This sign is positive if this orientalion agrees with the

one induced by F on F(I;) from the positive orientation on I'; .

o~

Figure 4.

The three results below are stringent relations among the numbers defined
8o far (see [MT] for proofs).
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Theorem A: Let F be a nice mapping. Then
|degF|=k—2w+1>0,

where k is the number of cusp points and w = Tr,cc w(Iy).

Let F: R? - R? be a nice mapping and €' = U, I'; a union of critical
curves of F'. Let I'y be a circle around ¢’ and suppose that o N C(F) = 0.
Let Dy be the open disk bounded by I'y . Let w(Ty) be the turning number of
F(To) oriented so that a small neighborhood in Dy of a point in Ty is sent by
F to the left side of F(I'q), and w(I;) for i = 1,...,n be the turning of F(I})
oriented by the sense of folding.

Propesition [MT]: If Do NC(F) = ' then

w(lo) = k — 2w(C’) +1,
where w(C') = 1%, w(T;) and k is the number of cusp paints in C',
Corollary: If C' = C(F) then |degF| = w(ly).

We show by an example how to solve Problem 2. Suppose we have found
a critical curve I'y of a nice mapping F such that the image curve oriented by
the sense of folding and the behavior of F in a neighborhood of I'y are given in

Figures b and 6 respectively.

F(T)

Figure 5.
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F(T) E(T})

Fip)

Figure 8.

Since w(T'y) = 1 and Iy has one cusp point, we conclude from Theorem A
that I'; cannot be the whole critical set of ¥, so we have to look for more critical
curves.

Suppose we find ancther critical curve T'y as in Figure 7, close to which the

local behavior of F' is given in Figure 8,

F(T)
L F
—_—
7 Fm)
&
Figure 7.

From Theorem A we learn that if I'y UT} is a critical set of a nice mapping
G then |deg G| = 1. So, if we take a circle around the curves in the range, its
pre-image is a simple, closed regular curve I'y around the critical curves T, and

I'; as in Figure 9. By the proposition and corollary above, w(le) = 1. The
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orientation in F(I'q) means that any point in the open disk bounded by T is
sent by F to the left side of F(Ty) .

F{@
L
Q) N N
;3
Figure 8.
F
. — .
T‘U
F(T,)
Figure 9.

Clearly the problem of existence of a nice mapping G as required is then
reduced {o the following question. Is there an extension G of F |FnuF1ur; to
the closed disk Dy bounded by Ty such that G is an immersion outside the
curves I'y and I’y and preserves the behavior of F near ', Ul ? To answer
this question, first observe that this problem decouples in similar problems. Let
C'=ToUT UT; and g = Fle..
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(i) For i = 1,2, can gl be extended to the closed disk D; bounded by T; , as
an immersion in D; and such that the extension preserves the behavior of

F|p; near I'; 7

(ii) Can g be extended to A = Dy — (D, U D;) as an immersion outside of the
boundary of A preserving the behavior of F|4 near §A7

Clearly, fori = 1,2, 9|I‘|- has an extension as a diffeomorphism from D; onto
the open disk bounded by F(I;) . To give an answer to (ii), we use a slight
adaptation of a criterion introduced by Blank [B] and Troyer [T]. To explain
how to do this, we consider first a simpler problem. Suppose that I' is a critical

curve of a nice mapping H and that A = H|p acts as in Figure 10.

Figure 10.

The problem is to decide if there exists an extension of k to the closed
disk D bounded by T' as an immersion in D, having ¢ and ¥ as cusp points,
and such that a small neighborhood in D of a paint in I' — {z,y} is sent to
the left side of the oriented curve A(T). Proceed as follows. Let T, be the
unbounded connected component of R? — A(I'). Choose a point p; in each
bounded connected component of R? — A(T"). Let r; be a proper embedding
of the non-negative real axis into the plane with r;(0) = p; (called a ray from
pi) such that the rays ry,..., 7 do not contain intersection points of A(T), cut
h(T') transverswally and are pairwise disjoint. Now assign to each intersection

of a ray with the curve a positive or & negative sign, depending on whether
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the curve crosses the ray from right to left (that is, p; is on the left side of the
curve) or the curve crosses the ray from left to right. Complete the set of rays
by choosing for each cusp point ¢ a ray from h(z) assigning to this point a

negative sign (see Figure 11).

Figure 11.

Now construct a word (the Blank word for the oriented curve A(I')) by
following the orientation of the curve A(T') and collecting the intersection points
with the rays, keeping track of signs and rays. Clearly the word is defined up

to cyclic permutation. In this example, a Blank word is given by

BW = r1+r;’r;rfr;r;r;'r;rfr;'r;r;rr;rgr;.

We say that a Blank word admits a simplification if there exists a pair r}, ;
such that (after a cyclic permutation if necessary) there are no letters with
negative exponent between r] and r; . If this is the case, a simplified Blank
word is obtained by eliminating the subword r} ...#7 (or+; ...7}). We say that
a Blank word groups (or has a grouping) if there are successive simplifications
such that the final Blank word has no letters with negative exponents. In the
example, a possible choice of simplification is

BW —s rirfrirdririrdniriry — rfefvirte}
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and so the Blank word of the example groups. The fact that the Blank word
groups, together with the fact that the turning number minus the number of
cusps equals one, is sufficient (and necessary!) to gnarantee the exisience of the
desired extension. The complete description of Blank’s criterion can be found
in |B], while the mild extension being used is in [MST].

" Returning to the example given in Figure 9, we follow (a slight modification
of) a procedure due to Troyer ([T]) which is the analogue of Blank’s criterion
to the case where the domain of the extension being sought consists of more
than one curve, We begin by constructing rays as before (see Figure 12), and
collecting one word for each curve g(I';},i = 0,1,2. A Blank word for g(C’) is a
single word obtained as the adjunction of a cyclic permutation of each word. In

the example, denoting by BW(T;) the Blank word of g(I;),i = 0,1,2, we have

Figure 12,

BW(Lo) = a*btctd¥et f+atrt,
BW(Ly) = d*et f*e-,
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BW(T;) = ctd*f~q*r=a-,
80 a possible Blank word for g(To UT . UT,) is
BW([oUT  UTy) = d¥et ftectdt fgtra-atbtetdtet frotet
which has a grouping. As before, since
w(To) + w(l'y) + w(I';) — (number of cusp points) = —1

» and a Blank word groups, we can guarantee the existence of the desired ex-
tension.

Let A,,..., A, be the connected components of Dy — C', with the notation
defined above. Then for each p = 1,...,m, the boundary of Ap is 84, =
Ty, U(UiZy Tp;) where Ty, is the exterior boundary of A,, that is, A, is contained
in the disk bounded by I',,. As in the example, the problem of existence of a
nice mapping G which agrees with F in ", has the same behavior as F in a
neighborhood of €’ and such that C(G) = C” can be reduced to the existence
of extensions of F|0A, to A, as an immersion in A, preserving the behavior of
F'in a neighborhood of 84, in A4,. S0 we have to make a distinction among the
cusps in 84, in such a way as to select the ones which are detected by the action
of Fin A,. Let D; be the open disk bounded by the critical curve I'; . A cusp
point & € [; will be called inward if, for each sufficiently small neighborhood U
of 2, F maps U N D; onto & neighborhood of F(z). 1t is clear from the local
form (2) that if a cusp point z is not inward, then F maps (R* - D;)N U onto
a neighborhood of F(z). In this case, # is said to be an outward cusp point. In
other words, the fact that  is a cusp point is detected by the action of F in
D; orin R? — D; if z is an inward or outward cusp respectively. These cases
correspond to Figures 13 (a) and (b).

Clearly, for the problem of existence of the desired extension of F|04,, we
have to consider as cusp points only the inward cusp points of I, and the
outward cusp points of I',,,5 = 1,...,m,. So, for each p, construct a set of

tays for the curves F'(94,) oriented by the sense of folding considering only the
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cusps described above. In Figures 14 (a) and (b), we draw the rays associated

to the components A, and A; for F given in Figure 1.

(@) b}

Figure 13.

{b)

Figure 14.

For each p, construct the Blank word of F(Iy,),7=0,...,n, and consider
the set of Blank words for F(8A,). For each p, let k, = k., + 72, k7., where

i=1"p;?
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k.p, and k;, are, respectively, the number of inward and outward cusps in the

COITES ponding curve,

Theorem B: ([MST]) C'is the set of critical potnts of a nice mepping G whick
agrees with F in a neighborhoed of C' if and only if

(1) k!’ - (E;'l;uw(r‘l’j)) —np+ I= Ufmr'p =1,...,m, and

(ii) for each p = 1,...,m, there exists a Blank word for F(3Ap) which has a
grouping.

Morecver, if (i) and (i) are satisfied, then |deg G| = w(Ty).

Remark: Condition (i) simply says that for each p, x(A4,) = w(d4,) — ky,
where x(A;) is the Euler characteristic of 4, which is 1 — n,.

We are still left with the following intriguing issue: once we found a (sub)set
of eritical curves of the mapping F which is indeed the critical set of a mapping
G (since it satisfies the tests described above), how can we be sure that F does
not have other critical curves? The answer is obvious: this cannot be guaranteed
by mere topological arguments.

The problem is already present in the one dimensional case in two different
versions: how can we be sure, given a mapping from the line to itself that we
know all its zeros, or all the zeros of its derivative? There are two obvious
difficulties: a computer program will search for zeros in a bounded set and not
beyond a certain level of refinement within this set. Implicitly, we assume the
knowledge of a priori estimates which guarantee that there are no zeros outside
the set being scanned and that, within this set, the mapping does not oscillate so
much as to generate additional zeros. Thus, unless the program itself generates
the required estimates, it cannot certify that all zeros will be found.

We provide two classes of examples in which the set of critical curves is
not found completely. The reader will have no trouble in convincing himself

that the examples are typical. In Figure 15, the knowledge of the critical curve
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I' together with the behavior of the mapping F at infinity (its degree) is not
enough to decide whether the critical set of F is (a} or (b). The problem is
that one can draw a curve v around the remaining critical curves in (b) for
which F(v) is a simple closed curve: if you never enter the disk ) bounded
by 7 you will never distinguish between the complicated behavior of ¥ in D
described in (b) and the simple one (a diffeomorphism) shown in (a). So, unless
the original search for critical curves spontaneously browsed through D, the
topological arguments presented in this note would not indicate that ) should

be searched for critical points.
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Figure 15.

The other example is shown in Figure 16. Knowing curve I and the degree of
F' would not induce the program to search for the (possibly missing) two critical
curves. The reason is that the image of a simple curve tightly surrounding I has
the same topological behavior as the image of a large circle: both are taken to
(isotopic) curves of equal turnings. So, again, from the topological information,

both situations are undistinguishable.
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Figure 16.
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